
Priority Queues

Two kinds of priority queues:

• Min priority queue.

• Max priority queue.

Min Priority Queue

• Collection of elements.

• Each element has a priority or key.

• Supports following operations:
� isEmpty

� size

� add/put an element into the priority queue

� get element with min priority

� remove element with min priority

Max Priority Queue

• Collection of elements.

• Each element has a priority or key.

• Supports following operations:
� isEmpty

� size

� add/put an element into the priority queue

� get element withmaxpriority

� remove element with maxpriority

Complexity Of Operations

Two good implementations are heaps 
and leftist trees.

isEmpty, size, and get => O(1)time

put and remove => O(log n) time 
where n is the size of the priority 
queue

Applications

Sorting

• use element key as priority

• put elements to be sorted into a priority queue

• extract elements in priority order
� if a min priority queue is used, elements are 

extracted in ascending order of priority (or key)

� if a max priority queue is used, elements are 
extracted in descending order of priority (or key)

Sorting Example

Sort five elements whose keys are 6, 8, 2, 4, 1 
using a max priority queue.
� Put the five elements into a max priority queue.

� Do five remove max operations placing removed 
elements into the sorted array from right to left.
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Complexity Of Sorting

Sort n elements.
� n put operations => O(n log n) time.

� n remove max operations => O(n log n)time.

� total time is O(n log n).

� compare with O(n2) for sort methods of 
Chapter 2.

Heap Sort

Uses a max priority queue that is implemented 
as a heap.

Initial put operations are replaced by a heap 
initialization step that takes O(n) time.

Machine Scheduling

� m identical machines (drill press, cutter, sander, 
etc.)

� n jobs/tasks to be performed

� assign jobs to machines so that the time at which 
the last job completes is minimum

Machine Scheduling Example

3 machines and 7 jobs

job times are [6, 2, 3, 5, 10, 7, 14]

possible schedule
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Machine Scheduling Example

Finish time = 21

Objective:Find schedules with minimum finish time.
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LPT Schedules

Longest Processing Time first.

Jobs are scheduled in the order
14, 10, 7, 6, 5, 3, 2

Each job is scheduled on the machine 
on which it finishes earliest.



LPT Schedule

[14, 10, 7, 6, 5, 3, 2]
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Finish time is 16!

LPT Schedule

• LPT rule does not guarantee minimum finish 
time schedules.

• (LPT Finish Time)/(Minimum Finish Time) <= 4/3 - 1/(3m)  

where m is number of machines.

• Usually LPT finish time is much closer to 
minimum finish time.

• Minimum finish time scheduling is NP-hard.

NP-hard Problems

• Infamous class of problems for which no one 
has developed a polynomial time algorithm.

• That is, no algorithm whose complexity is 
O(nk) for any constant k is known for any NP-
hard problem.

• The class includes thousands of real-world 
problems.

• Highly unlikely that any NP-hard problem can 
be solved by a polynomial time algorithm.

NP-hard Problems
• Since even polynomial time algorithms with 

degree k > 3 (say) are not practical for large n, 
we must change our expectations of the 
algorithm that is used.

• Usually develop fast heuristics for NP-hard 
problems.
� Algorithm that gives a solution close to best.

� Runs in acceptable amount of time.

• LPT rule is good heuristic for minimum finish 
time scheduling.

Complexity Of LPT Scheduling

• Sort jobs into decreasing order of task time.
� O(n log n)time (n is number of jobs)

• Schedule jobs in this order.
� assign job to machine that becomes available first

� must find minimum of m (m is number of machines) 
finish times

� takes O(m) time using simple strategy

� so need O(mn) time to schedule all n jobs.

Using A Min Priority Queue

• Min priority queue has the finish times of the 
m machines.

• Initial finish times are all 0.

• To schedule a job remove machine with 
minimum finish time from the priority queue.

• Update the finish time of the selected machine 
and put the machine back into the priority 
queue.



Using A Min Priority Queue

• m put operations to initialize priority queue

• 1 remove min and 1 put to schedule each job

• each put and remove min operation takes  
O(log m) time

• time to schedule is O(n log m)

• overall time is

O(n log n + n log m) = O(n log (mn))

Huffman Codes

Useful in lossless compression.

May be used in conjunction with LZW method.

Read from text.

Min Tree Definition

Each tree node has a value.

Value in any node is the minimum value in 
the subtree for which that node is the root.

Equivalently, no descendent has a smaller 
value.

Min Tree Example
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4 8 7
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Root has minimum element.

Max Tree Example

9

4 9 8

4 2 7

3 1

Root has maximum element.

Min Heap Definition

• complete binary tree

• min tree



Min Heap With 9 Nodes

Complete binary tree with 9 nodes.

Min Heap With 9 Nodes

Complete binary tree with 9 nodes 
that is also a min tree.
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Max Heap With 9 Nodes

Complete binary tree with 9 nodes 
that is also a max tree.
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Heap Height

Since a heap is a complete binary 
tree, the height of an n node heap is
log2 (n+1).
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A Heap Is Efficiently Represented As An Array
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Putting An Element Into A Max Heap

Complete binary tree with 10 nodes.
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9

8

6 7 2 6

5 1

7

75

Putting An Element Into A Max Heap

New element is 20.
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Putting An Element Into A Max Heap

New element is 20.
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Putting An Element Into A Max Heap

New element is 20.
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Putting An Element Into A Max Heap

Complete binary tree with 11 nodes.
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Putting An Element Into A Max Heap

New element is 15.
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Putting An Element Into A Max Heap

New element is 15.

9

8

6

7

2 6

5 1

7

77

20

8

Putting An Element Into A Max Heap

New element is 15.
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Complexity Of Put

Complexity is O(log n), where n is 
heap size.
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Removing The Max Element

Max element is in the root.
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Removing The Max Element

After max element is removed.
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Removing The Max Element

Heap with 10 nodes.
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Reinsert 8 into the heap.

Removing The Max Element

Reinsert 8 into the heap.
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Removing The Max Element

Reinsert 8 into the heap.
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Removing The Max Element

Reinsert 8 into the heap.
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Removing The Max Element

Max element is 15.
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Removing The Max Element

After max element is removed.
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Removing The Max Element

Heap with 9 nodes.
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Removing The Max Element

Reinsert 7.
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Removing The Max Element
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Removing The Max Element
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Complexity Of Remove Max Element

Complexity is O(log n).
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