

Priority Queues

Two kinds of priority queues:

- Min priority queue.
- Max priority queue.

Min Priority Queue

- Collection of elements.
- Each element has a priority or key.
- Supports following operations:
 - isEmpty
 - size
 - add/put an element into the priority queue
 - get element with min priority
 - remove element with min priority

Max Priority Queue

- Collection of elements.
- Each element has a priority or key.
- Supports following operations:
 - isEmpty
 - size
 - add/put an element into the priority queue
 - get element with max priority
 - remove element with max priority

Complexity Of Operations

Two good implementations are heaps and leftist trees.

is Empty, size, and get \Rightarrow O(1) time

put and remove \Rightarrow O(log n) time where n is the size of the priority queue

Applications

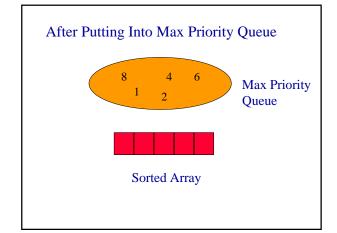
Sorting

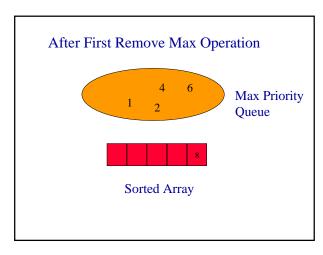
- · use element key as priority
- put elements to be sorted into a priority queue
- extract elements in priority order
 - if a min priority queue is used, elements are extracted in ascending order of priority (or key)
 - if a max priority queue is used, elements are extracted in descending order of priority (or key)

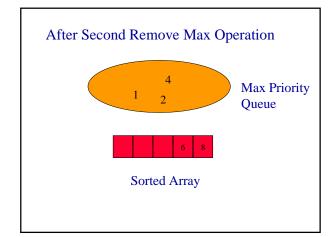
Sorting Example

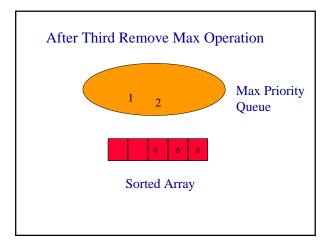
Sort five elements whose keys are 6, 8, 2, 4, 1 using a max priority queue.

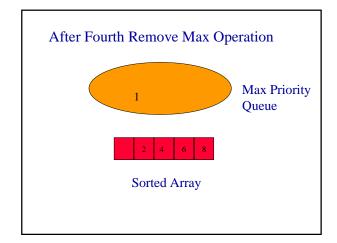
- Put the five elements into a max priority queue.
- Do five remove max operations placing removed elements into the sorted array from right to left.

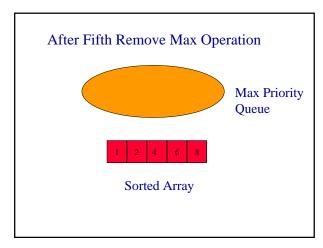












Complexity Of Sorting

Sort n elements.

- n put operations $=> O(n \log n)$ time.
- n remove max operations \Rightarrow $O(n \log n)$ time.
- total time is O(n log n).
- compare with O(n²) for sort methods of Chapter 2.

Heap Sort

Uses a max priority queue that is implemented as a heap.

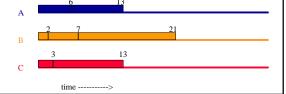
Initial put operations are replaced by a heap initialization step that takes O(n) time.

Machine Scheduling

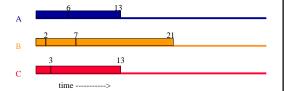
- m identical machines (drill press, cutter, sander, etc.)
- n jobs/tasks to be performed
- assign jobs to machines so that the time at which the last job completes is minimum

Machine Scheduling Example

3 machines and 7 jobs job times are [6, 2, 3, 5, 10, 7, 14] possible schedule



Machine Scheduling Example



Finish time = 21

Objective: Find schedules with minimum finish time.

LPT Schedules

Longest Processing Time first. Jobs are scheduled in the order 14, 10, 7, 6, 5, 3, 2

Each job is scheduled on the machine on which it finishes earliest.

LPT Schedule [14, 10, 7, 6, 5, 3, 2] A 14 16 B 7 13 16 Finish time is 16!

LPT Schedule

- LPT rule does not guarantee minimum finish time schedules.
- (LPT Finish Time)/(Minimum Finish Time) <= 4/3 1/(3m) where m is number of machines.
- Usually LPT finish time is much closer to minimum finish time.
- Minimum finish time scheduling is NP-hard.

NP-hard Problems

- Infamous class of problems for which no one has developed a polynomial time algorithm.
- That is, no algorithm whose complexity is
 O(n^k) for any constant k is known for any NP-hard problem.
- The class includes thousands of real-world problems.
- Highly unlikely that any NP-hard problem can be solved by a polynomial time algorithm.

NP-hard Problems

- Since even polynomial time algorithms with degree k > 3 (say) are not practical for large n, we must change our expectations of the algorithm that is used.
- Usually develop fast heuristics for NP-hard problems.
 - Algorithm that gives a solution close to best.
 - Runs in acceptable amount of time.
- LPT rule is good heuristic for minimum finish time scheduling.

Complexity Of LPT Scheduling

- Sort jobs into decreasing order of task time.
 - O(n log n) time (n is number of jobs)
- Schedule jobs in this order.
 - assign job to machine that becomes available first
 - must find minimum of m (m is number of machines) finish times
 - takes O(m) time using simple strategy
 - so need O(mn) time to schedule all n jobs.

Using A Min Priority Queue

- Min priority queue has the finish times of the m machines.
- Initial finish times are all 0.
- To schedule a job remove machine with minimum finish time from the priority queue.
- Update the finish time of the selected machine and put the machine back into the priority queue.

Using A Min Priority Queue

- m put operations to initialize priority queue
- 1 remove min and 1 put to schedule each job
- each put and remove min operation takes O(log m) time
- time to schedule is O(n log m)
- overall time is

 $O(n \log n + n \log m) = O(n \log (mn))$

Huffman Codes

Useful in lossless compression.

May be used in conjunction with LZW method.

Read from text.

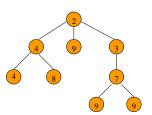
Min Tree Definition

Each tree node has a value.

Value in any node is the minimum value in the subtree for which that node is the root.

Equivalently, no descendent has a smaller value.

Min Tree Example

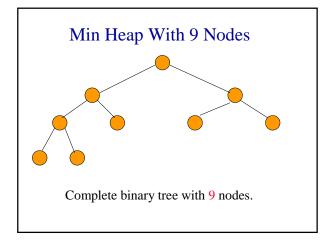


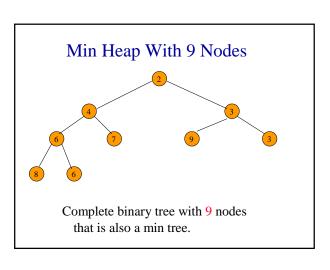
Root has minimum element.

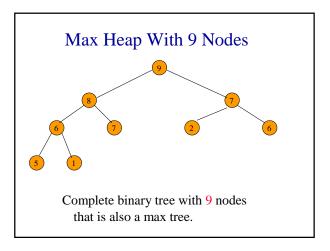
Max Tree Example 4 9 9 8 7 Root has maximum element.

Min Heap Definition

- complete binary tree
- min tree







Heap Height

Since a heap is a complete binary tree, the height of an n node heap is $\log_2{(n+1)}$.

