

Min Priority Queue

- Collection of elements.
- Each element has a priority or key.
- Supports following operations:
 - isEmpty
 - size
 - add/put an element into the priority queue
 - get element with min priority
 - remove element with min priority

Max Priority Queue

- Collection of elements.
- Each element has a priority or key.
- Supports following operations:
 - isEmpty
 - size
 - add/put an element into the priority queue
 - get element with max priority
 - remove element with max priority

and leftist trees.

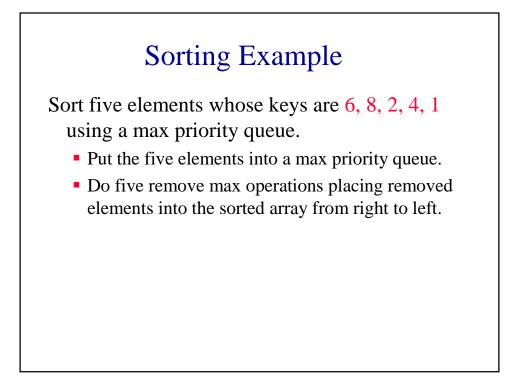
is Empty, size, and get $\Rightarrow O(1)$ time

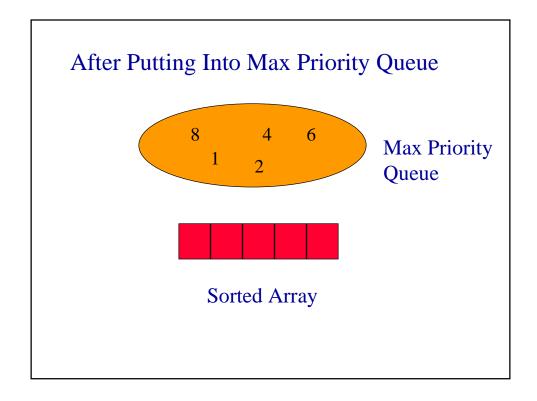
put and remove => O(log n) time
where n is the size of the priority
queue

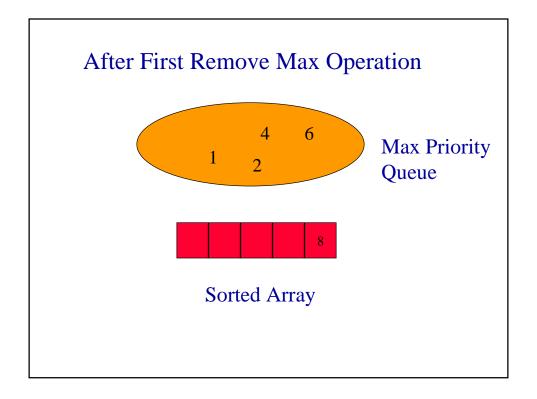
Applications

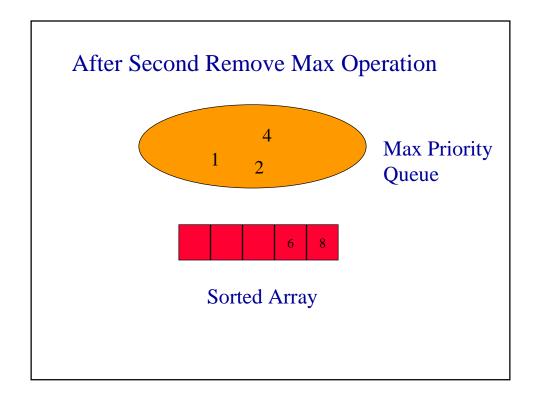
Sorting

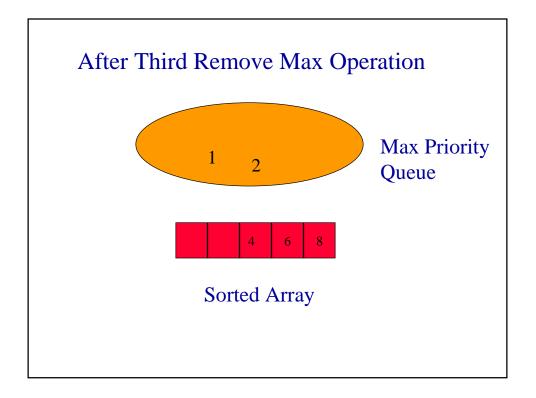
- use element key as priority
- put elements to be sorted into a priority queue
- extract elements in priority order
 - if a min priority queue is used, elements are extracted in ascending order of priority (or key)
 - if a max priority queue is used, elements are extracted in descending order of priority (or key)

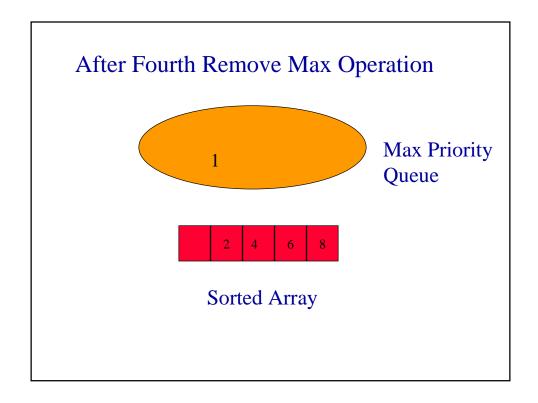


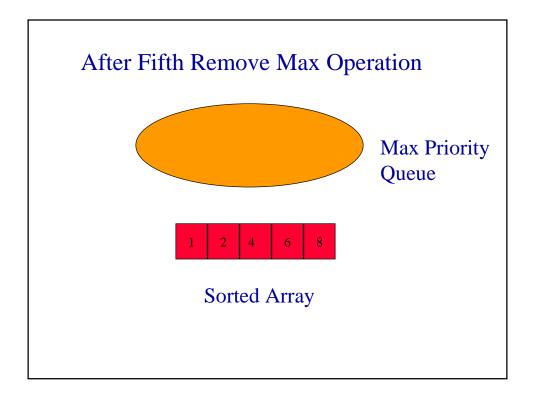


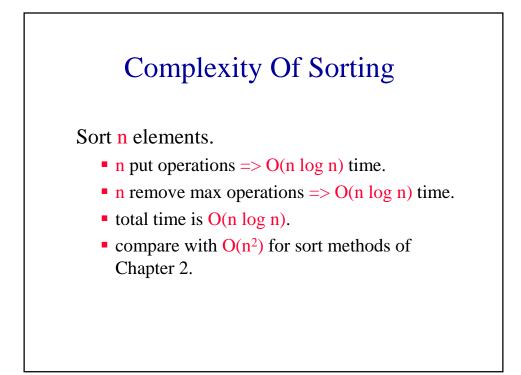


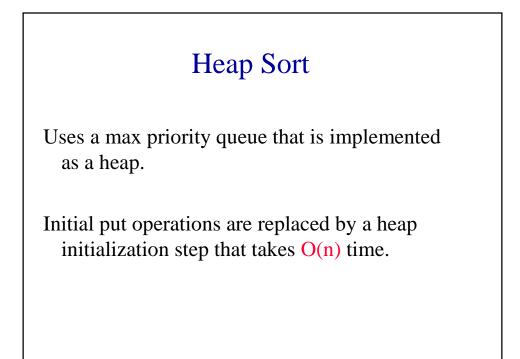






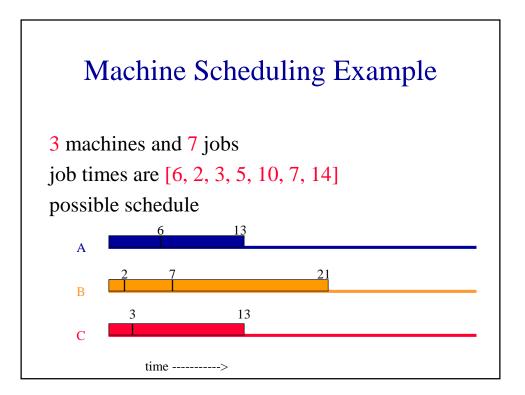


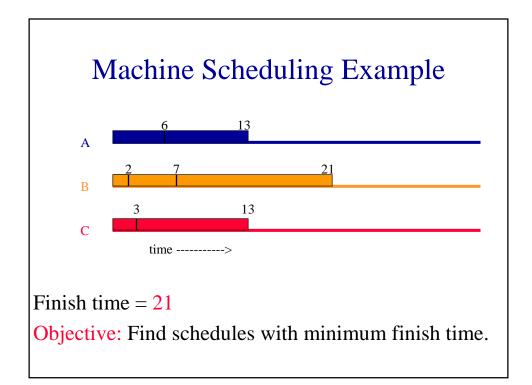


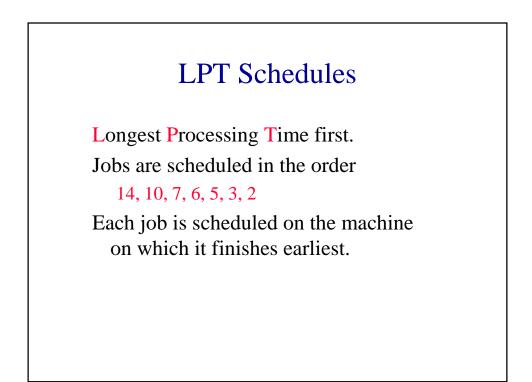


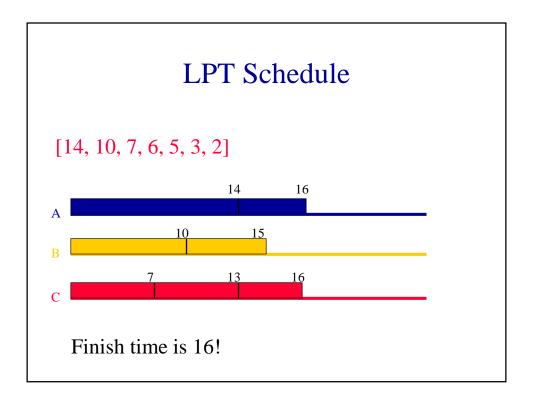
Machine Scheduling

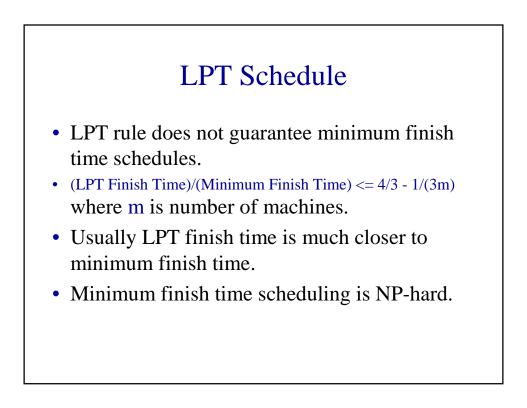
- m identical machines (drill press, cutter, sander, etc.)
- n jobs/tasks to be performed
- assign jobs to machines so that the time at which the last job completes is minimum





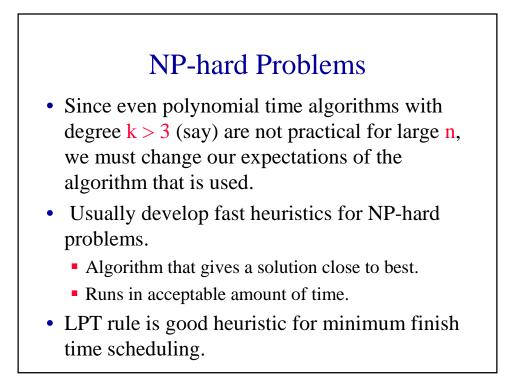






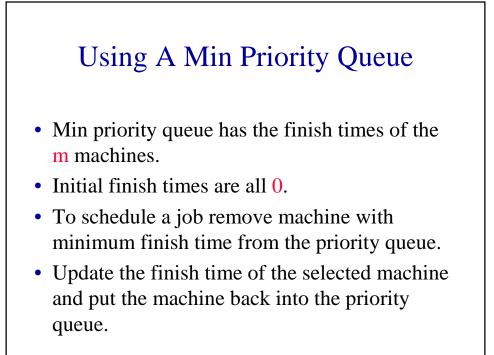
NP-hard Problems

- Infamous class of problems for which no one has developed a polynomial time algorithm.
- That is, no algorithm whose complexity is O(n^k) for any constant k is known for any NPhard problem.
- The class includes thousands of real-world problems.
- Highly unlikely that any NP-hard problem can be solved by a polynomial time algorithm.



Complexity Of LPT Scheduling

- Sort jobs into decreasing order of task time.
 - O(n log n) time (n is number of jobs)
- Schedule jobs in this order.
 - assign job to machine that becomes available first
 - must find minimum of m (m is number of machines) finish times
 - takes O(m) time using simple strategy
 - so need O(mn) time to schedule all n jobs.



- m put operations to initialize priority queue
- 1 remove min and 1 put to schedule each job
- each put and remove min operation takes
 O(log m) time
- time to schedule is O(n log m)
- overall time is

 $O(n \log n + n \log m) = O(n \log (mn))$

Huffman Codes

Useful in lossless compression.

May be used in conjunction with LZW method. Read from text.

Min Tree Definition

Each tree node has a value.

Value in any node is the minimum value in the subtree for which that node is the root.

Equivalently, no descendent has a smaller value.

