
Union-Find Problem

• Given a set {1, 2, …, n} of n elements.
• Initially each element is in a different set.

� {1}, {2}, …, {n}

• An intermixed sequence of union and find
operations is performed.

• A union operation combines two sets into one.
� Each of the n elements is in exactly one set at any

time.

• A find operation identifies the set that contains
a particular element.

Using Arrays And Chains

• See Section 7.7 for applications as well as for
solutions that use arrays and chains.

• Best time complexity obtained in Section 7.7 is
O(n + u log u + f), where u and f are,
respectively, the number of union and find
operations that are done.

• Using a tree (not a binary tree) to represent a
set, the time complexity becomes almost
O(n + f) (assuming at least n/2 union
operations).

A Set As A Tree
• S = {2, 4, 5, 9, 11, 13, 30}
• Some possible tree representations:

4

2 9 11 30 5 13

4

2

9
30

5

13

11

11

4

2

9

30

5

13

Result Of A Find Operation

• find(i) is to identify the set that contains element i.

• In most applications of the union-find problem, the
user does not provide set identifiers.

• The requirement is that find(i) and find(j) return
the same value iff elements i and j are in the same
set.

4

2 9 11 30 5 13

find(i) will return the element that is in the tree root.

Strategy For find(i)

• Start at the node that represents element i and
climb up the tree until the root is reached.

• Return the element in the root.
• To climb the tree, each node must have a parent

pointer.

4

2

9
30

5

13

11

Trees With Parent Pointers

4

2

9
30

5

13

11

1

7

8 3 22 6

10

20 16 14 12

Possible Node Structure

• Use nodes that have two fields: elementand
parent.
� Use an array table[] such that table[i] is a

pointer to the node whose element is i.

� To do a find(i) operation, start at the node given
by table[i] and follow parent fields until a node
whose parent field is null is reached.

� Return element in this root node.

Example

4

2

9
30

5

13

11

1

table[]
0 5 10 15

(Only some table entries are shown.)

Better Representation

• Use an integer array parent[]such that
parent[i] is the element that is the parent of
element i.

4

2

9
30

5

13

11

1

parent[]
0 5 10 15

2 9 13 13 4 5 0

Union Operation

• union(i,j)
� i and j are the roots of two different trees, i != j .

• To unite the trees, make one tree a subtree
of the other.
� parent[j] = i

Union Example

• union(7,13)

4

2

9
30

5

13

11

1

7

8 3 22 6

10

20 16 14 12

The Find Method

public int find(int theElement)

{

while (parent[theElement] != 0)

theElement = parent[theElement]; // move up

returntheElement;

}

The Union Method

public voidunion(int rootA, int rootB)

{parent[rootB] = rootA;}

Time Complexity Of union()

• O(1)

Time Complexity of find()

• Tree height may equal number of elements in
tree.
� union(2,1), union(3,2), union(4,3), union(5,4)…

2

1

3
4

5

So complexity is O(u).

u Unions and f Find Operations

• O(u + uf) = O(uf)

• Time to initializeparent[i] = 0 for all i is
O(n).

• Total time isO(n + uf).

• Worse than solution of Section 7.7!

• Back to the drawing board.

Smart Union Strategies

4

2

9
30

5

13

11

1

7

8 3 22 6

10

20 16 14 12

• union(7,13)

• Which tree should become a subtree of the other?

Height Rule
• Make tree with smaller height a subtree of the

other tree.
• Break ties arbitrarily.

4

2

9
30

5

13

11

1

7

8 3 22 6

10

20 16 14 12

union(7,13)

Weight Rule
• Make tree with fewer number of elements a subtree

of the other tree.
• Break ties arbitrarily.

4

2

9
30

5

13

11

1

7

8 3 22 6

10

20 16 14 12
union(7,13)

Implementation

• Root of each tree must record either its
height or the number of elements in the tree.

• When a union is done using the height rule,
the height increases only when two trees of
equal height are united.

• When the weight rule is used, the weight of
the new tree is the sum of the weights of the
trees that are united.

Height Of A Tree

• Suppose we start with single element trees
and perform unions using either the height
or the weight rule.

• The height of a tree with p elements is at
most floor (log2p) + 1.

• Proof is by induction on p. See text.

Sprucing Up The Find Method

• find(1)
• Do additional work to make future finds easier.

121420

10

22

a

4

2

9
30

5

13

11

1

7

8 3 6

16

b c

d

e
f g

a, b, c, d, e, f,and g are subtrees

Path Compaction
• Make all nodes on find path point to tree root.
• find(1)

121420

10

22

a

4

2

9
30

5

13

11

1

7

8 3 6

16

b c

d

e
f g

a, b, c, d, e, f,and g are subtrees

Makes two passes up the tree.

Path Splitting
• Nodes on find path point to former grandparent.
• find(1)

121420

10

22

a

4

2

9
30

5

13

11

1

7

8 3 6

16

b c

d

e
f g

a, b, c, d, e, f,and g are subtrees

Makes only one pass up the tree.

Path Halving
• Parent pointer in every other node on find path is

changed to former grandparent.
• find(1)

121420

10

22

a

4

2

9
30

5

13

11

1

7

8 3 6

16

b c

d

e
f g

a, b, c, d, e, f,and g are subtrees

Changes half as many pointers.

Time Complexity

• Ackermann’s function.
� A(i,j) = 2j, i = 1 andj >= 1

� A(i,j) = A(i-1,2), i >= 2 andj = 1

� A(i,j) = A(i-1,A(i,j-1)), i, j >= 2

• Inverse of Ackermann’s function.
� alpha(p,q) = min{z>=1 | A(z, p/q) > log2q}, p >= q >= 1

Time Complexity

• Ackermann’s function grows very rapidly as i
and j are increased.
� A(2,4) = 265,536

• The inverse function grows very slowly.
� alpha(p,q) < 5 until q = 2A(4,1)

� A(4,1) = A(2,16) >>>> A(2,4)

• In the analysis of the union-find problem, q is the
number, n, of elements; p = n + f; and u >= n/2.

• For all practical purposes, alpha(p,q) < 5.

Time Complexity

Theorem 12.2[Tarjan and Van Leeuwen]
Let T(f,u) be the maximum time required to process any

intermixed sequence of f finds and u unions. Assume
that u >= n/2.

a*(n + f*alpha(f+n, n)) <= T(f,u) <= b*(n + f*alpha(f+n, n))

where a and b are constants.

These bounds apply when we start with singleton sets and
use either the weight or height rule for unions and any
one of the path compression methods for a find.

