Union-Find Problem

- Given a set $\{1,2, \ldots, \mathrm{n}\}$ of n elements.
- Initially each element is in a different set.
- $\{1\},\{2\}, \ldots,\{n\}$
- An intermixed sequence of union and find operations is performed.
- A union operation combines two sets into one.
- Each of the n elements is in exactly one set at any time.
- A find operation identifies the set that contains a particular element.

Using Arrays And Chains

- See Section 7.7 for applications as well as for solutions that use arrays and chains.
- Best time complexity obtained in Section 7.7 is $\mathrm{O}(\mathrm{n}+\mathrm{u} \log \mathrm{u}+\mathrm{f})$, where u and f are, respectively, the number of union and find operations that are done.
- Using a tree (not a binary tree) to represent a set, the time complexity becomes almost $\mathrm{O}(\mathrm{n}+\mathrm{f})$ (assuming at least $\mathrm{n} / 2$ union operations).

A Set As A Tree

- $S=\{2,4,5,9,11,13,30\}$
- Some possible tree representations:

Result Of A Find Operation

- find(i) is to identify the set that contains element i.
- In most applications of the union-find problem, the user does not provide set identifiers.
- The requirement is that find(i) and find(j) return the same value iff elements i and j are in the same set.

find(i) will return the element that is in the tree root.

Strategy For find(i)

- Start at the node that represents element i and climb up the tree until the root is reached.
- Return the element in the root.
- To climb the tree, each node must have a parent pointer.

Possible Node Structure

- Use nodes that have two fields: element and parent.
- Use an array table[] such that table[i] is a pointer to the node whose element is i.
- To do a find(i) operation, start at the node given by table[i] and follow parent fields until a node whose parent field is null is reached.
- Return element in this root node.

(Only some table entries are shown.)

Better Representation

- Use an integer array parent[] such that parent[i] is the element that is the parent of element i.

parent[]

| | 29 | 13\|13| | | 4 | | 5 | | 0 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | | 5 | | | | 0 | | | | 15 |

Union Operation

- union(i,j)
- i and j are the roots of two different trees, $\mathrm{i}!=\mathrm{j}$.
- To unite the trees, make one tree a subtree of the other.
- parent[j] = i

The Find Method

public int find(int theElement)
\{
while (parent[theElement] != 0)
theElement = parent[theElement]; // move up
return theElement;
\}

The Union Method

public void union(int rootA, int rootB) $\{$ parent $[\operatorname{root} \mathrm{B}]=\operatorname{root} \mathrm{A} ;\}$

Time Complexity Of union() $\xlongequal[\square]{9}$

- O(1)

Time Complexity of find()

- Tree height may equal number of elements in tree.
- union(2,1), union(3,2), union $(4,3)$, union(5,4$) \ldots$

So complexity is $\mathrm{O}(\mathrm{u})$.

u Unions and f Find Operations \hat{G}

- $\mathrm{O}(\mathrm{u}+\mathrm{uf})=\mathrm{O}(\mathrm{uf})$
- Time to initialize parent[i] $=0$ for all i is $\mathrm{O}(\mathrm{n})$.
- Total time is $\mathrm{O}(\mathrm{n}+\mathrm{uf})$.
- Worse than solution of Section 7.7!
- Back to the drawing board. 是

Smart Union Strategies

- union $(7,13)$
- Which tree should become a subtree of the other?

Height Rule

- Make tree with smaller height a subtree of the other tree.
- Break ties arbitrarily.

Weight Rule

- Make tree with fewer number of elements a subtree of the other tree.
- Break ties arbitrarily.

Implementation

- Root of each tree must record either its height or the number of elements in the tree.
- When a union is done using the height rule, the height increases only when two trees of equal height are united.
- When the weight rule is used, the weight of the new tree is the sum of the weights of the trees that are united.

Height Of A Tree

- Suppose we start with single element trees and perform unions using either the height or the weight rule.
- The height of a tree with p elements is at most floor $\left(\log _{2} \mathrm{p}\right)+1$.
- Proof is by induction on p . See text.

- Do additional work to make future finds easier.

Path Compaction

- Make all nodes on find path point to tree root.

a, b, c, d, e, f, and g are subtrees
Makes two passes up the tree.

Path Splitting

- Nodes on find path point to former grandparent.
- find(1)

a, b, c, d, e, f, and g are subtrees
Makes only one pass up the tree.

Path Halving

- Parent pointer in every other node on find path is changed to former grandparent.

a, b, c, d, e, f, and g are subtrees
Changes half as many pointers.

Time Complexity

- Ackermann's function.
- $A(i, j)=2^{j}, i=1$ and $j>=1$
- $A(i, j)=A(i-1,2), i>=2$ and $j=1$
- $A(i, j)=A(i-1, A(i, j-1)), i, j>=2$
- Inverse of Ackermann's function.
- alpha $(\mathrm{p}, \mathrm{q})=\min \left\{\mathrm{z}>=1 \mid \mathrm{A}(\mathrm{z}, \mathrm{p} / \mathrm{q})>\log _{2} \mathrm{q}\right\}, \mathrm{p}>=\mathrm{q}>=1$

Time Complexity

- Ackermann's function grows very rapidly as i and j are increased.
- $\mathrm{A}(2,4)=2^{65,536}$
- The inverse function grows very slowly.
- alpha(p,q) <5 until $q=2^{\mathrm{A}(4,1)}$
- $\mathrm{A}(4,1)=\mathrm{A}(2,16) \ggg>\mathrm{A}(2,4)$
- In the analysis of the union-find problem, q is the number, n, of elements; $\mathrm{p}=\mathrm{n}+\mathrm{f}$; and u$\rangle=\mathrm{n} / 2$.
- For all practical purposes, alpha $(\mathrm{p}, \mathrm{q})<5$.

Time Complexity

Theorem 12.2 [Tarjan and Van Leeuwen]
Let $\mathrm{T}(\mathrm{f}, \mathrm{u})$ be the maximum time required to process any intermixed sequence of f finds and u unions. Assume that $u>=n / 2$.
$a^{*}\left(n+f^{*} \operatorname{alpha}(f+n, n)\right)<=T(f, u)<=b^{*}\left(n+f^{*}\right.$ alpha(ftn, n))
where a and b are constants.

These bounds apply when we start with singleton sets and use either the weight or height rule for unions and any one of the path compression methods for a find.

