Union-Find Problem

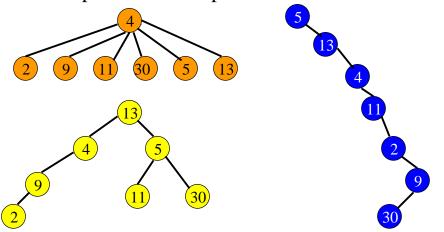
- Given a set $\{1, 2, ..., n\}$ of n elements.
- Initially each element is in a different set.
 - \blacksquare {1}, {2}, ..., {n}
- An intermixed sequence of union and find operations is performed.
- A union operation combines two sets into one.
 - Each of the n elements is in exactly one set at any time.
- A find operation identifies the set that contains a particular element.

Using Arrays And Chains

- See Section 7.7 for applications as well as for solutions that use arrays and chains.
- Best time complexity obtained in Section 7.7 is
 O(n + u log u + f), where u and f are,
 respectively, the number of union and find
 operations that are done.
- Using a tree (not a binary tree) to represent a set, the time complexity becomes almost
 O(n + f) (assuming at least n/2 union operations).

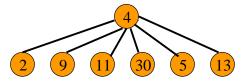
A Set As A Tree

- $S = \{2, 4, 5, 9, 11, 13, 30\}$
- Some possible tree representations:



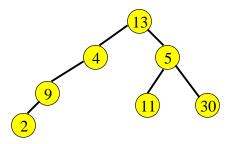
Result Of A Find Operation

- find(i) is to identify the set that contains element i.
- In most applications of the union-find problem, the user does not provide set identifiers.
- The requirement is that find(i) and find(j) return the same value iff elements i and j are in the same set.

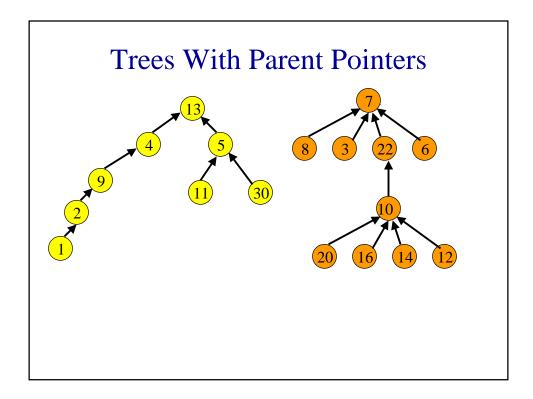


find(i) will return the element that is in the tree root.

Strategy For find(i)

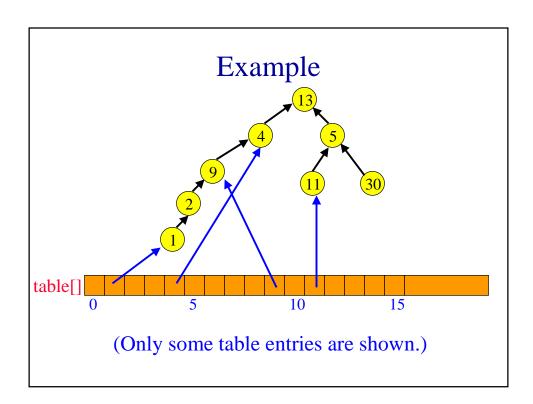


- Start at the node that represents element i and climb up the tree until the root is reached.
- Return the element in the root.
- To climb the tree, each node must have a parent pointer.



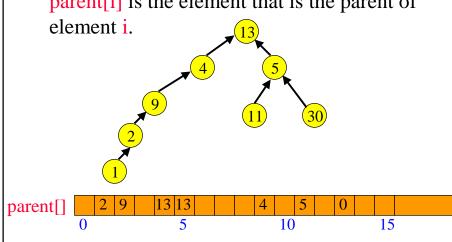
Possible Node Structure

- Use nodes that have two fields: element and parent.
 - Use an array table[] such that table[i] is a pointer to the node whose element is i.
 - To do a find(i) operation, start at the node given by table[i] and follow parent fields until a node whose parent field is null is reached.
 - Return element in this root node.



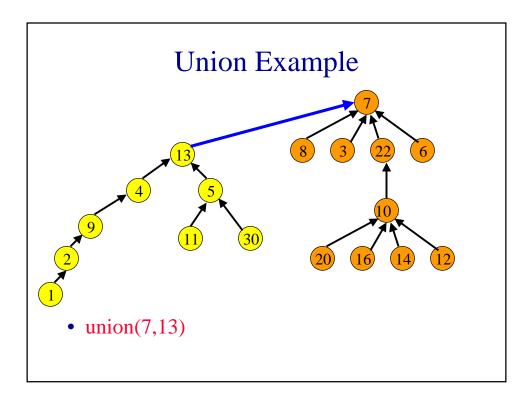
Better Representation

• Use an integer array parent[] such that parent[i] is the element that is the parent of



Union Operation

- union(i,j)
 - i and j are the roots of two different trees, i !=j.
- To unite the trees, make one tree a subtree of the other.
 - parent[j] = i



The Find Method

```
public int find(int theElement)
{
    while (parent[theElement] != 0)
        theElement = parent[theElement]; // move up
    return theElement;
}
```

The Union Method

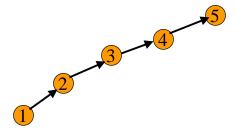
```
public void union(int rootA, int rootB)
   {parent[rootB] = rootA;}
```

Time Complexity Of union()

• O(1)

Time Complexity of find()

- Tree height may equal number of elements in tree.
 - union(2,1), union(3,2), union(4,3), union(5,4)...



So complexity is O(u).

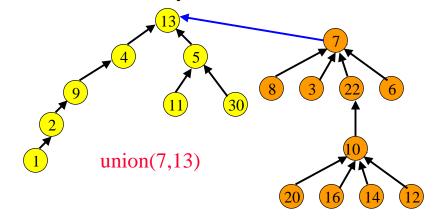
u Unions and f Find Operations

- O(u + uf) = O(uf)
- Time to initialize parent[i] = 0 for all i is O(n).
- Total time is O(n + uf).
- Worse than solution of Section 7.7!
- Back to the drawing board.

Smart Union Strategies 7 8 3 2 1 union(7,13) Which tree should become a subtree of the other?

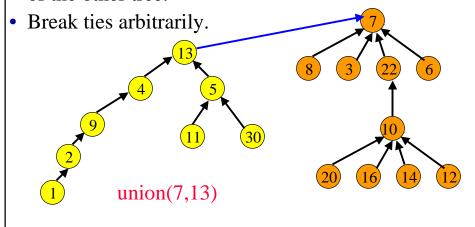
Height Rule

- Make tree with smaller height a subtree of the other tree.
- Break ties arbitrarily.



Weight Rule

• Make tree with fewer number of elements a subtree of the other tree.



Implementation

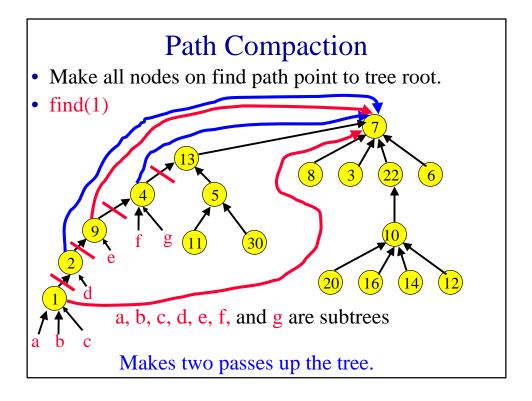
- Root of each tree must record either its height or the number of elements in the tree.
- When a union is done using the height rule, the height increases only when two trees of equal height are united.
- When the weight rule is used, the weight of the new tree is the sum of the weights of the trees that are united.

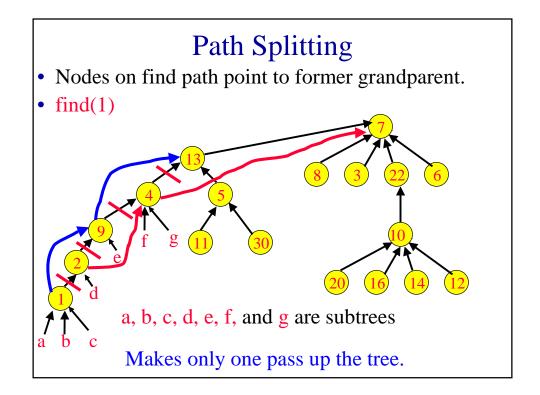
Height Of A Tree

- Suppose we start with single element trees and perform unions using either the height or the weight rule.
- The height of a tree with p elements is at most floor $(\log_2 p) + 1$.
- Proof is by induction on p. See text.

Sprucing Up The Find Method a, b, c, d, e, f, and g are subtrees

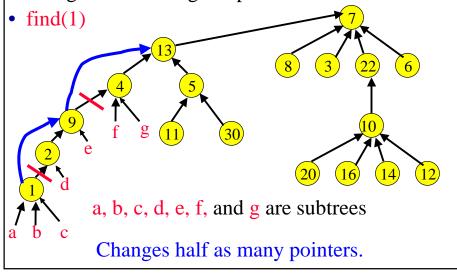
- find(1)
- Do additional work to make future finds easier.





Path Halving

• Parent pointer in every other node on find path is changed to former grandparent.



Time Complexity

- Ackermann's function.
 - $A(i,j) = 2^j$, i = 1 and j >= 1
 - A(i,j) = A(i-1,2), i >= 2 and j = 1
 - A(i,j) = A(i-1,A(i,j-1)), i, j >= 2
- Inverse of Ackermann's function.
 - $alpha(p,q) = min\{z >= 1 \mid A(z, p/q) > log_2q\}, p >= q >= 1$

Time Complexity

- Ackermann's function grows very rapidly as i and i are increased.
 - $A(2,4) = 2^{65,536}$
- The inverse function grows very slowly.
 - alpha(p,q) < 5 until q = $2^{A(4,1)}$
 - \bullet A(4,1) = A(2,16) >>>> A(2,4)
- In the analysis of the union-find problem, q is the number, n, of elements; p = n + f; and u >= n/2.
- For all practical purposes, alpha(p,q) < 5.

Time Complexity

Theorem 12.2 [Tarjan and Van Leeuwen]

Let T(f,u) be the maximum time required to process any intermixed sequence of f finds and u unions. Assume that $u \ge n/2$.

```
a*(n + f*alpha(f+n, n)) \le T(f,u) \le b*(n + f*alpha(f+n, n)) where a and b are constants.
```

These bounds apply when we start with singleton sets and use either the weight or height rule for unions and any one of the path compression methods for a find.