

## Maximum Number Of Nodes

- All possible nodes at first $h$ levels are present.


Maximum number of nodes
$=1+2+4+8+\ldots+2^{\mathrm{h}-1}$
$=2^{h}-1$

## Full Binary Tree

- A full binary tree of a given height $h$ has $2^{\mathrm{h}}-1$ nodes.


Height 4 full binary tree.

## Minimum Number Of Nodes

- Minimum number of nodes in a binary tree whose height is h .
- At least one node at each of first $h$ levels.



## Number Of Nodes \& Height

- Let n be the number of nodes in a binary tree whose height is $h$.
- $\mathrm{h}<=\mathrm{n}<=2^{\mathrm{h}}-1$
- $\log _{2}(\mathrm{n}+1)<=\mathrm{h}<=\mathrm{n}$

Numbering Nodes In A Full Binary Tree

- Number the nodes 1 through $2^{\mathrm{h}}-1$.
- Number by levels from top to bottom.
- Within a level number from left to right.



Node Number Properties


- Left child of node i is node 2 i , unless $2 \mathrm{i}>\mathrm{n}$, where n is the number of nodes.
- If $2 \mathrm{i}>\mathrm{n}$, node i has no left child.



## Complete Binary Tree With n Nodes

- Start with a full binary tree that has at least n nodes.
- Number the nodes as described earlier.
- The binary tree defined by the nodes numbered 1 through n is the unique n node complete binary tree.
- Right child of node i is node $2 \mathrm{i}+1$, unless $2 \mathrm{i}+1$ $>\mathrm{n}$, where n is the number of nodes.
- If $2 \mathrm{i}+1>\mathrm{n}$, node i has no right child.

- Complete binary tree with 10 nodes.


## Binary Tree Representation

- Array representation.
- Linked representation.


## Array Representation

- Number the nodes using the numbering scheme for a full binary tree. The node that is numbered i is stored in tree[i].



## Linked Representation

- Each binary tree node is represented as an object whose data type is BinaryTreeNode.
- The space required by an n node binary tree is $\mathrm{n} *$ (space required by one node).

- An n node binary tree needs an array whose length is between $n+1$ and $2^{n}$.

[^0]\{
\}


## Some Binary Tree Operations

- Determine the height.
- Determine the number of nodes.
- Make a clone.
- Determine if two binary trees are clones.
- Display the binary tree.
- Evaluate the arithmetic expression represented by a binary tree.
- Obtain the infix form of an expression.
- Obtain the prefix form of an expression.
- Obtain the postfix form of an expression.


## Binary Tree Traversal

- Many binary tree operations are done by performing a traversal of the binary tree.
- In a traversal, each element of the binary tree is visited exactly once.
- During the visit of an element, all action (make a clone, display, evaluate the operator, etc.) with respect to this element is taken.


## Binary Tree Traversal Methods

- Preorder
- Inorder
- Postorder
- Level order


[^0]:    The Class BinaryTreeNode
    package dataStructures;
    public class BinaryTreeNode

    Object element;
    BinaryTreeNode leftChild; // left subtree
    BinaryTreeNode rightChild;// right subtree
    // constructors and any other methods
    // come here

