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Linear Lists And Trees
• Linear lists are useful for serially ordered data.

� (e0, e1, e2, …, en-1)
� Days of week.
� Months in a year.
� Students in this class.

• Trees are useful for hierarchically ordered data.
� Employees of a corporation.

• President, vice presidents, managers, and so on.

� Java’s classes.
• Object is at the top of the hierarchy.
• Subclasses of Object are next, and so on.

Hierarchical Data And Trees

• The element at the top of the hierarchy is the 
root.

• Elements next in the hierarchy are the children 
of the root.

• Elements next in the hierarchy are the 
grandchildren of the root, and so on.

• Elements that have no children are leaves.
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Java’s Classes (Part Of Figure 1.1)
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Definition

• A tree t is a finite nonempty set of elements.

• One of these elements is called the root.

• The remaining elements, if any, are 
partitioned into trees, which are called the 
subtrees of t.
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Parent, Grandparent, Siblings, Ancestors, Descendants
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Caution

• Some texts start level numbers at 0 rather than 
at 1.

• Root is at level 0.

• Its children are at level 1.

• The grand children of the root are at level 2.

• And so on.

• We shall number levels with the root at level 1.



height = depth = number of levels
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Node Degree = Number Of Children
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Tree Degree = Max Node Degree

Degree of tree = 3.
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Binary Tree

• Finite (possibly empty) collection of elements.

• A nonemptybinary tree has a root element.

• The remaining elements (if any) are partitioned 
into two binary trees.

• These are called the left and right subtrees of the 
binary tree.

Differences Between A Tree & A Binary Tree

• No node in a binary tree may have a degree 
more than 2, whereas there is no limit on 
the degree of a node in a tree.

• A binary tree may be empty; a tree cannot 
be empty.

Differences Between A Tree & A Binary Tree

• The subtrees of a binary tree are ordered; 
those of a tree are not ordered.
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• Are different when viewed as binary trees.

• Are the same when viewed as trees.



Arithmetic Expressions

• (a + b) * (c + d) + e – f/g*h + 3.25

• Expressions comprise three kinds of entities.
� Operators (+, -, /, *).

� Operands (a, b, c, d, e, f, g, h, 3.25, (a + b), (c + d),
etc.).

� Delimiters ((, )).

Operator Degree

• Number of operands that the operator requires.
• Binary operator requires two operands.

� a + b
� c / d
� e - f

• Unary operator requires one operand.
� + g
� - h

Infix Form

• Normal way to write an expression.

• Binary operators come in between their left and 
right operands.
� a * b

� a + b * c

� a * b / c

� (a + b) * (c + d) + e – f/g*h + 3.25

Operator Priorities

• How do you figure out the operands of an 
operator?
� a + b * c
� a * b + c / d

• This is done by assigning operator priorities.
� priority(*) = priority(/) > priority(+) = priority(-)

• When an operand lies between two operators, 
the operand associates with the operator that 
has higher priority.

Tie Breaker

• When an operand lies between two operators 
that have the same priority, the operand 
associates with the operator on the left.
� a + b - c

� a * b / c / d

Delimiters

• Subexpression within delimiters is treated 
as a single operand, independent from the 
remainder of the expression.
� (a + b) * (c – d) / (e – f)



Infix Expression Is Hard To Parse

• Need operator priorities, tie breaker, and 
delimiters.

• This makes computer evaluation more 
difficult than is necessary.

• Postfix and prefix expression forms do not 
rely on operator priorities, a tie breaker, or 
delimiters.

• So it is easier for a computer to evaluate 
expressions that are in these forms.

Postfix Form

• The postfix form of a variable or constant is 
the same as its infix form.
� a, b, 3.25

• The relative order of operands is the same 
in infix and postfix forms.

• Operators come immediately afterthe 
postfix form of their operands.
� Infix = a + b

� Postfix = ab+

Postfix Examples
• Infix = a + b * c

� Postfix = a b c * +

• Infix = a * b + c
� Postfix = a b * c +

• Infix = (a + b) * (c – d) / (e + f)

� Postfix = a b + c d - * e f + /

Unary Operators

• Replace with new symbols.
� + a => a @

� + a + b => a @ b +

� - a => a ?

� - a-b => a ? b -

Postfix Evaluation

• Scan postfix expression from left to right 
pushing operands on to a stack.

• When an operator is encountered, pop as 
many operands as this operator needs; 
evaluate the operator; push the result on to 
the stack.

• This works because, in postfix, operators 
come immediately after their operands.

Postfix Evaluation

• (a + b) * (c – d) / (e + f) 

• a b + c d - * e f + /

• a b + c d - * e f + /

stack

a

• a b+ c d - * e f + /

b
• a b +c d - * e f + /



Postfix Evaluation

• (a + b) * (c – d) / (e + f) 

• a b + c d - * e f + /

• a b + c d - * e f + /

stack

(a + b)

• a b+ c d - * e f + /

• a b +c d - * e f + /
• a b + c d - * e f + /

c

• a b + c d- * e f + /

d

• a b + c d -* e f + /

Postfix Evaluation

• (a + b) * (c – d) / (e + f) 

• a b + c d -* e f + /

stack

(a + b)

• a b + c d - *e f + /

(c – d)

Postfix Evaluation

• (a + b) * (c – d) / (e + f) 

• a b + c d -* e f + /

stack

(a + b)*(c – d)

• a b + c d - *e f + /

e

• a b + c d - * ef + /
• a b + c d - * e f+ / f
• a b + c d - * e f +/

Postfix Evaluation

• (a + b) * (c – d) / (e + f) 

• a b + c d -* e f + /

stack

(a + b)*(c – d)

• a b + c d - *e f + /

(e + f)

• a b + c d - * ef + /
• a b + c d - * e f+ /

• a b + c d - * e f +/
• a b + c d - * e f + /

Prefix Form

• The prefix form of a variable or constant is 
the same as its infix form.
� a, b, 3.25

• The relative order of operands is the same 
in infix and prefix forms.

• Operators come immediately beforethe 
prefix form of their operands.
� Infix = a + b
� Postfix = ab+
� Prefix = +ab

Binary Tree Form

• a + b
+

a b

• - a -

a



Binary Tree Form

• (a + b) * (c – d) / (e + f)
/
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Merits Of Binary Tree Form

• Left and right operands are easy to visualize.

• Code optimization algorithms work with the 
binary tree form of an expression.

• Simple recursive evaluation of expression.
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