
Trees Nature Lover’s View Of A Tree

root

branches

leaves

Computer Scientist’s View

branches

leavesroot

nodes

Linear Lists And Trees
• Linear lists are useful for serially ordered data.

� (e0, e1, e2, …, en-1)
� Days of week.
� Months in a year.
� Students in this class.

• Trees are useful for hierarchically ordered data.
� Employees of a corporation.

• President, vice presidents, managers, and so on.

� Java’s classes.
• Object is at the top of the hierarchy.
• Subclasses of Object are next, and so on.

Hierarchical Data And Trees

• The element at the top of the hierarchy is the 
root.

• Elements next in the hierarchy are the children 
of the root.

• Elements next in the hierarchy are the 
grandchildren of the root, and so on.

• Elements that have no children are leaves.

great grand child of root

grand children of root

children of root

Java’s Classes (Part Of Figure 1.1)

Object

Number Throwable OutputStream

Integer Double Exception FileOutputStream

RuntimeException

root



Definition

• A tree t is a finite nonempty set of elements.

• One of these elements is called the root.

• The remaining elements, if any, are 
partitioned into trees, which are called the 
subtrees of t.

Subtrees

Object

Number Throwable OutputStream

Integer Double Exception FileOutputStream

RuntimeException

root

Leaves

Object

Number Throwable OutputStream

Integer Double Exception FileOutputStream

RuntimeException

Parent, Grandparent, Siblings, Ancestors, Descendants

Object

Number Throwable OutputStream

Integer Double Exception FileOutputStream

RuntimeException

Level 4

Level 3

Level 2

Levels

Object

Number Throwable OutputStream

Integer Double Exception FileOutputStream

RuntimeException

Level 1

Caution

• Some texts start level numbers at 0 rather than 
at 1.

• Root is at level 0.

• Its children are at level 1.

• The grand children of the root are at level 2.

• And so on.

• We shall number levels with the root at level 1.



height = depth = number of levels

Level 3

Object

Number Throwable OutputStream

Integer Double Exception FileOutputStream

RuntimeException

Level 4

Level 2

Level 1

Node Degree = Number Of Children
Object

Number Throwable OutputStream

Integer Double Exception FileOutputStream

RuntimeException

3

2 1 1

0 0 1 0

0

Tree Degree = Max Node Degree

Degree of tree = 3.

Object

Number Throwable OutputStream

Integer Double Exception FileOutputStream

RuntimeException

3

2 1 1

0 0 1 0

0

Binary Tree

• Finite (possibly empty) collection of elements.

• A nonemptybinary tree has a root element.

• The remaining elements (if any) are partitioned 
into two binary trees.

• These are called the left and right subtrees of the 
binary tree.

Differences Between A Tree & A Binary Tree

• No node in a binary tree may have a degree 
more than 2, whereas there is no limit on 
the degree of a node in a tree.

• A binary tree may be empty; a tree cannot 
be empty.

Differences Between A Tree & A Binary Tree

• The subtrees of a binary tree are ordered; 
those of a tree are not ordered.

a

b

a

b

• Are different when viewed as binary trees.

• Are the same when viewed as trees.



Arithmetic Expressions

• (a + b) * (c + d) + e – f/g*h + 3.25

• Expressions comprise three kinds of entities.
� Operators (+, -, /, *).

� Operands (a, b, c, d, e, f, g, h, 3.25, (a + b), (c + d),
etc.).

� Delimiters ((, )).

Operator Degree

• Number of operands that the operator requires.
• Binary operator requires two operands.

� a + b
� c / d
� e - f

• Unary operator requires one operand.
� + g
� - h

Infix Form

• Normal way to write an expression.

• Binary operators come in between their left and 
right operands.
� a * b

� a + b * c

� a * b / c

� (a + b) * (c + d) + e – f/g*h + 3.25

Operator Priorities

• How do you figure out the operands of an 
operator?
� a + b * c
� a * b + c / d

• This is done by assigning operator priorities.
� priority(*) = priority(/) > priority(+) = priority(-)

• When an operand lies between two operators, 
the operand associates with the operator that 
has higher priority.

Tie Breaker

• When an operand lies between two operators 
that have the same priority, the operand 
associates with the operator on the left.
� a + b - c

� a * b / c / d

Delimiters

• Subexpression within delimiters is treated 
as a single operand, independent from the 
remainder of the expression.
� (a + b) * (c – d) / (e – f)



Infix Expression Is Hard To Parse

• Need operator priorities, tie breaker, and 
delimiters.

• This makes computer evaluation more 
difficult than is necessary.

• Postfix and prefix expression forms do not 
rely on operator priorities, a tie breaker, or 
delimiters.

• So it is easier for a computer to evaluate 
expressions that are in these forms.

Postfix Form

• The postfix form of a variable or constant is 
the same as its infix form.
� a, b, 3.25

• The relative order of operands is the same 
in infix and postfix forms.

• Operators come immediately afterthe 
postfix form of their operands.
� Infix = a + b

� Postfix = ab+

Postfix Examples
• Infix = a + b * c

� Postfix = a b c * +

• Infix = a * b + c
� Postfix = a b * c +

• Infix = (a + b) * (c – d) / (e + f)

� Postfix = a b + c d - * e f + /

Unary Operators

• Replace with new symbols.
� + a => a @

� + a + b => a @ b +

� - a => a ?

� - a-b => a ? b -

Postfix Evaluation

• Scan postfix expression from left to right 
pushing operands on to a stack.

• When an operator is encountered, pop as 
many operands as this operator needs; 
evaluate the operator; push the result on to 
the stack.

• This works because, in postfix, operators 
come immediately after their operands.

Postfix Evaluation

• (a + b) * (c – d) / (e + f) 

• a b + c d - * e f + /

• a b + c d - * e f + /

stack

a

• a b+ c d - * e f + /

b
• a b +c d - * e f + /



Postfix Evaluation

• (a + b) * (c – d) / (e + f) 

• a b + c d - * e f + /

• a b + c d - * e f + /

stack

(a + b)

• a b+ c d - * e f + /

• a b +c d - * e f + /
• a b + c d - * e f + /

c

• a b + c d- * e f + /

d

• a b + c d -* e f + /

Postfix Evaluation

• (a + b) * (c – d) / (e + f) 

• a b + c d -* e f + /

stack

(a + b)

• a b + c d - *e f + /

(c – d)

Postfix Evaluation

• (a + b) * (c – d) / (e + f) 

• a b + c d -* e f + /

stack

(a + b)*(c – d)

• a b + c d - *e f + /

e

• a b + c d - * ef + /
• a b + c d - * e f+ / f
• a b + c d - * e f +/

Postfix Evaluation

• (a + b) * (c – d) / (e + f) 

• a b + c d -* e f + /

stack

(a + b)*(c – d)

• a b + c d - *e f + /

(e + f)

• a b + c d - * ef + /
• a b + c d - * e f+ /

• a b + c d - * e f +/
• a b + c d - * e f + /

Prefix Form

• The prefix form of a variable or constant is 
the same as its infix form.
� a, b, 3.25

• The relative order of operands is the same 
in infix and prefix forms.

• Operators come immediately beforethe 
prefix form of their operands.
� Infix = a + b
� Postfix = ab+
� Prefix = +ab

Binary Tree Form

• a + b
+

a b

• - a -

a



Binary Tree Form

• (a + b) * (c – d) / (e + f)
/

+

a b

-

c d

+

e f

*

/

Merits Of Binary Tree Form

• Left and right operands are easy to visualize.

• Code optimization algorithms work with the 
binary tree form of an expression.

• Simple recursive evaluation of expression.

+

a b

-

c d

+

e f

*

/


