

Nature Lover's View Of A Tree

Computer Scientist's View

nodes

Linear Lists And Trees

盡

- Linear lists are useful for serially ordered data.
- $\left(\mathrm{e}_{0}, \mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{n}-1}\right)$
- Days of week.
- Months in a year.
- Students in this class.
- Trees are useful for hierarchically ordered data.
- Employees of a corporation.
- President, vice presidents, managers, and so on.
- Java's classes.
- Object is at the top of the hierarchy.
- Subclasses of Object are next, and so on.

臝 Definition 偂

- A tree t is a finite nonempty set of elements.
- One of these elements is called the root.
- The remaining elements, if any, are partitioned into trees, which are called the subtrees of t.

4 Caution \triangle

- Some texts start level numbers at 0 rather than at 1 .
- Root is at level 0 .
- Its children are at level 1.
- The grand children of the root are at level 2.
- And so on.
- We shall number levels with the root at level 1 .

Binary Tree

- Finite (possibly empty) collection of elements.
- A nonempty binary tree has a root element.
- The remaining elements (if any) are partitioned into two binary trees.
- These are called the left and right subtrees of the binary tree.

Differences Between A Tree \& A Binary Tree

- No node in a binary tree may have a degree more than 2 , whereas there is no limit on the degree of a node in a tree.
- A binary tree may be empty; a tree cannot be empty.

Differences Between A Tree \& A Binary Tree

- The subtrees of a binary tree are ordered; those of a tree are not ordered.

- Are different when viewed as binary trees.
- Are the same when viewed as trees.

Arithmetic Expressions

- $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}+\mathrm{d})+\mathrm{e}-\mathrm{f} / \mathrm{g} * \mathrm{~h}+3.25$
- Expressions comprise three kinds of entities.
- Operators (+, -, /, *).
- Operands (a, b, c, d, e, f, g, h, 3.25, (a + b), (c + d), etc.).
- Delimiters ((,)).

Infix Form

- Normal way to write an expression.
- Binary operators come in between their left and right operands.
- a * b
- $\mathrm{a}+\mathrm{b} * \mathrm{c}$
- $a^{*} b / c$
- $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}+\mathrm{d})+\mathrm{e}-\mathrm{f} / \mathrm{g} * \mathrm{~h}+3.25$

Operator Degree

- Number of operands that the operator requires.
- Binary operator requires two operands.
- $\mathrm{a}+\mathrm{b}$
- c / d
- e-f
- Unary operator requires one operand.
- + g
- - h

Operator Priorities

- How do you figure out the operands of an operator?
- $\mathrm{a}+\mathrm{b}$ * c
- $a * b+c / d$
- This is done by assigning operator priorities. - priority $(*)=\operatorname{priority}(/)>\operatorname{priority}(+)=\operatorname{priority}(-)$
- When an operand lies between two operators, the operand associates with the operator that has higher priority.

Tie Breaker

- When an operand lies between two operators that have the same priority, the operand associates with the operator on the left.
- $\mathrm{a}+\mathrm{b}-\mathrm{c}$
- $\mathrm{a} * \mathrm{~b} / \mathrm{c} / \mathrm{d}$

Delimiters

- Subexpression within delimiters is treated as a single operand, independent from the remainder of the expression.
- $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}-\mathrm{d}) /(\mathrm{e}-\mathrm{f})$

Infix Expression Is Hard To Parse

- Need operator priorities, tie breaker, and delimiters.
- This makes computer evaluation more difficult than is necessary.
- Postfix and prefix expression forms do not rely on operator priorities, a tie breaker, or delimiters.
- So it is easier for a computer to evaluate expressions that are in these forms.

Postfix Form

- The postfix form of a variable or constant is the same as its infix form.
- a, b, 3.25
- The relative order of operands is the same in infix and postfix forms.
- Operators come immediately after the postfix form of their operands.
- Infix $=\mathrm{a}+\mathrm{b}$
- Postfix = ab+

Postfix Examples

- $\operatorname{Infix}=\mathrm{a}+\mathrm{b} * \mathrm{c}$
- Postfix = abc*
- $\operatorname{Infix}=\mathrm{a} * \mathrm{~b}+\mathrm{c}$
- Postfix $=\mathrm{ab} * \mathrm{c}+$
- Infix $=(a+b) *(c-d) /(e+f)$
- Postfix $=\mathrm{ab}+\mathrm{c} \mathrm{d}-* \mathrm{e} \mathrm{f}+1$

Postfix Evaluation

- Scan postfix expression from left to right pushing operands on to a stack.
- When an operator is encountered, pop as many operands as this operator needs; evaluate the operator; push the result on to the stack.
- This works because, in postfix, operators come immediately after their operands.

Unary Operators

- Replace with new symbols.
- + a => a @
- $+\mathrm{a}+\mathrm{b}=>\mathrm{a} @ \mathrm{~b}+$
- $-\mathrm{a}=>\mathrm{a}$?
- $-\mathrm{a}-\mathrm{b}=>\mathrm{a}$? b -

Postfix Evaluation

- $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}-\mathrm{d}) /(\mathrm{e}+\mathrm{f})$
- $a b+c d-* e f+/$

Postfix Evaluation	
- $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}-\mathrm{d}) /(\mathrm{e}+\mathrm{f})$ - $a b+c d-* e f+/$ - $a b+c d-* e f+/$ - $\mathrm{ab}+\mathrm{cd}-* \mathrm{ef}+/$ - $a b+c d-* e f+/$ - $a b+c d-* e f+/$ - $\mathrm{ab}+\mathrm{cd}-* \mathrm{ef}+/$ - $a b+c d-* e f+/$	d c $(a+b)$ stack

Postfix Evaluation

- $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}-\mathrm{d}) /(\mathrm{e}+\mathrm{f})$
- $a b+c d-* e f+/$
- $a b+c d-* e f+/$
- $\mathrm{ab}+\mathrm{cd}-* \mathrm{ef}+$ /
- $a b+c d-* e f+/$
- $a b+c d-* e f+/$
- $a b+c d-* e f+/$
stack

$$
\begin{aligned}
& (c-d) \\
& (a+b)
\end{aligned}
$$

stack

Postfix Evaluation

- $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}-\mathrm{d}) /(\mathrm{e}+\mathrm{f})$
- $a b+c d-* e f+/$
stack

Postfix Evaluation

- $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}-\mathrm{d}) /(\mathrm{e}+\mathrm{f})$
- $a b+c d-* e f+/$

$$
(e+f)
$$

$$
(a+b) *(c-d)
$$

stack

Prefix Form

- The prefix form of a variable or constant is the same as its infix form.
- a, b, 3.25
- The relative order of operands is the same in infix and prefix forms.
- Operators come immediately before the prefix form of their operands.
- Infix $=\mathrm{a}+\mathrm{b}$
- Postfix = ab+
- Prefix = +ab

Binary Tree Form

- $a+b$
- - a

Merits Of Binary Tree Form

- Left and right operands are easy to visualize.
- Code optimization algorithms work with the binary tree form of an expression.
- Simple recursive evaluation of expression.

