Data Compression

- Reduce the size of data.
- Reduces storage space and hence storage cost.
- Compression ratio = original data size/compressed data size
- Reduces time to retrieve and transmit data.

或 Lossless And Lossy Compression逪

- compressedData $=$ compress(originalData)
- decompressedData $=$ decompress(compressedData)
- When originalData = decompressedData, the compression is lossless.
- When originalData != decompressedData, the compression is lossy.

逼 Lossless And Lossy Compression或

－Lossy compressors generally obtain much higher compression ratios than do lossless compressors．
－Say 100 vs． 2.
－Lossless compression is essential in applications such as text file compression．
－Lossy compression is acceptable in many imaging applications．
－In video transmission，a slight loss in the transmitted video is not noticed by the human eye．

逪 Text Compression

－Lossless compression is essential．
－Popular text compressors such as zip and Unix＇s compress are based on the LZW（Lempel－Ziv－Welch） method．

吉 LZW Compression 氟

－Character sequences in the original text are replaced by codes that are dynamically determined．
－The code table is not encoded into the compressed text，because it may be reconstructed from the compressed text during decompression．

跲 LZW Compression 要

－Assume the letters in the text are limited to $\{\mathrm{a}, \mathrm{b}\}$ ．
－In practice，the alphabet may be the 256 character ASCII set．
－The characters in the alphabet are assigned code numbers beginning at 0 ．
－The initial code table is：

垱 LZW Compression 気

code	0	1
key	a	b

－Original text＝abababbabaabbabbaabba
－Compression is done by scanning the original text from left to right．
－Find longest prefix p for which there is a code in the code table．
－Represent p by its code pCode and assign the next available code number to pc ，where c is the next character in the text that is to be compressed．

氰 LZW Compression 흘

code	0	1	2
key	a	b	ab

－ Original text $=$ abababbabaabbabbaabba
－ $\mathrm{p}=\mathrm{a}$
－ $\mathrm{pCode}=0$
－ $\mathrm{c}=\mathrm{b}$
－Represent a by 0 and enter ab into the code table．
－Compressed text $=0$

\section*{䇾 LZW Compression 皆
 | code | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| key | a | b | ab | ba |}

－Original text＝abababbabaabbabbaabba
－Compressed text $=0$
－ $\mathrm{p}=\mathrm{b}$
－ $\mathrm{pCode}=1$
－ $\mathrm{c}=\mathrm{a}$
－Represent b by 1 and enter ba into the code table．
－ Compressed text $=01$

\section*{氰 LZW Compression
 | code | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| key | a | b | ab | ba | aba |}

－Original text＝abababbabaabbabbaabba
－Compressed text $=01$
－ $\mathrm{p}=\mathrm{ab}$
－ $\mathrm{pCode}=2$
－ $\mathrm{c}=\mathrm{a}$
－Represent ab by 2 and enter aba into the code table．
－Compressed text $=012$

\section*{素 LZW Compression 氧
 | code | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| key | a | b | ab | ba | aba | abb |}

－Original text＝abababbabaabbabbaabba
－ Compressed text $=012$
－ $\mathrm{p}=\mathrm{ab}$
－ $\mathrm{pCode}=2$
－ $\mathrm{c}=\mathrm{b}$
－Represent ab by 2 and enter abb into the code table．
－ Compressed text $=0122$

或 LZW Compression

code	0	1	2	3	4	5	6
key	a	b	ab	ba	aba	abb	bab

－Original text＝abababbabaabbabbaabba
－ Compressed text $=0122$
－ $\mathrm{p}=\mathrm{ba}$
－ $\mathrm{pCode}=3$
－ $\mathrm{c}=\mathrm{b}$
－Represent ba by 3 and enter bab into the code table．
－Compressed text $=01223$

吉 LZW Compression ⿹ㅡㄹ

code	0	1	2	3	4	5	6	7
key	a	b	ab	ba	aba	abb	bab	baa

－Original text＝abababbabaabbabbaabba
－ Compressed text $=01223$
－ $\mathrm{p}=\mathrm{ba}$
－ $\mathrm{pCode}=3$
－ $\mathrm{c}=\mathrm{a}$
－Represent ba by 3 and enter baa into the code table．
－ Compressed text $=012233$

氟 LZW Compression 皆

code	0	1	2	3	4	5	6	7	8
key	a	b	ab	ba	aba	abb	bab	baa	abba

－Original text＝abababbabaabbabbaabba
－ Compressed text $=012233$
－ $\mathrm{p}=\mathrm{abb}$
－ $\mathrm{pCode}=5$
－ $\mathrm{c}=\mathrm{a}$
－Represent abb by 5 and enter abba into the code table．
－Compressed text $=0122335$

垱 LZW Compression 或

code	0	1	2	3	4	5	6	7	8	9
key	a	b	ab	ba	aba	abb	bab	baa abbaabbaa		

－Original text＝abababbabaabbabbaabba
－Compressed text $=0122335$
－ $\mathrm{p}=\mathrm{abba}$
－ $\mathrm{pCode}=8$
－ $\mathrm{c}=\mathrm{a}$
－Represent abba by 8 and enter abbaa into the code table．
－ Compressed text $=01223358$

或 LZW Compression

code	0	1	2	3	4	5	6	7	8	9
key	a	b	ab	ba	aba	abb	bab	baa	abbaabbaa	

－Original text＝abababbabaabbabbaabba
－ Compressed text $=01223358$
－ $\mathrm{p}=\mathrm{abba}$
－ $\mathrm{pCode}=8$
－ $\mathrm{c}=$ null
－Represent abba by 8.
－ Compressed text $=012233588$

或 Code Table Representation 気

code	0	1	2	3	4	5	6	7	8	9
key	a	b	ab	ba	aba	abb	bab	baa	abbaabbaa	

－Dictionary．
－Pairs are（key，element）＝（key，code）．
－Operations are ：get（key）and put（key，code）
－Limit number of codes to 2^{12} ．
－Use a hash table．
－Convert variable length keys into fixed length keys．
－Each key has the form pc，where the string p is a key that is already in the table．
－Replace pc with（pCode）c．

或 Code Table Representation 或

code	0	1	2	3	4	5	6	7	8	9
key	a	b	ab	ba	aba	abb	bab	baa	abbaabbaa	

code	0	1	2	3	4	5	6	7	8	9
key	a	b	0 b	1 a	2 a	2 b	3 b	3 a	5 a	8 a

LZW Decompression

code	0	1
key	a	b

- Original text = abababbabaabbabbaabba
- Compressed text $=012233588$
- Convert codes to text from left to right.
- 0 represents a.
- Decompressed text = a
- $\mathrm{pCode}=0$ and $\mathrm{p}=\mathrm{a}$.
- $\mathrm{p}=$ a followed by next text character (c) is entered into the code table.

\section*{LZW Decompression
 | code | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| key | a | b | ab |}

- Original text $=$ abababbabaabbabbaabba
- Compressed text $=012233588$
- 1 represents b.
- Decompressed text $=a b$
- $\mathrm{pCode}=1$ and $\mathrm{p}=\mathrm{b}$.
- lastP = a followed by first character of p is entered into the code table.

\section*{LZW Decompression
 | code | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| key | a | b | ab | ba |}

- Original text = abababbabaabbabbaabba
- Compressed text $=012233588$
- 2 represents ab.
- Decompressed text $=a b a b$
- $\mathrm{pCode}=2$ and $\mathrm{p}=\mathrm{ab}$.
- lastP $=b$ followed by first character of p is entered into the code table.

\section*{LZW Decompression
 | code | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| key | a | b | ab | ba | aba |}

- Original text = abababbabaabbabbaabba
- Compressed text $=012233588$
- 2 represents ab
- Decompressed text = ababab.
- $\mathrm{pCode}=2$ and $\mathrm{p}=\mathrm{ab}$.
- lastP = ab followed by first character of p is entered into the code table.

\section*{LZW Decompression
 | code | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| key | a | b | ab | ba | aba | abb |}

- Original text $=$ abababbabaabbabbaabba
- Compressed text $=012233588$
- 3 represents ba
- Decompressed text = abababba.
- $\mathrm{pCode}=3$ and $\mathrm{p}=\mathrm{ba}$.
- lastP = ab followed by first character of p is entered into the code table.

LZW Decompress							
code	0	1	2	3	4	5	6
key	a	b	ab	ba	aba	abb	bab

- Original text = abababbabaabbabbaabba
- Compressed text $=012233588$
- 3 represents ba
- Decompressed text = abababbaba.
- $\mathrm{pCode}=3$ and $\mathrm{p}=\mathrm{ba}$.
- lastP = ba followed by first character of p is entered into the code table.

ZW Decompress								
	0		2	3	4	5	6	
	a	b	ab	ba	aba		bab	

- Original text $=$ abababbabaabbabbaabba
- Compressed text $=012233588$
- 5 represents abb
- Decompressed text = abababbabaabb.
- $\mathrm{pCode}=5$ and $\mathrm{p}=\mathrm{abb}$.
- lastP = ba followed by first character of p is entered into the code table.

LZW Decompression									
code	0	1	2	3	4	5	6	7	8
key	a	b	ab	ba	aba	abb	bab	baa	abb

- Original text = abababbabaabbabbaabba
- Compressed text $=012233588$
- 8 represents ???
- When a code is not in the table, its key is lastP followed by first character of lastP.

4

- lastP = abb
- So 8 represents abba.

LZW Decompression										
code	0	1	2	3	4	5	6	7	8	9
key	a	b	ab	ba	aba	abb	bab	baa	abba	bbaa

- Original text $=$ abababbabaabbabbaabba
- Compressed text $=012233588$
- 8 represents abba
- Decompressed text = abababbabaabbabbaabba.
- $\mathrm{pCode}=8$ and $\mathrm{p}=\mathrm{abba}$.
- lastP = abba followed by first character of p is entered into the code table.

Code Table Representation

code	0	1	2	3	4	5	6	7	8	9
key	a	b	ab	ba	aba	abb	bab	baa abbaabbaa		

- Dictionary.
- Pairs are $($ key, element $)=($ code, what the code represents $)=$ (code, codeKey).
- Operations are : get(key) and put(key, code)
- Keys are integers $0,1,2, \ldots$
- Use a 1D array codeTable.
- codeTable[code] = codeKey.
- Each code key has the form pc, where the string p is a code key that is already in the table.
- Replace pc with (pCode)c.

Time Complexity

- Compression.
- $O(n)$ expected time, where n is the length of the text that is being compressed.
- Decompression.
- $\mathrm{O}(\mathrm{n})$ time, where n is the length of the decompressed text.

