
Overflow Handling
• An overflow occurs when the home bucket for a 

new pair (key, element)is full.
• We may handle overflows by:

� Search the hash table in some systematic fashion for a 
bucket that is not full.
• Linear probing (linear open addressing).
• Quadratic probing.
• Random probing.

� Eliminate overflows by permitting each bucket to 
keep a list of all pairs for which it is the home bucket.
• Array linear list.
• Chain.

Linear Probing – Get And Put

• divisor = b (number of buckets)= 17.
• Home bucket = key % 17.

0 4 8 12 16

• Put in pairs whose keys are 6, 12, 34, 29, 28, 11, 
23, 7, 0, 33, 30, 45

6 12 2934 28 1123 70 333045

Linear Probing – Remove

• remove(0)

0 4 8 12 16
6 12 2934 28 1123 70 333045

0 4 8 12 16
6 12 2934 28 1123 745 3330

• Search cluster for pair (if any) to fill vacated bucket.

0 4 8 12 16
6 12 2934 28 1123 745 3330

Linear Probing – remove(34)

• Search cluster for pair (if any) to fill vacated 
bucket.

0 4 8 12 16
6 12 2934 28 1123 70 333045

0 4 8 12 16
6 12 290 28 1123 7 333045

0 4 8 12 16
6 12 290 28 1123 7 333045

0 4 8 12 16
6 12 2928 1123 70 333045



Linear Probing – remove(29)

• Search cluster for pair (if any) to fill vacated 
bucket.

0 4 8 12 16
6 12 2934 28 1123 70 333045

0 4 8 12 16
6 1234 28 1123 70 333045

0 4 8 12 16
6 12 1134 2823 70 333045

0 4 8 12 16
6 12 1134 2823 70 333045

0 4 8 12 16
6 12 1134 2823 70 3330 45

Performance Of Linear Probing

• Worst-case get/put/remove time is Theta(n), 
where n is the number of pairs in the table.

• This happens when all pairs are in the same 
cluster.

0 4 8 12 16
6 12 2934 28 1123 70 333045

Expected Performance

• alpha = loading density = (number of pairs)/b. 
� alpha = 12/17.

• Sn = expected number of buckets examined in a 
successful search when n is large

• Un = expected number of buckets examined in a 
unsuccessful search when n is large

• Time to put and remove governed by Un.

0 4 8 12 16
6 12 2934 28 1123 70 333045

Expected Performance
• Sn ~ ½(1 + 1/(1 – alpha))
• Un ~ ½(1 + 1/(1 – alpha)2)
• Note that 0 <= alpha <= 1.

alpha Sn Un 

0.50 1.5 2.5 

0.75 2.5 8.5 

0.90 5.5 50.5 
 

 

Alpha <= 0.75 is 
recommended.



Hash Table Design
• Performance requirements are given, determine maximum 

permissible loading density.
• We want a successful search to make no more than 10

compares (expected).
� Sn ~ ½(1 + 1/(1 – alpha))
� alpha <= 18/19

• We want an unsuccessful search to make no more than 13 
compares (expected).
� Un ~ ½(1 + 1/(1 – alpha)2)
� alpha <= 4/5

• So alpha <= min{18/19, 4/5} = 4/5.

Hash Table Design

• Dynamic resizing of table.
� Whenever loading density exceeds threshold (4/5 in our 

example), rehash into a table of approximately twice the 
current size.

• Fixed table size.
� Know maximum number of pairs.

� No more than 1000pairs.

� Loading density <= 4/5 => b >= 5/4*1000 = 1250.

� Pickb (equal to divisor) to be a prime number or an odd 
number with no prime divisors smaller than 20.

Linear List Of Synonyms

• Each bucket keeps a linear list of all pairs 
for which it is the home bucket.

• The linear list may or may not be sorted by 
key.

• The linear list may be an array linear list or 
a chain.

• Put in pairs 
whose keys are 
6, 12, 34, 29, 
28, 11, 23, 7, 0, 
33, 30, 45

• Home bucket= 
key % 17.

Sorted Chains
[0]

[4]

[8]

[12]

[16]

12

6

34

29
2811

23

7

0

33

30

45



Expected Performance

• Note that alpha >= 0.

• Expected chain length is alpha.

• Sn ~ 1 + alpha/2.

• Un <= alpha, when alpha < 1.

• Un ~ 1 + alpha/2, when alpha >= 1.

java.util.Hashtable

• Unsorted chains.

• Default initial b = divisor = 101

• Default alpha <= 0.75 

• When loading density exceeds max permissible 
density, rehash with newB = 2b+1.


