a Overflow Handling a

* An overflow occurs when the home bucket for &
new pair(key, elementjs full.

* We may handle overflows by:
= Search the hash table in some systematic fashican fp
bucket that is not full.
Linear probing (linear open addressing).
Quadratic probing.
Random probing.
= Eliminate overflows by permitting each bucket to
keep a list of all pairs for which it is the homecket.
Array linear list.
Chain.

Linear Probing — Get And Put

e divisor = b(number of buckets} 17.
e Home bucket = key % 17

0 4 8 12 16
[34/0[45] [[[6]23[7] | [2812]29 1130[33

¢ Putin pairs whose keys a#e12, 34, 29, 28, 11,
23,7,0, 33, 30,45

Linear Probing — Remove

0 4 8 12 16
340125 [| [6 123 7] | [2812[2 113033

« remove(0)

0 4 8 12 16
[45] [[[6]23 7] | [2§12]291130[33

« Search cluster for pair (if any) to fill vacatedcket.

0 4 8 12 16
3445 | | [[6]23 7] [[2d12]29 1§30[33]

Linear Probing — remove(34

0 4 8 12 16
(330745 | [[6[23 7] | [2812[29 113033
0 4 8 12 16
[[of48[[T [6[237] [[2812]291730[33]
» Search cluster for pair (if any) to fill vacated
bucket.

0 4 8 12 16
(O] [48 [[[6[23[7] [[2812][291930]33
0 4 8 12 16
Ofas] [[[[6]237] [[2812]291%30]33

Linear Probing — remove(29)

0 4 8 12 16
(340145 [[[6[23 7] [[2812[29 133033
0 4 8 12 16
340045 | [[6]23 7] [[2812] [1330[33

» Search cluster for pair (if any) to fill vacated
bucket.

0 4 8 12 16
(340045 | [[6]23 7] [[2812[1] [30[33]
0 4 8 12 16
(340045 [| [6[23 7] [[2§12[1]30]
0 4 8 12 16
B40o] [[[[6]23 7] [[212[1730[4533]

Performance Of Linear Probing

0 4 8 12 16
[34/ 045 | [[6]23 7] | [2d12]29 1130[33|

» Worst-case get/put/remove timeTiseta(n)
wheren is the number of pairs in the table.
 This happens when all pairs are in the same

cluster.

Expected Performance B

)
T i

0 4 8 12
[34/0]45] [| [6]23[7] | [2812]29 1130[33
¢ alpha = loading density = (number of pairs)/b

= alpha =12/17
« S, =expected number of buckets examined in a
successful search wheris large

* U, = expected number of buckets examined in a
unsuccessful search wheis large

« Time to put and remove governed by

Expected Performance &8

e S, ~%(1+ 1/(1 - alpha))
o U,~%(1+ 1/(1 - alphd)
¢ Note thatO <= alpha <=1

Alpha <=0.75is
recommended.

Hash Table Design

Performance requirements are given, determine maxim
permissible loading density.

We want a successful search to make no morelthan
compares (expected).

= S, ~%(1 + 1/(1 — alpha))
= alpha <= 18/19

We want an unsuccessful search to make no morelthar
compares (expected).

= U,~%(1 + 1/(1 — alphd)

= alpha <=4/5

Soalpha <= min{18/19, 4/5} = 4/5

» Dynamic resizing of table.

» Fixed table size.

Hash Table Design

= Whenever loading density exceeds threshél i our
example), rehash into a table of approximately évtice
current size.

= Know maximum number of pairs.
= No more tharL000pairs.
= Loading density<= 4/5=> b >= 5/4*1000 = 1250

= Pickb (equal todivisor) to be a prime number or an od
number with no prime divisors smaller thah

Linear List Of Synonyms

< Each bucket keeps a linear list of all pairs
for which it is the home bucket.

e The linear list may or may not be sorted by
key.

e The linear list may be an array linear list or
a chain.

0]

Sorted Chains

« Putin pairs [4]
whose keys are
6,12, 34, 29,
28, 11, 23, 7, 0,
33, 30, 45 (8]
¢ Home bucket
key % 17
[12]
EY |
[16]—EH

Expected Performance 2

Note thatalpha >= 0

Expected chain length &pha

S, ~ 1 + alpha/2

U, <= alpha whenalpha < 1

U, ~ 1 + alpha/2whenalpha >= 1

java.util. Hashtable 1

Unsorted chains.
Default initialb = divisor = 101
Defaultalpha <= 0.75

When loading density exceeds max permissibl
density, rehash withewB = 2b+1

1]

