

- An overflow occurs when the home bucket for a new pair (key, element) is full.
- We may handle overflows by:
 - Search the hash table in some systematic fashion for a bucket that is not full.
 - Linear probing (linear open addressing).
 - Quadratic probing.
 - Random probing.
 - Eliminate overflows by permitting each bucket to keep a list of all pairs for which it is the home bucket.
 Array linear list.
 - Chain.

0		4		8		12	16
34 0	45		6	23 7		28 12 29	11 30 33
0		4		8		12	16
	_					00 10 00	11 20 22
0 Searc buck	45 ch clu et.	uster	for p	23 7 pair (if	any)	to fill va	cated
0 Searc ouck	45 ch clu et.	uster 4	for J	23 7 52 pair (if 8	any)	128 12 29 to fill va	cated
Searc Suck	45 ch clu et.	uster 4	for p	23 7 pair (if 8 23 7	any)	12 29 to fill va 12 28 12 29	cated 16 11 30 33
Searcouck	45 ch clu et.	uster	for <u>p</u>	$\begin{array}{c c} 23 & 7 \\ \hline pair (if \\ 8 \\ \hline 23 & 7 \\ \hline 8 \\ \end{array}$	any)	12 29 12 29 12 29 12 12	cated 16 11 30 33

- Performance requirements are given, determine maximum permissible loading density.
- We want a successful search to make no more than 10 compares (expected).
 - $S_n \sim \frac{1}{2}(1 + \frac{1}{(1 alpha)})$

- We want an unsuccessful search to make no more than 13 compares (expected).
 - $U_n \sim \frac{1}{2}(1 + \frac{1}{(1 alpha)^2})$

• So alpha <= $min\{18/19, 4/5\} = 4/5$.

Hash Table Design

- Dynamic resizing of table.
 - Whenever loading density exceeds threshold (4/5 in our example), rehash into a table of approximately twice the current size.
- Fixed table size.
 - Know maximum number of pairs.
 - No more than 1000 pairs.
 - Loading density <= 4/5 => b >= 5/4*1000 = 1250.
 - Pick b (equal to divisor) to be a prime number or an odd number with no prime divisors smaller than 20.

Linear List Of Synonyms

- Each bucket keeps a linear list of all pairs for which it is the home bucket.
- The linear list may or may not be sorted by key.
- The linear list may be an array linear list or a chain.

Expected Performance

- Note that $alpha \ge 0$.
- Expected chain length is alpha.
- $S_n \sim 1 + alpha/2$.
- $U_n \ll alpha$, when alpha < 1.
- $U_n \sim 1 + alpha/2$, when alpha >= 1.

java.util.Hashtable

- Unsorted chains.
- Default initial $\mathbf{b} = \mathbf{divisor} = 101$
- Default alpha <= 0.75
- When loading density exceeds max permissible density, rehash with newB = 2b+1.