

Queues

- Linear list.
- One end is called front.
- Other end is called rear.
- Additions are done at the rear only.
- Removals are made from the front only.

Bus Stop Queue

Bus Stop Queue

The Interface Queue

```
public interface Queue
{
    public boolean isEmpty();
    public Object getFrontEelement();
    public Object getRearEelement();
    public void put(Object theObject);
    public Object remove();
}
```

Revisit Of Stack Applications

- Applications in which the stack cannot be replaced with a queue.
 - Parentheses matching.
 - Towers of Hanoi.
 - Switchbox routing.
 - Method invocation and return.
 - Try-catch-throw implementation.
- Application in which the stack may be replaced with a queue.
 - Rat in a maze.
 - Results in finding shortest path to exit.

Wire Routing

Derive From ArrayLinearList

- $0\quad 1\quad 2\quad 3\quad 4\quad 5\quad 6$
- when front is left end of list and rear is right end
 - Queue.isEmpty() => super.isEmpty()
 - -O(1) time
 - getFrontElement() => get(0)
 - -O(1) time
 - getRearElement() => get(size() 1)
 - -O(1) time
 - put(theObject) => add(size(), theObject)
 - -O(1) time
 - remove() \Rightarrow remove(0)
 - O(size) time

Derive From ArrayLinearList

- when rear is left end of list and front is right end
 - Queue.isEmpty() => super.isEmpty()
 - -O(1) time
 - getFrontElement() => get(size() 1)
 - -O(1) time
 - getRearElement() => get(0)
 - -O(1) time
 - put(theObject) => add(0, theObject)
 - O(size) time
 - remove() => remove(size() 1)
 - -O(1) time

Derive From ArrayLinearList

• to perform each opertion in O(1) time (excluding array doubling), we need a customized array representation.

Derive From ExtendedChain firstNode a b c d e when front is left end of list and rear is right end • Queue.isEmpty() => super.isEmpty() - O(1) time • getFrontElement() => get(0) - O(1) time

Custom Linked Code

• Develop a linked class for Queue from scratch to get better preformance than obtainable by deriving from ExtendedChain.

Custom Array Queue

• Use a 1D array queue.

queue[]

• Circular view of array.

Custom Array Queue

• Possible configuration with 3 elements.

Custom Array Queue

• Another possible configuration with 3 elements.

Custom Array Queue

- Use integer variables front and rear.
 - front is one position counterclockwise from first element
 - rear gives position of last element

Add An Element

• Move rear one clockwise.

Add An Element

- Move rear one clockwise.
- Then put into queue[rear].

Remove An Element

• Move front one clockwise.

Remove An Element

- Move front one clockwise.
- Then extract from queue[front].

Moving rear Clockwise

• rear++;

if (rear = = queue.length) rear = 0;

• rear = (rear + 1) % queue.length;

Empty That Queue

Empty That Queue

- When a series of removes causes the queue to become empty, front = rear.
- When a queue is constructed, it is empty.
- So initialize front = rear = 0.

A Full Tank Please

A Full Tank Please

- When a series of adds causes the queue to become full, front = rear.
- So we cannot distinguish between a full queue and an empty queue!

Ouch!!!!!

- · Remedies.
 - Don't let the queue get full.
 - When the addition of an element will cause the queue to be full, increase array size.
 - This is what the text does.
 - Define a boolean variable lastOperationIsPut.
 - Following each put set this variable to true.
 - Following each remove set to false.
 - Queue is empty iff (front == rear) && !lastOperationIsPut
 - Queue is full iff (front == rear) && lastOperationIsPut

Ouch!!!!!

- Remedies (continued).
 - Define an integer variable size.
 - Following each put do size++.
 - Following each remove do size--.
 - Queue is empty iff (size == 0)
 - Queue is full iff (size == queue.length)
 - Performance is slightly better when first strategy is used.