
Stacks

• Linear list.

• One end is called top.

• Other end is called bottom.

• Additions to and removals from the top end
only.

Stack Of Cups

• Add a cup to the stack.

bottom

top

C

A

B

D

E

F

• Remove a cup from new stack.

• A stack is a LIFO list.

bottom

top

C

A

B

D

E

The Interface Stack

public interfaceStack

{

public booleanempty();

public Objectpeek();

public voidpush(Object theObject);

public Objectpop();

}

Parentheses Matching

• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)
– Output pairs (u,v) such that the left parenthesis at

position u is matched with the right parenthesis atv.
• (2,6) (1,13) (15,19)(21,25) (27,31)(0,32)(34,38)

• (a+b))*((c+d)
– (0,4)

– right parenthesis at 5 has no matching left parenthesis

– (8,12)

– left parenthesis at 7 has no matching right parenthesis

Parentheses Matching

• scan expression from left to right

• when a left parenthesis is encountered, add its
position to the stack

• when a right parenthesis is encountered, remove
matching position from stack

Example

• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)

0
1
2

Example

• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)

0
1

(2,6) (1,13)
15

Example

• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)

0
1

(2,6) (1,13) (15,19)
21

Example

• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)

0
1

(2,6) (1,13) (15,19) (21,25)
27

Example

• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)

0
1

(2,6) (1,13) (15,19) (21,25)(27,31) (0,32)

• and so on

Towers Of Hanoi/Brahma

A B C

1
2
3
4

• 64 gold disks to be moved from tower A to tower C
• each tower operates as a stack
• cannot place big disk on top of a smaller one

Towers Of Hanoi/Brahma

• 3-disk Towers Of Hanoi/Brahma

A B C

1
2
3

Towers Of Hanoi/Brahma

• 3-disk Towers Of Hanoi/Brahma

A B C

1
2

3

Towers Of Hanoi/Brahma

• 3-disk Towers Of Hanoi/Brahma

A B C

1 2 3

Towers Of Hanoi/Brahma

• 3-disk Towers Of Hanoi/Brahma

A B C

1 2
3

Towers Of Hanoi/Brahma

• 3-disk Towers Of Hanoi/Brahma

A B C

12
3

Towers Of Hanoi/Brahma

• 3-disk Towers Of Hanoi/Brahma

A B C

123

Towers Of Hanoi/Brahma

• 3-disk Towers Of Hanoi/Brahma

A B C

1
2

3

Towers Of Hanoi/Brahma

• 3-disk Towers Of Hanoi/Brahma

A B C

1
2
3

• 7 disk moves

Recursive Solution

A B C

1

• n > 0gold disks to be moved from A to C usingB

• move top n-1 disks from A to B using C

Recursive Solution

A B C

1

• move top disk fromA to C

Recursive Solution

A B C

1

• move top n-1 disks fromB to C using A

Recursive Solution

A B C

1

• moves(n) = 0 when n = 0

• moves(n) = 2*moves(n-1) + 1 = 2n-1 when n > 0

Towers Of Hanoi/Brahma

• moves(64) = 1.8 * 1019 (approximately)
• Performing109 moves/second, a computer would take

about570 years to complete.
• At 1 disk move/min, the monks will take about 3.4 * 1013

years.

Chess Story

• 1 grain of rice on the first square, 2 for next, 4 for
next, 8 for next, and so on.

• Surface area needed exceeds surface area of earth.

Chess Story

• 1 penny for the first square, 2 for next, 4 for next,
8 for next, and so on.

• $3.6 * 1017 (federal budget ~ $2 * 1012) .

Switch Box Routing
1 2 3 4 5 6 7 8 9 10

30 29 28 27 26 25 24 23 22 21

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

Routing region

17

Routing A 2-pin Net
1 2 3 4 5 6 7 8 9 10

30 29 28 27 26 25 24 23 22 21

11

12

13

14

15

16

18

19

20

40

39

38

37

36

35

34

33

32

31

4

17

Routing
for pins
5
through
16 is
confined
to upper
right
region.

Routing
for pins
1-3 and
18-40 is
confined
to lower
left
region.

17

Routing A 2-pin Net
1 2 3 4 5 6 7 8 9 10

30 29 28 27 26 25 24 23 22 21

11

12

13

14

15

16

18

19

20

40

39

38

37

36

35

34

33

32

31

4

17

(u,v),
u<v is a
2-pin
net.

u is start
pin.

v is end
pin.

Examine
pins in
clock-
wise
order
beginn-
ing with
pin 1. 17

Routing A 2-pin Net
1 2 3 4 5 6 7 8 9 10

30 29 28 27 26 25 24 23 22 21

11

12

13

14

15

16

18

19

20

40

39

38

37

36

35

34

33

32

31

4

17

Start pin
=> push
onto
stack.

End pin
=> start
pin must
be at top
of stack.

Method Invocation And Return
public voida()

{ …; b(); …}

public voidb()

{ …; c(); …}

public voidc()

{ …; d(); …}

public voidd()

{ …; e(); …}

public voide()

{ …; c(); …}
return address in a()
return address in b()
return address in c()
return address in d()
return address in e()
return address in c()
return address in d()

Try-Throw-Catch

• When you enter a try block, push the address of
this block on a stack.

• When an exception is thrown, pop the try block
that is at the top of the stack (if the stack is empty,
terminate).

• If the popped try block has no matching catch
block, go back to the preceding step.

• If the popped try block has a matching catch
block, execute the matching catch block.

Rat In A Maze Rat In A Maze

• Move order is: right, down, left, up

• Block positions to avoid revisit.

Rat In A Maze

• Move order is: right, down, left, up
• Block positions to avoid revisit.

Rat In A Maze

• Move backward until we reach a square from which
a forward move is possible.

Rat In A Maze

• Move down.

Rat In A Maze

• Move left.

Rat In A Maze

• Move down.

Rat In A Maze

• Move backward until we reach a square from which
a forward move is possible.

Rat In A Maze

• Move backward until we reach a square from which
a forward move is possible.

• Move downward.

Rat In A Maze

• Move right.
• Backtrack.

Rat In A Maze

• Move downward.

Rat In A Maze

• Move right.

Rat In A Maze

• Move one down and then right.

Rat In A Maze

• Move one up and then right.

Rat In A Maze

• Move down to exit and eat cheese.

• Path from maze entry to current position operates as
a stack.

