

Example Of Sparse Matrices

diagonal
tridiagonal
lower triangular (?)

These are structured sparse matrices.
May be mapped into a 1D array so that a mapping function can be used to locate an element.

Unstructured Sparse Matrices

Airline flight matrix.

- airports are numbered 1 through n
- flight $(\mathrm{i}, \mathrm{j})=$ list of nonstop flights from airport i to airport j
- $\mathrm{n}=1000$ (say)
- n x n array of list references => 4 million bytes
- total number of flights $=20,000$ (say)
- need at most 20,000 list references => at most 80,000 bytes

Unstructured Sparse Matrices

Web page matrix.
web pages are numbered 1 through n web $(\mathrm{i}, \mathrm{j})=$ number of links from page i to page j

Web analysis.
authority page ... page that has many links to it hub page ... links to many authority pages

Web Page Matrix

- $\mathrm{n}=2$ billion (and growing by 1 million a day)
- n x n array of ints $=>16 * 10^{18}$ bytes $\left(16 * 10^{9}\right.$ GB)
- each page links to 10 (say) other pages on average
- on average there are 10 nonzero entries per row
- space needed for nonzero elements is approximately 20 billion $\times 4$ bytes $=80$ billion bytes (80 GB)

Representation Of Unstructured Sparse Matrices

Single linear list in row-major order.
scan the nonzero elements of the sparse matrix in rowmajor order
each nonzero element is represented by a triple
(row, column, value)
the list of triples may be an array list or a linked list (chain)

Single Linear List Example

00304	list $=$
00570	
00000	row
02600	column

Array Linear List Representation
list $=\quad \begin{aligned} & \text { row } \\ & \text { column } \\ & \text { value }\end{aligned}\left[\begin{array}{llllll}1 & 1 & 2 & 2 & 4 & 4 \\ 3 & 5 & 3 & 4 & 2 & 3 \\ 3 & 4 & 5 & 7 & 2 & 6\end{array}\right]$
$\left.\begin{array}{r}\text { element } \\ \text { row } \\ \text { column } \\ \text { value }\end{array} \begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 2 & 2 & 4 & 4 \\ 3 & 5 & 3 & 4 & 2 & 3 \\ 3 & 4 & 5 & 7 & 2 & 6\end{array}\right]$

One Linear List Per Row

Approximate Memory Requirements

500×500 matrix with 1994 nonzero elements

2D array $\quad 500 \times 500 \times 4=1$ million bytes
Single Array List $3 \times 1994 \times 4=23,928$ bytes
One Chain Per Row $23928+500 \times 4=25,928$

Runtime Performance

Matrix Transpose
500×500 matrix with 1994 nonzero elements

2D array	210 ms
Single Array List	6 ms
One Chain Per Row	12 ms

