

Example Of Sparse Matrices

diagonal tridiagonal lower triangular (?)

These are structured sparse matrices.

May be mapped into a 1D array so that a mapping function can be used to locate an element.

Unstructured Sparse Matrices

Airline flight matrix.

- airports are numbered 1 through n
- flight(i,j) = list of nonstop flights from airport i to airport j
- n = 1000 (say)
- n x n array of list references => 4 million bytes
- total number of flights = 20,000 (say)
- need at most 20,000 list references => at most 80,000 bytes

Unstructured Sparse Matrices

Web page matrix.

web pages are numbered 1 through n web(i,j) = number of links from page i to page j

Web analysis.

authority page ... page that has many links to it hub page ... links to many authority pages

Web Page Matrix

- n = 2 billion (and growing by 1 million a day)
- n x n array of ints => 16 * 10¹⁸ bytes (16 * 10⁹ GB)
- each page links to 10 (say) other pages on average
- on average there are 10 nonzero entries per row
- space needed for nonzero elements is approximately 20 billion x 4 bytes = 80 billion bytes (80 GB)

Representation Of Unstructured Sparse Matrices

Single linear list in row-major order.

scan the nonzero elements of the sparse matrix in rowmajor order

each nonzero element is represented by a triple (row, column, value)

the list of triples may be an array list or a linked list (chain)

Single Linear List Example			
00304	list =		
00570	row 1 1 2 2 4 4		
00000	column 3 5 3 4 2 3		
02600	value 3 4 5 7 2 6		

Array Linear List Representation		
list =	row 1 1 2 2 4 4 column 3 5 3 4 2 3 value 3 4 5 7 2 6	
	element012345row112244column353423value345726	

Single Chain			
$ \begin{array}{rcrr} \text{row} & \begin{bmatrix} 1 & 1 & 2 & 2 & 4 & 4 \\ 3 & 5 & 3 & 4 & 2 & 3 \\ \text{value} & \begin{bmatrix} 3 & 4 & 5 & 7 & 2 & 6 \end{bmatrix} \end{array} $			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

One Linear List I er Kow	One l	Linear	List	Per	Row
--------------------------	-------	--------	------	-----	-----

00304	row1 = [(3, 3), (5,4)]
0 0 5 7 0	row2 = [(3,5), (4,7)]
00000	row3 = []
02600	row4 = [(2,2), (3,6)]

Approximate Memory Requirements

500 x 500 matrix with 1994 nonzero elements

2D array $500 \times 500 \times 4 = 1$ million bytes Single Array List $3 \times 1994 \times 4 = 23,928$ bytes One Chain Per Row $23928 + 500 \times 4 = 25,928$

Runtime Performance

素素

Matrix Transpose 500 x 500 matrix with 1994 nonzero elements

2D array210 msSingle Array List6 msOne Chain Per Row12 ms

Performance

Matrix Addition.

500 x 500 matrices with 1994 and 999 nonzero elements

2D array 880 ms Single Array List One Chain Per Row

18 ms

29 ms