
Sparse Matrices

sparse … many elements are zero

dense … few elements are zero

Example Of Sparse Matrices
diagonal

tridiagonal

lower triangular (?)

These are structured sparse matrices.

May be mapped into a 1D array so that a
mapping function can be used to locate an
element.

Unstructured Sparse Matrices

Airline flight matrix.
� airports are numbered 1 through n

� flight(i,j) = list of nonstop flights from airport i
to airportj

� n = 1000 (say)

� n x n array of list references => 4 million bytes

� total number of flights = 20,000 (say)

� need at most20,000 list references => at most
80,000 bytes

Unstructured Sparse Matrices

Web page matrix.
web pages are numbered 1 through n

web(i,j) = number of links from page i to page j

Web analysis.
authority page … page that has many links to it

hub page … links to many authority pages

Web Page Matrix
� n = 2 billion (and growing by 1 million a day)

� n x n array ofints => 16 * 1018 bytes (16 * 109

GB)

� each page links to 10 (say) other pages on
average

� on average there are 10 nonzero entries per row

� space needed for nonzero elements is
approximately 20 billion x 4 bytes = 80 billion
bytes (80 GB)

Representation Of Unstructured
Sparse Matrices

Single linear list in row-major order.
scan the nonzero elements of the sparse matrix in row-

major order

each nonzero element is represented by a triple

(row, column, value)

the list of triples may be an array list or a linked list
(chain)

Single Linear List Example

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

list =

row 1 1 2 2 4 4

column 3 5 3 4 2 3

value 3 4 5 7 2 6

Array Linear List Representation

row 1 1 2 2 4 4

list = column 3 5 3 4 2 3

value 3 4 5 7 2 6

element 0 1 2 3 4 5

row 1 1 2 2 4 4

column 3 5 3 4 2 3

value 3 4 5 7 2 6

Chain Representation

Node structure.

row col

nextvalue

Single Chain

row 1 1 2 2 4 4

list = column 3 5 3 4 2 3

value 3 4 5 7 2 6

1 3

3

1 5

4

2

5

2

7

4

2

4

6

3 4 3
null

firstNode

2

One Linear List Per Row

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

row1 = [(3, 3), (5,4)]

row2 = [(3,5), (4,7)]

row3 = []

row4 = [(2,2), (3,6)]

Array Of Row Chains

Node structure.

next

valuecol

Array Of Row Chains

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

row[]

33

null

45

53

null

74

22

null

63

null

Orthogonal List Representation

Both row and column lists.

Node structure.

row col

nextdown

value

Row Lists

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0
null

1 3 3 1 5 4

2 3 5 2 4 7

4 2 2 4 3 6

n

n

n

Column Lists

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

1 3 3 1 5 4

2 3 5 2 4 7

4 2 2 4 3 6

n

nn

Orthogonal Lists

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0
null

row[]

1 3 3 1 5 4

2 3 5 2 4 7

4 2 2 4 3 6

n n

n

nnn

Variations

May use circular lists instead of chains.

Approximate Memory Requirements

500 x 500 matrix with 1994nonzero elements

2D array 500 x 500 x 4 = 1millionbytes

Single Array List 3 x 1994 x 4 = 23,928 bytes

One Chain Per Row 23928 + 500 x 4 = 25,928

Runtime Performance

Matrix Transpose

500 x 500 matrix with 1994nonzero elements

2D array 210 ms

Single Array List 6 ms

One Chain Per Row 12 ms

Performance

Matrix Addition.

500 x 500 matrices with 1994 and 999nonzero
elements

2D array 880 ms

Single Array List 18 ms

One Chain Per Row 29 ms

