
Arrays
1D Array Representation In Java, C, and C++

• 1-dimensional array x = [a, b, c, d]

• map into contiguous memory locations

Memory

a b c d

start

• location(x[i]) = start + i

Space Overhead

space overhead = 4 bytes for start

+ 4 bytes forx.length

= 8 bytes

(excludes space needed for the elements of x)

Memory

a b c d

start

2D Arrays

The elements of a 2-dimensional array a
declared as:

int [][]a = new int[3][4];

may be shown as a table

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

Rows Of A 2D Array

a[0][0] a[0][1] a[0][2] a[0][3] row 0

a[1][0] a[1][1] a[1][2] a[1][3] row 1

a[2][0] a[2][1] a[2][2] a[2][3] row 2

Columns Of A 2D Array

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

column 0 column 1 column 2 column 3

2D Array Representation In Java, C, and C++

view 2D array as a 1D array of rows
x = [row0, row1, row 2]
row 0 = [a,b, c, d]
row 1 = [e, f, g, h]
row 2 = [i, j, k, l]

and store as 4 1D arrays

2-dimensional array x

a, b, c, d

e, f, g, h

i, j, k, l

2D Array Representation In Java, C, and C++

x.length = 3
x[0].length = x[1].length = x[2].length = 4

a b c d

e f g h

i j k l

x[]

Space Overhead

space overhead = overhead for 4 1D arrays
= 4 * 8 bytes
= 32 bytes
= (number of rows + 1) x 8 bytes

a b c d

e f g h

i j k l

x[]

Array Representation In Java, C, and C++

• This representation is called the array-of-arrays
representation.

• Requires contiguous memory of size 3, 4, 4, and 4 for the
4 1D arrays.

• 1 memory block of size number of rows and number of
rows blocks of size number of columns

a b c d

e f g h

i j k l

x[]

Row-Major Mapping

• Example 3 x 4 array:
a b c d

e f g h

i j k l

• Convert into 1D array y by collecting elements by rows.

• Within a row elements are collected from left to right.

• Rows are collected from top to bottom.

• We get y[] = {a, b, c, d, e, f, g, h, i, j, k, l}

row 0 row 1 row 2 … row i

Locating Elementx[i][j]

• assume x has r rows and c columns

• each row has c elements

• i rows to the left of row i

• so ic elements to the left of x[i][0]

• sox[i][j] is mapped to position

ic + j of the 1D array

row 0 row 1 row 2 … row i

0 c 2c 3c ic

Space Overhead

4 bytes for startof 1D array +

4 bytes for lengthof 1D array +

4 bytes for c (number of columns)

= 12 bytes

(number of rows = length /c)

row 0 row 1 row 2 … row i

Disadvantage

Need contiguous memory of sizerc.

Column-Major Mapping

a b c d

e f g h

i j k l

• Convert into 1D array y by collecting elements
by columns.

• Within a column elements are collected from
top to bottom.

• Columns are collected from left to right.

• We get y = {a, e, i, b, f, j, c, g, k, d, h, l}

Matrix

Table of values. Has rows and columns, but
numbering begins at 1 rather than 0.

a b c d row 1

e f g h row 2

i j k l row 3

• Use notation x(i,j) rather than x[i][j] .

• May use a 2D array to represent a matrix.

Shortcomings Of Using A 2D
Array For A Matrix

• Indexes are off by 1.

• Java arrays do not support matrix operations
such as add, transpose, multiply, and so on.
– Suppose that x and y are 2D arrays. Can’t do x + y,

x –y, x * y, etc. in Java.

• Develop a class Matrix for object-oriented
support of all matrix operations. See text.

Diagonal Matrix

An n x nmatrix in which all nonzero
terms are on the diagonal.

Diagonal Matrix
1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

• x(i,j) is on diagonal iffi = j

• number of diagonal elements in an
n x n matrix is n

• non diagonal elements are zero

• store diagonal only vsn2 whole

Lower Triangular Matrix
An n x nmatrix in which all nonzero terms are either

on or below the diagonal.

• x(i,j) is part of lower triangle iff i >= j.

• number of elements in lower triangle is 1 + 2 +
… + n = n(n+1)/2.

• store only the lower triangle

1 0 0 0

2 3 0 0

4 5 6 0

7 8 9 10

Array Of Arrays Representation

Use an irregular 2-D array … length of rows is not
required to be the same.

1

2 3

4 5 6

x[]

7 8 9 l0

Creating And Using An Irregular Array
// declare a two-dimensional array variable

// and allocate the desired number of rows

int [][] irregularArray = newint [numberOfRows][];

// now allocate space for the elements in each row

for (int i = 0; i < numberOfRows; i++)

irregularArray[i] = new int[size[i]];

// use the array like any regular array

irregularArray[2][3] = 5;

irregularArray[4][6] = irregularArray[2][3] + 2;

irregularArray[1][1] += 3;

Map Lower Triangular Array Into A 1D Array

Use row-major order, but omit terms that are
not part of the lower triangle.

For the matrix

1 0 0 0

2 3 0 0

4 5 6 0

7 8 9 10

we get

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Index Of Element [i][j]

• Order is: row 1, row 2, row 3, …

• Row i is preceded by rows 1, 2, …, i-1

• Size of rowi is i.

• Number of elements that precede rowi is
1 + 2 + 3 + … + i-1 = i(i-1)/2

• So element (i,j) is at positioni(i-1)/2 + j -1 of
the 1D array.

r 1 r2 r3 … row i

0 1 3 6

