

1D Array Representation In Java, C, and C++

- 1-dimensional array $\mathrm{x}=[\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}]$
- map into contiguous memory locations
- location $(\mathrm{x}[\mathrm{i}])=$ start + i

Space Overhead

Memory

space overhead $=4$ bytes for start
+4 bytes for x.length
$=8$ bytes
(excludes space needed for the elements of x)

2D Arrays

The elements of a 2-dimensional array a declared as:
int [][]a = new int[3][4]; may be shown as a table

$$
\begin{array}{cccc}
\mathrm{a}[0][0] & \mathrm{a}[0][1] & \mathrm{a}[0][2] & \mathrm{a}[0][3] \\
\mathrm{a}[1][0] & \mathrm{a}[1][1] & \mathrm{a}[1][2] & \mathrm{a}[1][3] \\
\mathrm{a}[2][0] & \mathrm{a}[2][1] & \mathrm{a}[2][2] & \mathrm{a}[2][3]
\end{array}
$$

Rows Of A 2D Array

Columns Of A 2D Array

column 0 column 1 column 2 column 3

2D Array Representation In Java, C, and C++

2-dimensional array x

$$
\begin{aligned}
& \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \\
& \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h} \\
& \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}
\end{aligned}
$$

view 2D array as a 1 D array of rows
$\mathrm{x}=$ [row0, row1, row 2]
row $0=[a, b, c, d]$
row $1=[\mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}]$
row $2=[i, j, k, 1]$
and store as 41 D arrays

2D Array Representation In Java, C, and C++

x.length $=3$
$x[0] \cdot$ length $=x[1]$. length $=x[2]$. length $=4$

Space Overhead

space overhead $=$ overhead for 4 1D arrays
$=4 * 8$ bytes
$=32$ bytes
$=($ number of rows +1$) \times 8$ bytes

Array Representation In Java, C, and C++

- This representation is called the array-of-arrays representation.
- Requires contiguous memory of size $3,4,4$, and 4 for the 4 1D arrays.
- 1 memory block of size number of rows and number of rows blocks of size number of columns

Row-Major Mapping

- Example 3×4 array:

$$
\begin{aligned}
& \text { abcd } \\
& \text { ef gh } \\
& \text { i jkl }
\end{aligned}
$$

- Convert into 1D array y by collecting elements by rows.
- Within a row elements are collected from left to right.
- Rows are collected from top to bottom.
- We get $\mathrm{y}[\mathrm{]}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}\}$

row 0	row 1	row 2	\ldots	row i

Locating Element $\mathrm{x}[\mathrm{i}][\mathrm{j}]$

0	c	$2 c$	$3 c$	ic

row 0	row 1	row 2	\ldots	row i

- assume x has r rows and c columns
- each row has c elements
- i rows to the left of row i
- so ic elements to the left of $x[i][0]$
- so $x[i][j]$ is mapped to position ic $+j$ of the 1D array

Space Overhead

row 0	row 1	row 2	\ldots	row i

4 bytes for start of 1D array +
4 bytes for length of 1D array +
4 bytes for c (number of columns)
$=12$ bytes
$($ number of rows $=$ length $/ \mathrm{c})$

Disadvantage

Need contiguous memory of size rc.

Column-Major Mapping

$$
\begin{aligned}
& \text { abcd } \\
& \text { ef gh } \\
& \text { i jkl }
\end{aligned}
$$

- Convert into 1 D array y by collecting elements by columns.
- Within a column elements are collected from top to bottom.
- Columns are collected from left to right.
- We get $y=\{a, e, i, b, f, j, c, g, k, d, h, l\}$

Matrix

Table of values. Has rows and columns, but numbering begins at 1 rather than 0 .

$$
\begin{array}{ll}
\text { abcd } & \text { row } 1 \\
\text { efgh } & \text { row } 2 \\
\text { i jkl } & \text { row } 3
\end{array}
$$

- Use notation $x(i, j)$ rather than $x[i][j]$.
- May use a 2D array to represent a matrix.

Shortcomings Of Using A 2D Array For A Matrix

- Indexes are off by 1 .
- Java arrays do not support matrix operations such as add, transpose, multiply, and so on.
- Suppose that x and y are 2D arrays. Can't do $\mathrm{x}+\mathrm{y}$, $x-y, x$ * y, etc. in Java.
- Develop a class Matrix for object-oriented support of all matrix operations. See text.

Diagonal Matrix

An $n \times n$ matrix in which all nonzero terms are on the diagonal.

Diagonal Matrix
 1000 $0<00$ 000 000

- $x(i, j)$ is on diagonal iff $\mathrm{i}=\mathrm{j}$
- number of diagonal elements in an n x n matrix is n
- non diagonal elements are zero
- store diagonal only vs n^{2} whole

Lower Triangular Matrix

An $\mathrm{n} x \mathrm{n}$ matrix in which all nonzero terms are either on or below the diagonal.

$$
\begin{array}{ccc}
1 & 0 & 0 \\
230 & 0 \\
456 & 0 \\
789 & 10
\end{array}
$$

- $x(i, j)$ is part of lower triangle iff $i>=j$.
- number of elements in lower triangle is $1+2+$ $\ldots+n=n(n+1) / 2$.
- store only the lower triangle

Array Of Arrays Representation

Use an irregular 2-D array ... length of rows is not required to be the same.

Creating And Using An Irregular Array

// declare a two-dimensional array variable
// and allocate the desired number of rows
int [][] irregularArray = new int [numberOfRows][];
// now allocate space for the elements in each row
for (int $\mathrm{i}=0$; $\mathrm{i}<$ numberOfRows; $\mathrm{i}++$)
irregularArray[i] = new int [size[i]];
// use the array like any regular array
irregularArray[2][3] = 5;
irregularArray[4][6] = irregularArray[2][3] +2;
irregularArray[1][1] += 3;

Map Lower Triangular Array Into A 1D Array
Use row-major order, but omit terms that are not part of the lower triangle.

For the matrix

$$
\begin{aligned}
& 1000 \\
& 2300 \\
& 4560 \\
& 789
\end{aligned}
$$

we get

$$
1,2,3,4,5,6,7,8,9,10
$$

Index Of Element [i][j]

| 0 | 1 | 6 |
| :--- | :--- | :--- | :--- | :--- |
| r 1 r2 r3 \ldots row i | | |

- Order is: row 1 , row 2 , row $3, \ldots$
- Row i is preceded by rows $1,2, \ldots, i-1$
- Size of row i is i.
- Number of elements that precede row i is

$$
1+2+3+\ldots+\mathrm{i}-1=\mathrm{i}(\mathrm{i}-1) / 2
$$

- So element (i, j) is at position $i(i-1) / 2+j-1$ of the 1D array.

