
Simulated Pointers

Limitations Of Java Pointers

• May be used for internal data
structures only.

• Data structure backup requires
serialization and deserialization.

• No arithmetic.

Simulated-Pointer Memory Layout

Data structure memory is an array,
and each array position has an
element field (type Object) and a
next field (type int).

c a e d b

Node Representation
packagedataStructures;

classSimulatedNode

{

// package visible data members

Object element;

int next;

// constructors not shown

}

How It All Looks

14

c a e d b

c a e d b

0 1 2 3 4 5 8 11 14

14 011 8-1

firstNode= 4

next

element

Still Drawn The Same

a b c d e
-1

firstNode

Memory Management

Linked system (Java or simulated pointer)
requires:

• a way to keep track of the memory that is not
in use (i.e., a storage pool)

• way to allocate a node

Java has the method new

• way to free a node that is no longer in use

Java uses garbage collection

Garbage Collection

The system determines which nodes/memory are
not in use and returns these nodes (this memory)
to the pool of free storage.

This is done in two or three steps:

Mark nodes that are in use.

Compact free space (optional).

Move free nodes to storage pool.

Marking

Unmark all nodes (set all mark bits to false).

Start at each program variable that contains a
reference, follow all pointers, mark nodes
that are reached.

c a e d b

firstNode

Marking

c a e d b

firstNode

c a e d e

Repeat for all reference variables.

Start atfirstNodeand mark all nodes
reachable fromfirstNode.

Compaction

Move all marked nodes (i.e., nodes in
use) to one end of memory,
updating all pointers as necessary.

c b e d b

firstNode

a e d Free Memory

Put Free Memory In Storage Pool

Scan memory for unmarked nodes (if
no compaction done), otherwise put
single free block (unless no free
memory) into pool.

Advantages Of Garbage Collection

• Programmer doesn’t have to worry
about freeing nodes as they become
free.

• However, for garbage collection to
be effective, we must set reference
variables to null when the object
being referenced is no longer
needed.

Advantages Of Garbage Collection

• Applications may run faster when
run on computers that have more
memory.

Disadvantage Of Garbage Collection

• Garbage collection time is linear in
memory size (not in amount of free
memory).

Alternative To Garbage Collection

Provide a method to free/deallocate a
node.

e.g., deletemethod of C++

Now free nodes are always in storage
pool.

Advantage Of Alternative

• Time to free nodes is proportional
to number of nodes being freed and
not to total memory size.

Disadvantages Of Alternative

• User must write methods to free
data structure nodes.

• Time is spent freeing nodes that
may not be reused.

• Application run time does not
improve with increase in memory
size.

Storage Pool Organization When All
Nodes Have Same Size

a b c d e
null

firstNode

• Maintain a chain of free nodes

• Allocate from front of chain

• Add node that is freed to chain front

Simulated-Pointer Memory Management

/** memory management for simulated pointer classes */

packagedataStructures;

import utilities.*;

public classSimulatedSpace1

{

// data members

private intfirstNode;

SimulatedNode [] node; // package visible

// constructor and other methods come here

}

Constructor
public SimulatedSpace1(int numberOfNodes)

{

node = newSimulatedNode [numberOfNodes];

// create nodes and link into a chain

for (int i = 0; i < numberOfNodes - 1; i++)

node[i] = new SimulatedNode(i + 1);

// last node of array and chain

node[numberOfNodes - 1] = new SimulatedNode(-1);

// firstNode has the default initial value 0

}

Allocate A Node
public intallocateNode(Object element, int next)

{ // Allocate a free node and set its fields.

if (firstNode == -1)

{ // double number of nodes, code omitted

}

int i = firstNode; // allocate first node

firstNode = node[i].next; // firstNode points to next free node

node[i].element = element;

node[i].next = next;

returni;

}

Free A Node

public voiddeallocateNode(int i)

{ // Free node i.

// make i first node on free space list

node[i].next = firstNode;

firstNode = i;

// remove element reference so that space can be garbage

// collected

node[i].element = null;

}

Simulated Pointers
• Can allocate a chain of nodes without having to

relink.

• Can free a chain of nodes in O(1) time when
first and last nodes of chain are known.

Simulated Pointers

• Don’t use unless you see a clear advantage to
using simulated pointers over Java references.

