
Performance Measurement Performance Analysis

Paper and pencil.

Don’t need a working computer
program or even a computer.

Some Uses Of Performance Analysis

¾determine practicality of algorithm
¾predict run time on large instance
¾compare 2 algorithms that have different
asymptotic complexity
¾e.g., O(n) and O(n2)

Limitations of Analysis

Doesn’t account for constant
factors.

but constant factor may dominate
1000n vs n2

and we are interested only in
n < 1000

Limitations of Analysis

Modern computers have a
hierarchical memory organization
with different access time for
memory at different levels of the
hierarchy.

Memory Hierarchy

R
L1

L2

MAIN

ALU

8-32 32KB 512KB 512MB
1C 2C 10C 100C

Limitations of Analysis

Our analysis doesn’t account for
this difference in memory access
times.

Programs that do more work may
take less time than those that do
less work.

Performance Measurement

Measure actual time on an actual
computer.

What do we need?

Performance Measurement Needs

● programming language
● working program
● computer
● compiler and options to use

javac -o

Performance Measurement Needs

● data to use for measurement
worst-case data
best-case data
average-case data

● timing mechanism --- clock

Timing In Java

long startTime = System.currentTimeMillis();
// gives time in milliseconds since 1/1/1970 GMT

// code to be timed comes here

long elapsedTime = System.currentTimeMillis()

- startTime;

Shortcoming

Clock accuracy
assume 100 milliseconds

Repeat work many times to bring total
time to be >= 1 second

Accurate Timing
long startTime = System.currentTimeMillis();
long counter;
do {

counter++;
doSomething();

} while (System.currentTimeMillis() -
startTime < 1000)

long elapsedTime = System.currentTimeMillis()
- startTime;

float timeForMethod =
((float) elapsedTime)/counter;

Accuracy
Now accuracy is 10%.

first reading may be just about to change to
startTime + 100

second reading may have just changed to
finishTime

so finishTime - startTime is off by 100ms

Accuracy

first reading may have just changed to
startTime

second reading may be about to change to
finishTime + 100

so finishTime - startTime is off by 100ms

Accuracy

Examining remaining cases, we get

trueElapsedTime =

finishTime - startTime +- 100ms

To ensure 10% accuracy, require

elapsedTime = finishTime – startTime

>= 1sec

What Went Wrong?
long startTime = System.currentTimeMillis();
long counter;
do {

counter++;
InsertionSort.insertionSort(a);

} while (System.currentTimeMillis() -
startTime < 1000)

long elapsedTime = System.currentTimeMillis()
- startTime;

float timeForMethod =
((float) elapsedTime)/counter;

The Fix

long startTime = System.currentTimeMillis();
long counter;
do {

counter++;
// put code to initialize a[] here
InsertionSort.insertionSort(a);

} while (System.currentTimeMillis() -
startTime < 1000)

Time Shared System

UNIX
time MyProgram

Bad Way To Time

do {

counter++;

startTime = System.currentTimeMillis();

doSomething();

elapsedTime +=
System.currentTimeMillis()

- startTime;
} while (elapsedTime < 1000)

