Dynamic Programming

- Steps.
 - ✓ View the problem solution as the result of a sequence of decisions.
 - ✓ Obtain a formulation for the problem state.
 - ✓ Verify that the principle of optimality holds.
 - ✓ Set up the dynamic programming recurrence equations.
 - ✓ Solve these equations for the value of the optimal solution.
 - Perform a traceback to determine the optimal solution.

Dynamic Programming

- When solving the dynamic programming recurrence recursively, be sure to avoid the recomputation of the optimal value for the same problem state.
- To minimize run time overheads, and hence to reduce actual run time, dynamic programming recurrences are almost always solved iteratively (no recursion).

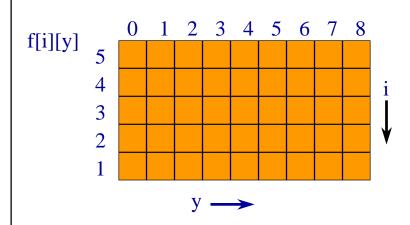
0/1 Knapsack Recurrence

•=

- If $w_n \le y$, $f(n,y) = p_n$.
- If $w_n > y$, f(n,y) = 0.
- When i < n
 - f(i,y) = f(i+1,y) whenever $y < w_i$.
 - $f(i,y) = \max\{f(i+1,y), f(i+1,y-w_i) + p_i\}, y >= w_i$.
- Assume the weights and capacity are integers.
- Only f(i,y)s with $1 \le i \le n$ and $0 \le y \le c$ are of interest.

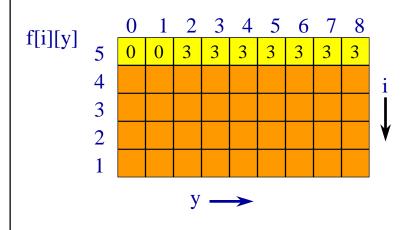
Iterative Solution Example

• n = 5, c = 8, w = [4,3,5,6,2], p = [9,7,10,9,3]



Compute f[5][*]

• n = 5, c = 8, w = [4,3,5,6,2], p = [9,7,10,9,3]



Compute f[4][*]

• n = 5, c = 8, w = [4,3,5,6,2], p = [9,8,10,9,3]

 $f(i,y) = \max\{f(i+1,y), f(i+1,y-w_i) + p_i\}, y >= w_i$

Compute f[3][*]

•
$$n = 5$$
, $c = 8$, $w = [4,3,5,6,2]$, $p = [9,8,10,9,3]$

 $f(i,y) = \max\{f(i+1,y), f(i+1,y-w_i) + p_i\}, y >= w_i$

Compute f[2][*]

•
$$n = 5$$
, $c = 8$, $w = [4,3,5,6,2]$, $p = [9,8,10,9,3]$

 $f(i,y) = \max\{f(i+1,y), f(i+1,y-w_i) + p_i\}, y >= w_i$

Compute f[1][c]

•
$$n = 5$$
, $c = 8$, $w = [4,3,5,6,2]$, $p = [9,8,10,9,3]$

 $f(i,y) = \max\{f(i+1,y), f(i+1,y-w_i) + p_i\}, y >= w_i$

Iterative Implementation

```
// initialize f[n][]
int yMax = Math.min(w[n] - 1, c);
for (int y = 0; y <= yMax; y++)
  f[n][y] = 0;
for (int y = w[n]; y <= c; y++)
  f[n][y] = p[n];</pre>
```

Iterative Implementation

Iterative Implementation

```
// compute f[1][c]

f[1][c] = f[2][c];

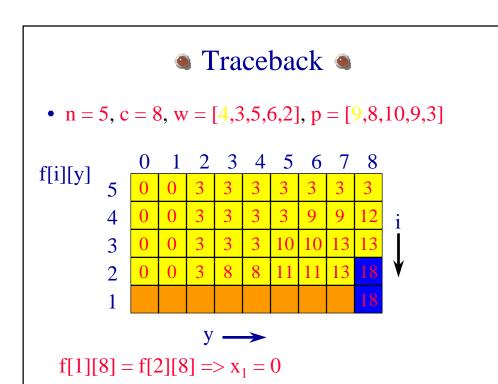
if (c >= w[1])

f[1][c] = Math.max(f[1][c],

f[2][c-w[1]] + p[1]);
```

Time Complexity

- O(cn).
- Same as for the recursive version with no recomputations.
- Iterative version is expected to run faster because of lower overheads.
 - No checks to see if f[i][j] already computed (but all f[i][j] are computed).
 - Method calls replaced by for loops.



Traceback

•
$$n = 5$$
, $c = 8$, $w = [4,3,5,6,2]$, $p = [9,8,10,9,3]$

$$f[2][8] != f[3][8] => x_2 = 1$$

Traceback

•
$$n = 5$$
, $c = 8$, $w = [4,3,5,6,2]$, $p = [9,8,10,9,3]$

$$f[3][5] != f[4][5] => x_3 = 1$$

Traceback

•
$$n = 5$$
, $c = 8$, $w = [4,3,5,6,2]$, $p = [9,8,10,9,3]$

$$f[4][0] = f[5][0] \Longrightarrow x_4 = 0$$

Traceback

•
$$n = 5$$
, $c = 8$, $w = [4,3,5,6,2]$, $p = [9,8,10,9,3]$

$$f[5][0] = 0 \Longrightarrow x_5 = 0$$

Complexity Of Traceback

• O(n)

Matrix Multiplication Chains

Multiply an m x n matrix A and an n x p matrix
 B to get an m x p matrix C.

$$C(i,j) = \sum_{k=1}^{n} A(i,k) * B(k,j)$$

- We shall use the number of multiplications as our complexity measure.
- n multiplications are needed to compute one C(i,j).
- mnp multiplications are needed to compute all mp terms of C.

Matrix Multiplication Chains

- Suppose that we are to compute the product X*Y*Z of three matrices X, Y and Z.
- The matrix dimensions are:
 - X:(100 x 1), Y:(1 x 100), Z:(100 x 1)
- Multiply X and Y to get a 100 x 100 matrix T.
 - 100 * 1 * 100 = 10,000 multiplications.
- Multiply T and Z to get the 100 x 1 answer.
 - 100 * 100 * 1 = 10,000 multiplications.
- Total cost is 20,000 multiplications.
- 10,000 units of space are needed for T.

Matrix Multiplication Chains

- The matrix dimensions are:
 - **X**:(100 x 1)
 - **Y**:(1 x 100)
 - Z:(100 x 1)
- Multiply Y and Z to get a 1 x 1 matrix T.
 - 1 * 100 * 1 = 100 multiplications.
- Multiply X and T to get the 100 x 1 answer.
 - 100 * 1 * 1 = 100 multiplications.
- Total cost is 200 multiplications.
- 1 unit of space is needed for T.

Product Of 5 Matrices

- Some of the ways in which the product of 5 matrices may be computed.
 - $A^*(B^*(C^*(D^*E)))$ right to left
 - (((A*B)*C)*D)*E left to right
 - (A*B)*((C*D)*E)
 - (A*B)*(C*(D*E))
 - (A*(B*C))*(D*E)
 - ((A*B)*C)*(D*E)

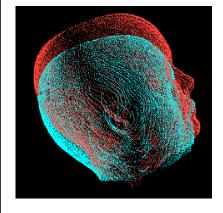
Find Best Multiplication Order

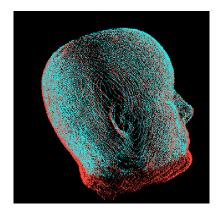
- Number of ways to compute the product of q matrices is $O(4^{q}/q^{1.5})$.
 - Evaluating all ways to compute the product takes $O(4^q/q^{0.5})$ time.

An Application

 Registration of pre- and post-operative 3D brain MRI images to determine volume of removed tumor.

3D Registration





3D Registration

- Each image has 256 x 256 x 256 voxels.
- In each iteration of the registration algorithm, the product of three matrices is computed at each voxel ... (12 x 3) * (3 x 3) * (3 x 1)
- Left to right computation => 12 * 3 * 3 + 12 * 3*1 = 144 multiplications per voxel per iteration.
- 100 iterations to converge.

3D Registration

- Total number of multiplications is about 2.4 * 10¹¹.
- Right to left computation => 3 * 3*1 + 12 * 3 * 1 = 45 multiplications per voxel per iteration.
- Total number of multiplications is about 7.5 * 10¹⁰.
- With 10⁸ multiplications per second, time is 40 min vs 12.5 min.