CIS6930: PCPs and Inapproximability - Homework 1

Due at the beginning of the lecture on 10-13-2009.
No late assignment will be accepted.
Do the following 6 required problems. Each problem is 10 pts.
Problem 1. Give a gap preserving reduction from MAX-3SAT(29) to MAX-3SAT(5) with appropriate parameters to show the hardness of the latter problem.

Problem 2. Give a gap preserving reduction from MAX-3SAT(d) to MAX-E3SAT(Ed) (each variable appears exactly d times) to show the hardness of the latter problem, that is, GAP-MAX-E3SAT(Ed $)_{1, \rho}$ is NP-hard for a constant $0<\rho<1$

Problem 3. Prove that $\mathbf{N P}=\mathbf{P C P}_{1,1 / n}[\log n, \log n]$
Problem 4. Show that if there exists an $\epsilon>0$ for which there is a $(1+2 / e-\epsilon)$-approximation algorithm for the metric k-Median problem, then $N P \subseteq D T I M E\left(n^{O(\log \log n)}\right)$.

Problem 5. In the class, we mentioned that $\forall \rho>0$, GAP-CLIQUE $_{1, \rho}$ is NP-hard by running PCP verifier k times. Now, prove that theorem ($\forall \rho>0$, GAP-CLIQUE ${ }_{1, \rho}$ is NP-hard) using the powering graph (similar to the one we used to show the hardness of approximation of Independent Set). That is, for a graph $G=(V, E)$ and an integer $k \geq 2$, you need to define the $k^{t h}$ power of $G, G^{k}=\left(V^{\prime}, E^{\prime}\right)$ such that $\omega\left(G^{k}\right)=\omega(G)^{k}$ where $\omega($.$) defines the$ size of largest cliques in (.). From there, prove the theorem.

Problem 6. Show that there exits a $\delta>0$, GAP-CLIQUE 1, $_{1, n^{-\delta}}$ is NP-hard. As hinted in the lecture note, you may want to choose k to be supper-constant, then the verifier needs a total of $O(k \log n)$ random bits, then the size of G becomes supper-polynomial. Try to show that we can run the verifier k times by using only $O(\log n)+O(k)$ (rather than $O(k \log n)$)

