CIS6930: PCPs and Inapproximability - Final Exam

Due at 4pm on 12-08-2009 via email. As usual, I will NOT accept any late submission.

This is the final exam. Therefore, **no** collaboration and discussion between students is allowed. **No** references except lecture notes is accepted.

Do the following 5 required problems, 10 pts each:

Problem 1. Prove that it is NP-hard to approximate the Edge Disjoint Paths (EDP) problem within a factor of $m^{1/2-\epsilon}$ for any $\epsilon > 0$ where the EDP problem is defined as follows:

Definition 1 Given a directed graph G = (V, E) with m = |E| and source-sink pairs (s_i, t_i) for i = 1, ..., t, find the maximum number of edge disjoint paths (paths that do not share edges) to connect these source-sink pairs (that is, our goal is to connect as many pairs as possible using edge disjoint paths)

Problem 2. Prove that there is no $(2/3 + \epsilon)$ -approximation for MAX-3MAJ unless P = NP where MAX-3MAJ is defined as follows:

Definition 2 An instance of MAX-3MAJ is a collection of m clauses in which each clause C_i is of the form $MAJ(x_{i1}, x_{i2}, x_{i3})$ where z_i is a boolean variable and MAJ is the majority function (the majority of its three literals' values is 1). The problem asks to find a truth assignment for all variables so as to maximize the number of satisfied clauses.

Problem 3. Prove the following:

Let B_0, B_1, \dots, B_t be subsets of V such that $\beta_i = |B_i|/n$. Define (B, t) to be the event that a random walk (v_0, v_1, \dots, v_t) has the property that $\forall i, v_i \in B_i$, we have:

$$Pr[(B,t)] \le \prod_{i=0}^{t-1} (\sqrt{\beta_i \beta_{i+1}} + \alpha)$$

Problem 4. Prove the following:

Let G = (V, E) be an (n, d, α) -graph (as defined in class), then for every $S, T \subseteq V$, we have:

$$\left| \frac{d|S||T|}{n} - E(S,T) \right| \le \alpha d\sqrt{|S||T|}$$

Problem 5. Find the spectrum of a d-regular tree of height h where d and h are given positive integers.