6

Pooling Designs on Complexes

6.1 Introduction

The pooling design we have discussed so far has a set of positive elements each can
induce a positive effect. Sometimes it takes a set of elements combined to induce
a positive effect. Therefore the set of positive elements is replaced by the set D =
{D1,..., Dy} where each D;, called a positive complex, is a subset of elements. It is
usually assumed that D; € D; for all © # j. Torney [22] first introduced the complex
model and gave the complexes of eukaryotic DNA transcription and RNA translation
as an example.

Besides its applicability to molecular biology, the complex model is interesting
as a genuine generalization of the classic group testing from searching subsets to
searching subgraphs. Consider a hypergraph H(V, E) where the vertex-set V is the
set of elements (clones, molecules) and each edge represents a candidate member of
D. Edges in D are referred to as positive edges while all other edges are negative. The
problem is to identify all positive edges of H. An edge-test is a test on a subset S of
vertices with two possible outcomes: a positive outcome indicates that S contains an
edge of D; a negative outcome indicates otherwise. Note that a biological assay on a
pool corresponds to an edge-test since a positive outcome is obtained as long as the
pool contains one positive complex (an edge). We do not distinguish between ”edge”
and "complex”, often honoring the usage of the quoted literature. The rank of an
edge is the number of vertices in it. Define

(i) Hz: rank-r graph, i.e., the maximum rank of H is r,

(ii) H,: r-gragh, i.e., every edge is of rank r,

(iii) Hf: complete r-graph, i.e., a k-set is an edge if and only if & = r,

(iv) HZ:: complete rank-r graph, i.e., a k-set is an edge if and only if & < r.

While the group testing (d, n) model can be represented as the edge-testing (H;, d)
model, it is also well known (p.211 of [6]) that a group test on a set S in the (d,n)
model is equivalent to an edge test on S in the (H, 1) model since both tests divide
the candidate set into two parts, one containing candidates which intersect with 5,
and the other containing candidates which do not (note that the positive outcome of

1



one test corresponds to the negative outcome of the other). Therefore, there exists
a one-to-one mapping between the classical group testing algorithms of identifying d

(d) positive vertices and the edge-testing algorithms of identifying a single edge in
H3 (13),

Let ¢(H : D) denote the minimum number of tests given H and D. If the only
information available about D is its cardinality d, then write ¢{(H : d) instead, or

t(H : d) if d is an upper bound. From the above discussion, we have
Theorem 6.1.1 ¢(Hy :d) =t(H;:1).

For d > 1 and r > 1, the edge-testing model no longer has an interpretation as
a group testing model. Further, the edge-testing model encounters a difficulty not
present in the group testing model. In the group testing model, once a positive vertex
is found, it is removed from the set and has no impact on further testing. But in
the edge-testing model, once a positive edge is found we cannot remove it since the
vertices in it may still appear in other positive edges. On the other hand if a positive
edge is not removed, then it may be caught repeatedly. An edge-testing algorithm
has to deal with this issue.

We extend the notions of d-separable and d-disjunct matrices to the edge-testing
model. For a given hypergraph H, let M be the incidence matrix of an edge-testing
algorithm where rows are labeled by tests and columns by vertices. Then M is called
(H : d)-separable if any two different d-sets of complexes have different outcome
vectors; it is (H : d)-separable if d is just an upper bound of the cardinalities of the
two sets. This implies that given an outcome vector U, there exists a unique set
D = {D,...,D;}, j = d in the d-separable case and j < d in the d-separable case,
consistent with UU. In the d-separable case, we assume no two positive edges can
contain each other for otherwise we can’t tell whether only one or both are in the
positive set.

M is called (H : d)-disjunct if all edges of H not in D must appear in a pool whose
outcome is negative. Therefore we can eliminate all negative edges from negative pools
and what left are the D,’s. For an edge X, we say a row contains (or covers) X if it
intersects every vertex (column) of X. In a matrix M, NX denotes the set of rows
each containing X. Then more formally, M is (H : d)-disjunct if and only if for every
set of d+ 1 edges F = {eg, €1, ..., €4}, there exists a row in M which contains ¢y € F,
but none of £\ {eg}, or

Neo € UL (Ne;).

Note that for two edges e C €, there does not exist a row covering ¢’ bot not
e. Hence (H : d)-disjunct makes sense only if the assumption that no edge contains
another edge is made, which we do. In particular, (H*, : d)-disjunctness is a valid
concept. Further

Lemma 6.1.2 M is (H : d)-disjunct if and only if for every set of d + 1 edges,
{€0, €1, ..., €4}, there exisls a row which conlains ey bul none of columns Cy,...,Cy for
some C; € e;, 1 <1 <d.



The relations between (H : d)-separable, (H : d)-separable and (H : d)-disjunct
are much like in group testing. We list them in the following, some obvious ones are
stated without proofs.

Theorem 6.1.3 The (H : d)-disjunct implies the (H : d)-separable which imples the
(H;d)-separable.

Theorem 6.1.4 (H} : d)-separable, the (Hx*, : d)separable and the (H* : d)-disjunct
properties are preserved if either d is reduced to d' or r to r'.

Theorem 6.1.5 Let M be (H : d)-disjunct, and let M" be obtained from M by delet-

ing a row. Then M is (H : d)-separable.

Proof. Consider two distinct sets D, D’ of complexes. Then either D\D’ or D'\ D # ().
Without loss of generality, assume the former and let Dy € D\ D’. Suppose U(D) =
U(D"). Then Dy is covered by Up,epD; = U(D) = U(D') = UD;ED/D;, contradicting
the assumption that M is (H : d)-disjunct. Next, suppose |U(D)\ U(D')| = 1. Then
U(D') C U(D) implies that D', hence every D: € D', is covered by Up,ep D;, again
contradicting the assumption that M is (H : d)-disjunct. Therefore |U(D)\ U(D')| >
2; so deleting a row would preserve the distinctness of U(D) and U(D'). O

Lemma 6.1.6 The (H : d)-separable, the (H : d)-separable and the (H : d)-disjunct
properties are preserved under adding rows or dropping columns.

Theorem 6.1.7 (H : d)-separable implies (H : d — 1)-disjunct.

Proof. Let M be (H : d)-separable. Suppose to the contrary that M is not (H : d—1)-
disjunct. Then there exists a d-set D of edges in H and an edge Dy € D such that
Dy is covered by the union of the other d — 1 edges. Then U(D) = U(D \ {D1}),

contradicting the assumption of (H : d)-separable. O

While the theory of (H : d)-disjunct is a natural extension of d-disjunct, the
construction is not since if edges can have very large ranks, then even the mere
requirement that for each edge there exists a row containing it may force a large
matrix. To control the size of the matrix, we need to make use of an upper bound r
of edge ranks. Thus we will often represent H by Hy:. Note that this representation
does not lose generality since every H has a maximum rank.

Finally, we introduce the error-tolerant version of (H : d)-disjunct matrix. A
binary matrix is (H : d;z)-disjunct if for any d + 1 edges eg, €1, ..., €4, there exist
at least z rows each covers ey but none of the other e,. (H : d;1)-disjunct will be
simply written as (H : d)-disjunct. An (H : d;z)-disjunct matrix can identify all
positive complexes with up to [(z —1)/2] errors since there exist at least [(z +1)/2]
(> [(z — 1)/2]) negative rows covering a negative edge.

3



6.2 A Construction of (H : d; z)-Disjunct Matrix
Du, Hwang, Thai, Wu and Znati [9] generalized an idea of Du, Hwang, Wu and

Zmati [8] in constructing d-disjunct matrix for the graph-testing model. The idea is
to construct a g-nary (H : d; z)-disjunct matrix and then convert it to binary, while
a g-nary matrix is (H : d, z)-disjunct if for any d + 1 edges eq, €1, ..., €4, there exist at
least z rows in each of which { entries of eg} 2 { entries of ¢;} for all 1 <37 < d.

Consider a hypergraph H = (V| F) with maximum rank r. Let GF(q) be a
finite field of order g. Associate each vertex v € V with a distinct polynomial p, of
degree k over GF(q). Thus each edge e € F associates with a subset of polynomials,
P. ={p, | v € e}. Let T be a subset of ¢ elements in GF(g). Construct a ¢t x |V|
g-nary matrix Ag(q, k,t) with rows labeled by T" and columns by V. Each cell (z,v)
contains an element p,(z) in GF(q).

Theorem 6.2.1 Suppose H = H: and t > rdk + z. Then Agn(q,k,t) is g-nary
(H : d;z)-disjunct.

Proof. Suppose to the contrary that no such z rows exist. Then for at least rdk + 1
values of x € T', P.,(z) 2 P.,(z) for some 1 < ¢ < d. Thus there exists a fixed j,
1 < j < d, such that P, (z) 2 P, (z) for at least rk 4 1 values of z € T'. Since each
u € e; must have p,(z) = p,(x) for some v € ¢ for these rk + 1 z’s, there exists
a v € e such that p,(x) = p,(z) for at least k£ + 1 2’s. Since both p, and p, are
polynomials of degree k, we have p, = p,, contradicting our assumption that p, and
p, are distinct. a

Next, we construct a binary matrix By(q,k,t) from Ag(q,k,t). Bu(q,k,t) has
|V| columns labeled by V. For each row z of Ap(q,k,t) and each set P.(z), e €
E, Bu(q,k,t) has a row labeled by < z, P.(z) > which has an l-entry in cell (<
z, P.(z) >,v) if p, € P.(z), and a O-entry otherwise.

Theorem 6.2.2 Suppose t > rdk + z. Then Bu(q,k,t) is (H : d; z)-disjunct.

Proof. Consider d 4+ 1 edges e, €1,...,eq4. Let  be a row in Ag(q,k,t) such that
P.(z) 2 P.,(z) for any 1 < ¢ < d. Then row < z,e9 > in By(q;k,t) covers eg
but not e; for all 1 <4 < d. By Theorem 6.2.1, Ag(q,z.t) has z such rows. Hence
Br(q,k,t) is (H : d; z)-disjunct. O

Br(q,k,t) has t' =Y cr Y cp | P.(z)| rows. |P.(z)| can be bounded in two ways.
The first is |P.(z)| < |F]|. But this is not a useful bound since that leads to a bound
of t|F| tests while individually testing each edge of H takes only |F| tests.

Next we drive the second bound. Suppose |{p,(z) | v € V}| = ¢,. Then ¢, < q.

Each row z in Ag(q,k,t) can generate at most Y_\_, (“f) <3, (q.) < (q+:_1) TOWS

k3

in Ag(q,k,t). Thus ¢ < t(q+;_1). Let |[V]| = n. Then n < ¢**'. Set ¢ to be the

4



minimum prime power > drk + z and approximate it by drk, and set t = drk — z also
approximated by drk. Assume n > ¢*. Then

1< t(q e 1) ~ drk(Ly = r(dk)y ™+ < r(dlog, n) .

r r

Note that the number of edges can certainly reach n”. With a more detailed analysis
similar to the one in Sec. 3.5, we have

Theorem 6.2.3 By(q,k,t) is (H : d; z)-disjunct with at most q(q+ 1)" rows, where

logan

¢< (24 0(1))10g2(al10g2 n)

Row z in Ag(q,k,t) is transformed to ¢, rows in Bg(q,k,t) by replacing each
element of GF(q) with a binary vector of length ¢, View this as a [ x ¢ matrix Q.
Then the requirement on @ is that if z is a row in which P.,(z) € P.,(z) for all
1 <1 < d, or equivalently, there exists a C,4; € ¢; for every 1 < 1 < d such that
Po,,i () & Pey(x), then there exists a row in @ intersecting each column Cy, ..., C,,
but none of C,41,...,Cr14. Chen, Du and Hwang [2] noted that if Q) is a (d, r]-disjunct
matrix, then it certainly meets the requirement. In fact, a (d,r; z]-disjunct matrix
can be used to provide more error-tolerance.

Li, Thai, Liu and Wu [14] considered the special case that H is an r-partite graph
and z = 1. We give the error-tolerant version here. The construction of Ag(q,k,1)
and Bp(q,k,t) are same as before.

Corollary 6.2.4 For H an r-partite graph and t > dk + z, By (q,k,t) is (H : d; z)-
disjunct.

The reason that ¢ can be reduced from drk + z to dk + z is the following: Suppose

eo = {v1, ..., v} and e; = {vy,..., v/} where v; and v’ are vertices in part j, 1 < j <.
Then P, = P, implies p,,(z) = pvé(l’) for 1 < j <. Thus, if P.,(z) = P.,(z) for
k + 1 values of z, then p,, = P! for 1 < 7 < r. On the other hand, this mapping
between v; and v} does not exist for general H;. Therefore P (z) = P.,(x) must
occur at least rk + 1 times in order to force one of j to have p,, () = pU;(:L') at least
k 4+ 1 times.

An analysis similar to before shows that the number of tests in By(q, k, 1) is about

(dlog,n)"*!, a saving of a factor r from the general case.

6.3 (d,r;z]-disjunct matrix

We now discuss another type of disjunct matrices which is not defined on a graph,
and thus seemingly unrelated to the (H : d; z)-disjunct matrix. Yet we will prove a

5



surprising result that the new disjunct matrix is equivalent to an (H) : d; z)-disjunct

maftrix.
A binary ¢ x n matrix M is called (d, r; z]-disjunct ((d, r; 1]-disjunct will be written
as (d, r]-disjunct) if for any d +r columns C1, ..., Cyy,, there exist at least z rows each

intersecting C1, ..., C,, but none of C44,...,Cr1y4, 1.,
| m;'nzl C; \ U;ig+10j| > z.

Note that n > d + r is assumed.
Chen, Du and Hwang [2] proved the following theorem for z = 1.

Theorem 6.3.1 (d,r; z]-disjunct = (H* : d; z)-disjunct.

Proof. Suppose that M is (d, r; z]-disjunct. Consider d+1 arbitrary edges e, €1, ..., €q
such that e; Z eg for 1 <1 < d. Let ¢g = {C1,...,C.} and select C,; and select C,;
from e; \ eg for 1 < ¢ <d. Set S ={C,4; |1 < <d}. Note that the cardinality of S
can be less than d since C,4; = C,4; is possible for 1 # 7.

Since M is (d,r; z]-disjunct, there exist z rows intersecting 1, ..., C, but none of
Cra1y .oy Cryg, 1.e., each such row covers eg but none of e;, 1 <1 < d. Thus, M is
(Hx, : d; z)-disjunct.

We next prove (H} : d)-disjunct = (d, r]-disjunct. Suppose that M is not (d,r]-
disjunct. Then there exist d + r columns (1, ..., C, 44 such that

Mi—1Ci C U?ig+10i-
Set eg = {C1,...,C,} and ¢; = {Cs, ..., C,, Cry;} for 1 <4 < d. Then
Neo = (N{Cy, ..., C.}) N{C1} C (N{Cy, ..., C:}) N (UIZL ) = UL, (Ney).

Hence M is not (H#,;d)-disjunct.

To extend to the general z case, suppose M is not (d,r;z]-disjunct. Then there
exist at most z — 1 rows each intersecting 'y, ..., C. but none of C,. 11, ..., C.14. Delete
these rows, then the remaining matrix is not (d,r]-disjunct, hence not (H#, : d)-
disjunct as we just proved. This implies that even after bring back the deleted rows,
the natrix is still not (H#, : d; z)-disjunct. O

Using Theorem 6.3.1, we can translate Theorems 6.1.3-6.1.7, some only considering
the special case H = H#,, to their (d,r;z]| versions. Here we only quote two such
translations which have been independently studied [22] in term of (d,r;z] for the
case z = 1.

Lemma 6.3.2 The property of (d, r; z]-disjunct or (d,r; z]-separable or (d, r; z]-separable
is preserved by reducing d or r.

Note that a corollary of Theorem 6.3.1 is



Lemma 6.3.3 (d,r; z]-disjunct = (H} : d; z)-separable.
The following was proved in [22] for z = 1:
Lemma 6.3.4 (H} : d;z)-separable = (d — 1, r; z]-disjunct and (d,r — 1; z]-disjunct.

Proof. We prove only for z = 1 and rely on the argument in Theorem 6.3.1 for
extension to general z.

Suppose M is not (d—1, r]-disjunct. Then there exist r4+d—1 columns C1, ..., Cryq-1
such that

Mo O S UELLC;.
Set eg = {C1,...,C,} and €j = {Cy,...,C,, Crpjt for 1 <3 <d—1. Let D ={e; |0 <
j<d—1}and D' ={e; |1 <j<d—1}. Then

Uejep(ﬂej) = Uejepl(ﬂej).

Hence M is not (H} : d)-separable.
Next suppose M is not (d,r — 1]-disjunct. Then there exist r + d — 1 columns
C1,....,Cryg_q such that
r— r4+d—

Set eg = {C1,...,Cr_1} and €¢; = e U{C,_14;} for 1 < 7 < d. Set D = {eg} and
D" ={eq,...,eq}. Then

Ue,en(Nej) = Neg = UL (Ne;) = Ue, epr(Ne;).

Hence M is not (H} : d)-separable. 0

D’yachkov, Villenkin, Macula and Torney also observed the following result for
z=1.

Lemma 6.3.5 Let M be (d,r; z]-disjunct and M' be oblained from M by interchang-
ing 0 and 1. Then M’ is (r,d; z]-disjunct.

Let ¢(d,r,n; z] denote the minimum ¢ in a ¢ x n (d,r; z]-disjunct matrix.
Corollary 6.3.6 t(d,r,n;z] = t(r,d,n;z|].

Stinson and Wei [20], extending results of Stinson, Wei and Zhu [21], proved the
following results. The first two are obvious.

Lemma 6.3.7 Let M be a (d,r;z]-disjunct matriz and let M’ be obtained from M
by deleting a column and all rows intersecting it. Then M’ is (d — 1,r; z]-disjunct.



Lemma 6.3.8 Let M be a (d,r; z]-disjunct matriz and let M" be obtained from M by
deleting a column and all rows not intersecting it. Then M’ is (d,r — 1; z]-disjunct.

From Lemmas 6.3.7 and 6.3.8, we have
Theorem 6.3.9 ¢(d,r,n;z] > t(d—1,r,n — 1;2] + t(d,r — 1,n — 1;z].

?

This recursion leads to a lower bound of ¢(d,r,n;z]. First, we show a lemma.

Define
(djr) log n

d = :
Lemma 6.3.10 g(d,r,n) < g(d—1,r,n—1)+g(d,r —1,n —1).
Proof. Using the fact that logz/log(xz — 1) is decreasing for = > 1. O

Theorem 6.3.11 Ford+r > 2,

—-1)/d
t(d, r,n;z] > QCg(d’ r,n — 1) n c(22 ) ( —I-r)’
T

where ¢ s the same constant as in Theorem 2.7.5.

Proof. The proof is by induction on r + d. The case r = 1 is by Theorem 2.6.6 and
(2.6.1). The case d = 1 is the same as the case r = 1 by Corollary 6.3.6. For d > 2,
r > 2,

t(d,r,n;z] > t(d—1,r,n—1;z]+ t(d,r —1,n —1; 2]
> 2cg(d—1,r,n—1)+
c(z=1){d+r—1 c(z—=1)fd+r—1
5 ( . )—I—ch(d,r—l,n—l)—l— 5 .
—1)(d
> 2cg(d,r,n—1)—|—c(2 )< +T).
2 r
O
Define

h(d,r,n) = (d”) (d + r)log n/ log (djr).

r

Then a similar argument leads to a stronger result.
Theorem 6.3.12 There exisls an integer ny . such thal forn > nj
t(d,r,n;z] > 0.7ch(d,r,n) + ¢(d — 1)(z — 1)/2,

where ¢ is the same constant as in Theorem 2.7.8.



6.4 Counstructions for (d,r;z]-Disjunct Matrices

D’ychkov, Villenkin, Macula and Torney [10] gave a simple construction of (d,r]-
disjunct matrices, which we will extend to the error-tolerant case.

Theorem 6.4.1 The (Z) X n binary matriz where the rows consists of all k-subsets

of the set [n], r <k <n—d, is (d,r; (n;i;r)]-disjunct.
Proof. For a given r-set R and a d-set D, let K = RU S where S is a set of k — r
elements from [n] \ (R U D). Then the row corresponding to K covers R but not

n—d—r

e ) choices of S, z is equal to that number. O

intersects ). Since there are
Corollary 6.4.2 {(d,r,n) < min{ (Z), (:)}

Proof. The minimum of (Z) occurs at one of two extreme points. But (nid) = (3)
O

One way to view this construction is that we take all unions of r rows of an n x n
identity matrix. Note that the identity matrix is a d-disjunct matrix. An attempt
was made in [10] to replace this identity matrix by any d-disjunct matrix M to reduce
the number of rows. However, although for each member ¢ of R, M contains a row
M; which contains 7 but no member of D, and the union of M; over all : € R covers R
but not intersects D, the union may be over less than r rows as M; and M; could be
the same. Hence the union does not correspond to a row in the matrix constructed
by taking all unions of r rows of M.

Stinnson, Wei and Zhu [21] suggested a different way to obtain error-tolerance for
the construction in Theorem 6.4.1, which they viewed as a (d, r]-disjunct matrix as
originally intended in [10]. By taking z copies of each row of the constructed matrix,
one obtains a (d, r; z]-disjunct matrix. Note that this multiplication works even if the
starting matrix itself is error-tolerant. Thus

Lemma 6.4.3 ¢(d,r,n; zz'| < min{zt(d,r,n; 2], 2't(d,r,n; z]}.

In particular when applied to the construction in Theorem 6.4.1, we obtain a
Z(Z) xn (d,r; z(ngi;r)]—disjunct matrix.

g-nary codes were used in Chapter 3 to construct (d;z)-disjunct matrices. A
similar construction also works for our current model. M is called a g-nary (d,r;z]-
disjunct matrix if for any two disjoint set D and R of columns, |D| =d and |R| = r,

there exist at least z rows 1 such that
{mi; 17 € Dy {mi; | j € R} = 0.

Stinson and Wei [20], extending a result of [10] for z = 1, proved



Theorem 6.4.4 The existences of a ty xn g-nary (d, r; z1|-disjunct matriz and t3 X q
(d,r; z2]-disjunct matriz imply the existence of a tyly x n (d,r; z129]-disjunct matriz.

Proof. Let My and M, denote the above t; x n and 5 X ¢ matrix, respectively. Replace
each entry y in M; by column y of M;. Then for each row 7 in M; such that

{my |je R} {my; | j €S}t =0,

there exist at least z; rows after the replacement such that "R € UD. Further, for
i/ # 1, then the two sets of z; rows are disjoint. Hence the constructed matrix has
2129 rows satisfying N\R Z UD. O

Again, Theorem 6.4.3 can be viewed as a mechanism to grow a d,r;z|-disjunct
matrix in the number of columns as well as in the error-tolerant capability. The
g-nary (d,r;z)-disjunct matrix then becomes the engine of this mechanism. On the
other hand, we also need some (d,r;z]-disjunct matrix for small z, perhaps just a
(d,r]-disjunct matrix, to serve as the input of this mechanism. We will first study
the construction of these matrices, and then the construction of the g-nary matrices.

As commented in Chapter 3, the incidence matrix of a T-design with blocks as
rows is not good for a d-disjunct matrix since the number of rows is not smaller than
the number of columns by the Fisher inequality, hence not better than the trivial
d-disjunct matrix. However, for the (d,r]-disjunct matrix, the ¢-design has a second

life since we only need to beat min{ (:), (Z)} Mitchell and Piper [18] obtained

Theorem 6.4.5 A T — (v,k,1) design yields a t x n (d,r|-disjunct matriz with t =
(;)/Gi), n=v,d=M_1—1andr =T —1, where \p_y = (v =T+ 1)/(k =T +1).

Proof. For any set S of T' — 1 columns, there exist Ap_; rows covering 5. Let
NS = {R;, | 1 <7 < Ar_1} denote these rows. Then (R;, \ S)N (R;, \ S) = 0 for
z # y. Hence no column can intersect more than one such row, and it takes the union
of at least A\r_; columns to contain NJS. O

Stinson and Wei [20] observed that a 3—(¢*+1,¢+1,1) design (an inverse plane)
always exists for ¢ a prime power.

Corollary 6.4.6 A q(¢* + 1) x (¢* + 1) (q,2]-disjunct matriz exists for q, a prime
power.

A T-design is called super-simple if every pair of blocks intersect in at most ¢
elements. Kim and Lebedev [13] proved

Theorem 6.4.7 A super-simple T — (v,k,X) design yields a t x n (d,r|-disjunct

v k
t:/\<T)/(T),n:v,d:/\—1 andr =T.

10

malriz where



Proof. For any set S of T columns, there exist exactly A rows covering it. Let
Ri,, ..., Ri, denote those rows. Then (R;, \ S)N(R;, \ ) =0,1 <2z <y <A, for
otherwise the two blocks (rows) i, and ¢, intersect in more than 7' elements. Thus a
column not in S can intersect at most one such row, and it takes at least A columns
to cover NS = Y2, R, O

Next, we study the construction of g-nary (d,r;z]-disjunct matrices. First, con-
sider the z =1 case.

The MDS code was introduced in chapter 3 to construct g-nary disjunct matrix.
Sagalovich [26] gave the following result.

Lemma 6.4.8 Any MDS code which has parameters (q,kt), where t > dr(k—1)+1
and & > d +r, yields a t x ¢* g-nary (d, r]-disjunct matriz.

[10] used the Reed-Soloman code as an MDS code. Note that for any integer k& > 2
and a prime power ¢ > k — 1, there exists a (¢, k, ¢ + 1) Reed=Soloman code.

Theorem 6.4.9 Suppose ¢ > dr(k —1)+ 1. Then
t(d,r, ¢ < t(d,r, q)[dr(k —1) + 1].

Proof. Denote by M the matrix obtained from the Reed-Soloman code by removing
any g—dr(k—1) rows. Then M is stilla MDS code with parameters (¢, k, dr(k—1)+1).
By Lemma 6.4.8, M is ¢g-nary (d,r]-disjunct. Using M as the g-nary matrix in The-
orem 6.4.7, we obtain Theorem 6.4.9. O

Some examples were given in [10] to illustrate the effectiveness of Theorem 6.4.9.
r
t(2,2,n) < (2) for any n > 4 (Corollary 6.4.2),

4
£(2,2,16) = £(2,2,47) < £(2,2,4)-(2-2+1) < (2) -5 = 30,

t(2,2,256) = #(2,2,16%) < (2,2,16) -5 < 30 - 5 = 150,
£(2,2,4096) = £(2,2,16”) < 1(2,2,16) - (2° + 1) < 30 -9 = 270.

Another construction is to use the hashing family.

A (t,n,q,c)-k-perfect hash family is a t X n g-nary matrix while for any ¢ of the
n columns, there exist at least k& rows such that the entrices of the ¢ columns are
distinct. Note that a (¢,n,q, ¢)-k-perfect family is a g-nary (d,r, k)-disjunct matrix
for any d, r satisfying d + r = ¢. Wang and Xing [24] proved

Lemma 6.4.10 There exists an explicit construction for an infinite family of (t,n,q.c)-
I-perfect hash family with t = O(logn).

11



Using this perfect has family as a g-nary (d, r, 1)-disjoint matrix in Theorem 6.4.4,
we obtain

Theorem 6.4.11 There exists an infinite class of t x n (d,r; k]-disjunct matrices
with t = O(logn).

Stinson and Wei used the vertex z-cover of a hypergraph to construct (d,r;z]-
disjunct matrices.

For a hypergraph (V, F), (note that this hypergraph has nothing to do with the
underlying hypergraph H), VC, is a vertex z-cover if for every edge e € F, there
exist at least z vertices v € VC, such that v € e. Then V(' is simply a vertex-cover.
Stinson and Wei interpreted a (d,r; z]-disjunct matrix as a vertex k-cover of some
hypergraph.

Let Viyw = {X C[n] | £ < |X| < u}, where 0 < £ < u < n. Define a class of
order-interval hypergraph H,.,.,(V, E) with V = V4.,

€X7YZ{S|XQSQY},

and

E={exy | [X|=6Y] = u}.

Theorem 6.4.12 There exisls a verlex z-cover Z of H,.y, of size t if and only if
there exists a t x n ({,n — u; z]-disjunct matriz.

Proof. Let M denote the incidence matrix where rows are labeled by 7 and columns
by [r]. Consider any [ + n — u columns Cy,...,Ci1,_y. Define X = {C1,...,Ci}
and Y ={C; |t € {l+1,..,01+n —wu}}. Then there exist z rows Ry,..., R, such
that X C R, C Y for 1 <1 < z, or equivalently, R; intersects C4,...,C; but not
Cig1yeves Clpngn for 1 <@ < z. Hence M is ({,n — u; z]-disjunct. O

Define
Thow = Min{|Z| | Z is a vertex z-cover of Hy.,}.
A fractional vertex d-cover is a function g : V' — RT such that for any exy € F,

Z g(v) > z.

vEEX Y

Define

(7")z00 = min{Y_ g(v) | g is a fractional z-cover of H,.}.
veV

(The superscript z will be omitted for z = 1.)

12



Stinson and Wei, extending ideas of Engel [23] from z = 1 to general z, obtained
the following inequalities by choosing g properly:

Totu 2 (T*)Z,Zﬂﬂ ( )
(Tt = 2 X (T )t (6.4.2)
(6.4.3)
(6.4.4)

T (T*)i,é,u X (T*)U—A;f—)\,u—)\y

n,l,u
(T )ntu X (T*)i—/\;é—)\,u—/\a'

AVANAY,

z
Tn,(,u

From (6.4.1) and (6.4.2), results on (7%),,, can be translated to results on T b
and hence on t(d,r; z,n]. In particular, using a result on 7* of Engel, we obtain

Theorem 6.4.13 t(d,r,n;z] > min{z(j)/(”_d_l) |r <m<n-—d}.

m—r

Using (6.4.3), we obtain
Theorem 6.4.14

P n n—d—r+A1+A2
mi m2

t(d,r,n;z] > min Y ——
r— /\1 S mi S n — d —I_ /\2 ( ml—j“_-/i—lk—l}_ 2) (’mz—/\l)

/\1§m2§n—d—T+/\1

where 0 < Ay < 1,0 < Ay < d and my and my are integers.

Using (6.4.4), we obtain
Theorem 6.4.15
t(d,r;z,n] > min (m)

r—A1<m<n—d+As (n—d—r+)\1 +/\2)
m—r+A1

t(/\g,/\l;Z,n—d—T+/\1 —|—/\2]7

where 0 < Ay <1, 0 < Ay < d and m is an integer.

Setting Ay = r — 1 and Ay = d — 1, it is easily checked that the right hand side
attains minimum at m = n/2. Thus

Corollary 6.4.16 t(d,r,n;z] > 4(1 — L)i(d —1,r —1,n — 2; 2].
Using this recursion and (2.6.1), we obtain

Theorem 6.4.17

R T Loy
Hdrmiz] 2 (1= (1= ) (1= g s

- 7 log(n — 2r)

+z = D(d—r+1)],

where ¢ is the same constant as in (2.6.1).

13



Define log™(1) = 1 and log*(n) = log™([logn]) + 1 for n > 1. Stinson, Wei and
Zhu proved

Lemma 6.4.18 There exists an infinite class of t x n q-nary (d,r)-disjunct matrices

with 1 = O((dr)'°&" ™ logn).

Using this g-nary matrix and z copies of the matrix in Theorem 6.4.1 as inputs to
the mechanism in Theorem 6.4.4, we have

Theorem 6.4.19 There exists a 1t x n (d,r;z)-disjunct  matriz  with
= O(Z(Z) (dr)'e" ™ Jog n).

6.5 Random Designs

An attempt to extend the analysis of random designs (Chapter 5) from group testing
to graph testing encounters some basic difficulties. Consider a hypergraph H and a
fixed but unknown subgraph D. Let D be the sample space of D, i.e., a member of D
is a set of edges which is a candidate of D. The problem is to identify D using edge
tests. In the group testing problem, D is just a set of vertices. Due to symmetry, the
analysis for D and D’ are same if |D| = |D’|. But in the graph testing problem, even
if |D| = |D'|, the subgraph structure plays an important part in the analysis. Then
one has to deal with the large number of subgraph structures and to take average
over all D in D.

To alleviate this problem, we make the following assumptions:

(i) H = H} (H has n vertices),

(ii) |P| = d and every edge is equally likely to be in D.

(iii) only RID is studied.

Note that even under the set of assumptions, the structure of D can vary, i.e., D
could be a set of disjoint edges, or an r-star.

Let M be a testing matrix and Ix(D, M) the event that M contains a row covering
X but none of the edges in D\ X. When X is a negative edge and D is the positive
set, Ix(D, M) is the event that M identifies X. In Sec.6.6, we will see that even if
X is positive, Ix(D, M) is very relevant to the identification of X. Thus Ix(D, M)
is the focus of our study in random designs. Let Ix(D, M) denote the opposite of
Ix(D,M). Then

Ix(D, M) = U;Ix (D, M;)

where M; is the z'th row of M.

Although row i and row j are independent in M, the two events Ix(D, M;) and
Ix(D, M;), when D is a variable, are positively correlated since if D is a favorable
structure, then it favors both rows ¢ and j. Therefore,

EDPTOb(jX(D,M)) Z HEDPTOb(jX(D,Mi)), (655)

14



namely, we cannot compute the left hand side by computing the much simpler the
right hand side. Note that this problem does not exist in group testing since D is
invariant given |D| = d. .

Suppose M is a t x n RID(p). Define
q)(t,n,d,r) = EXED7|D|:dPT'Ob(]X(D, M)) = ED7|D|:dPTOb([X(D, M)) (656)

since HY is edge-transitive.

From (6.5.5), we have
Lemma 6.5.1 ®(t,n,d,r) <1—[1—®(1,n,d,r)]".

We will study ®(1,n,d,r) first.
Macula, Rykov and Yakhanin [16] proved a lower bound.

Lemma 6.5.2 &(1,n,d.r) > p {5, (") (20) (7)1 = b)),

Proof. X appears in the row with probability p”. For each positive edge D; in D,
suppose it overlaps with X in r — k vertices, with probability

()62

then the probability that at least one of the remaining £ vertices in D; does not
appear in the row is (1 — p*). Since there are d positive edges, we multiply this prob-
ability d times to obtain a lower bound since the event Ix(D;, M) and Ix(D;, M) are
positively correlated. O

To compute ®(1,n,t,r) exactly, we have to enumerate the numerous structure of
D as shown in (6.5.6). Surprisingly, there is a way to bypass the enumeration.

Let Dt be the random variable representing the distribution of Xy, X1, ..., Xy,
namely, a specification of the set of r columns belonging to each X;. Let w be the
random variable representing the distribution of the 1-entries in the row. Let I( DT, w)
denote the indicator function such that

I(D*,w) = {

1 if the row covers Xy but none of Xy, ..., Xy,
0 otherwise.

Then
®(1,n,d,r) = EpE, (D", w).
Let W be the set of w l-entries in the row. Then (V;/) is the set of complexes

covered by the row. Hence X must be chosen from (V:/) Note that instead of en
umerating the structures of D, it is now only a matter of counting in how many ways
we can choose d complexes (other than D) from the set of (7“:) complexes.

15



Macula, Torney and Villenkin [17] gave the formula

O(1,n,d,r) = wZ::o (Z>pw(1 — p)n (”f) (:) _1[1 . (*:) (:) _1]'1 (6.5.7)

Assume the row has weight w. Then the r columns of X must be taken from the W
columns with 1-entries, which none of the complexes in D can have l-entries in all
its r columns.

From the last term of (6.5.7), it is obvious that the D complexes choose their
columns independently (as in Lemma 6.5.1). In particular, some of them can choose
the same set of columns which contradicts the fundamental assumption that com-
plexes are distinct. We now modify (6.5.3) to distinct complexes.

Lemma 6.5.3

e 16 O O POy

Torney [22] gave a formula from the viewpoint that for fixed X and D, how to

. (6.5.8)

choose the (i’) — complexes (other than X') present in the row.

Lemma 6.5.4

O(1,n,d,r) = wZ:: (Z:Z)pw@ oy [<<:2$)d1 1>/<8 :1)] . (6.5.9)

Proof. Again, w is the row weight. From the bracket term, each complex in X U D is
treated as fixed (taking a fixed set of columns), which the (L:) — 1 complexes present
in the row other than X must be chosen outside of X U D. O

Offhand, this approach seems doubtful since a random choice of (7“:) —1 complexes
outside pf X U D does not guarantee the union to be a w-set. While we do not have
a direct proof of Lemma 6.5.3 with insight, we provide a mechannical proof that the
two RHSs of (6.5.8) and (6.5.9) are indeed equal by noting:

(i) >on_o in (6.5.8) can be changed to .7 _ due to the presence of the term (7:)

-1
i) ()0 = ()

(iii)




However, we cannot use the same ”exchange-order” trick to compute ®(¢,n,d,r)
exactly. Let w; denote the weight variable of row i. Then

t t
E{w17~~~7wd}ED+ H [(D+7 wi) 7£ H E{w17~~~7wd}ED+](D+7wi) =1- [1 - (I)(lv n, dar)]t7

since [] is not a linear function.
Macula, Torney and Villenkin gave a bound by using a truncated inclusion-
exclusion formula.

Theorem 6.5.5

t — ) J— bl J—
®(t,n,d,r) > 1®(1,n,d,r)— (2) 3 (ZZ ) (“ B “2) (“ 1;2/ wl)pm
wyFwy +w) 2 1 1

o1 i e (2 (1) o

r r

() () - () ()

Proof. t®(1,n,d,r) obviously over estimates ®(¢,n,d,r) since if k£ rows satisfy
Ix(D, M), then this one case is counted k times. We now explain the second term.
Let ¢ and ' be two rows both satisfying Ix(D, M). Suppose wy columns intersect
both ¢ and #', wy (w}) columns intersect ¢ (') but not ¢’ (¢), and n — wy — wy — W}
columns intersect neither. Then X must be covered by the w; columns. For D; € D,
it can neither be covered by the ws 4+ w; columns of row ¢, nor the wy + w} columns of

row ¢. But when D); is covered by the w, columns, it is subtracted twice and needs
to be added back once. O

6.6 Trivial Two-stage Pooling Designs for Complete r-graphs

A properly constructed random design M could have a high probability of containing
a row R; which covers a positive complex X; but none of the other positive complexes.
However R; cannot identify X; unless all other complexes covered in R; are resolved
negative complexes (by appearing in rows with negative outcomes). To increase its
chance of happening, we may construct a set of pools obtained by taking intersection
of R; with a set M’ of row vectors of the same length. Note that all these intersec-
tion rows preserve the property that no positive complex other than X; can appear.
Suppose R; also covers a negative complex Xy. If M’ has a row R’ containing X; but

17



not Xy, then the intersection row R;R’ contains X; but not Xy, and has a positive
outcome. Of course, M’ can also have a row R” containing X, but not X;. Then
R;R” has a negative outcome. Therefore, by collecting the intersection rows with
positive outcomes, the probability that X is the only complex appearing in all of
them is increased.

As we do not know which row in M is R;, typically we take intersections of every
row in M with every row in M’ to obtain a new pooling design M"”. The pools in M"
are tested and analyzed to generate a set C'P of candidates of positive complexes.
Some positive complexes would be missed by €' P, and some negative complexes would
be wrongly picked up bu C'P. So

Pt = Prob( a positive complex not in C'P).

We eliminate unresolved negative complexes by introducing a second stage which
confirms or rejects the candidates by individual testing.

A 2-stage design is evaluated by two criteria representing performance and cost,
respectively.

() P,

(ii) the number of tests = the number of pools in M” + |C'P|.

Clearly, these two criteria depend on M, M’ and C'P. For the 2-stage designs
studied in this section M is always an RID with parameter p, while M’ can be either
probabilistic or deterministic, or even related to M. We introduce two C'P which
have been studied in the literature.

Define

M"(i) = {row (i,7') in M" |1 <i' <}

and
U(z) = {rows in M"(1) with positive outcomes}.

Let C(i) denote the set of columns containing U(¢). Macula, Torney and Villenkin
first introduced:

The complex CP. X € CP if NX = U(:i) in M"(7). The reason to exclude the
U(1) = 0 case is to avoid picking up too many negative clones which are simply not
present in R;.

Theorem 6.6.1 For a 2-stage design M" uder the complex C'P,
Pt =1—-0(t,n,d—1,7)Prob(M' contains a given complez). (6.6.10)

Proof. Let Ry be a row in M which covers X; but none of the other positive com-
plexes. Then each row in U(z) does not cover any of the other positive complexes,
and hence must cover X; to have a positive outcome. Hence NX; 2 U(7) in M" (7).
But it is also clear that NX; C U(z) since X; is positive. Hence NX; = U(7) and
X1 € CP. The second term in (6.6.10) is added to exclude the case U(i) = {. O

18



A negative complex Xy can enter C'P if both conditions (i) and (ii) are met:

(i) M has a row R; covering Xy and a nonempty set .S of positive complexes.

(ii) Every row in M’ covering Xy covers a complex of S and vice versa, i.e.,
NXy = UXieS(mXi)-

The requirements on covering positive complexes is to assure that the rows in N X,
all have positive outcomes.

Let P(=) denote the probability NXy, = U(i), i.e., Xy is misclassified into C'P.
Then

Theorem 6.6.2 Under the complex C'P,

= Lo (0)

L0050

|Sl=13=r

-1

- Prob(cond (ii)),

where Ix,ecus is the indicator function of Xo € US.

Proof. Suppose row ¢ in M has weight w and covers X as well as the set S of positive
complexes such that |US| = s. Then these s columns must be chosen from the w
columns constituting the weight. The probability of choosing |S| positive complexes
from these s columns and the other d — |S| positive complexes not from these s
columns is the [ | term. 0

Corollary 6.6.3 E(|CP|)=d®(t,n,d—1,r)Prob( M' contains a given complex) +
(1) = d) P,

Theorem 6.6.4 Suppose M’ is the complement (interchanging 0 and 1) of an r-
separable matriz. Then E(|CP|) <t under the complex C'P.

Proof. Let X and X' be two complexes covered by row 7 of M. Then the property
UX # UX’ in an r-separable matrix is translated to NX # NX’ in M’. Hence at
most one X satisfying NX = U(1). O

In fact we can get an exact estimate of £(C P) if the assumption of Theorem 6.6.4
is strengthened.

Theorem 6.6.5 Suppose M' is the complement of an r-disjunct matriz. Then
E(|CP|)=d®(t,n,d—1,r).

19



Proof. Condition (ii) can never be realized since N Xy = Ux,es(NX;) implies the exis-
tence of an X’ € S such that NX" C NXy in M’, which further implies cup Xy C UX'
in the r-disjunct matrix. Let C' € X\ X', then C' C UX", contradicting the definition
of r-disjunctness. O

Note that under the assumption of Theorem 6.6.5, there is no need to conduct
the second-stage since every complex in the C'P set is positive.

Theorem 6.6.6 Suppose M’ is RID(p'). Then

3 8
~—
N
< 03
~—
L
—~
—_
|
N
N
N3
~—
» |
—
S8
~——
~—
SN—

Prob(condition (i) > {Z() (1 =p)" ”[(

- ()05

-1
Proof. Given a row y with weight w, (1:) (:f) is the probability that y covers Xj,

((¢)|;|(1:)) is the probability that y does not cover any complex of S. Then the formula
gives the probability of the event £, that the row covers Xj if and only if it covers a
complex of S. It is a lower bound since { £, } are positively correlated over the rows,
while the formula treats them as independent. a

We can improve the 2-stage procedure by screening the complexes in C'P before
individually testing them. A complex X admitted to C'P by satisfying NX = U(7)
can be removed if it appears in any test of C'(j) with a negative outcome. Further,
suppose M has k rows covering X. Then con dition (ii) must be satisfied & times for
X not to be removed. Usually, k is not very small and P(=) would then tend to 0,
essentially eliminating the need of a second stage.

Macula, Torney and Villenkin proposed to set M’ = M. Write M" as M?. Since
(1,7) = (j,1), M?* contains only one of them labeled by {i,5}. Rows {i,j}, 1 <i <,
are also deleted. Thus M? has (;) rows. Theorem 6.4.1 is reduced to

Theorem 6.6.7 For M?* under the compler CP, P* =1 —®(t,n,d—1,r).

Theorem 6.6.7 was given in [22] under the condition | N X| > 2 in M. But this
condition is unnecessary since if | N X| =1, then U(:) = 0; but NX; =0 = U(4). So
X is still in C'P. The case | N X| = 0 is already counted in the formula for P*.

For two complexes X; and X3, let A(¢,n,d,r) denote the probability that NX; =
NX,.

Theorem 6.6.8

At,n,d,r) E ( ) (” _]:) (:) _1{1 —p P T (1= p TR

20



Proof. Let | X; N X3| = k. then given the r columns of X, (2) <::;) is the number
of ways to choose X,;. To have NX; = NXj;, each row either covers both X; and
X,, or covers neither. The former event has probability p*p?"=*) while the latter
has probability (1 — p*) + p*(1 — p"=*)?, combining the probabilities of two mutually
exclusive sub-events: either row misses one of the common & columns, or it has them

all, but missing one of the non-common column in both X; and Xj. O

A formula of |C'P| is given in [17] using A(¢,n,d,r).
Theorem 6.6.9 E(|CP|) =t(7)A(t,n,d,r).

Proof. For each row i, suppose there exists a positive complex X satisfying NX =
U(7). Then a complex X’ can satisfying N X’ = U(z) only if NX" = NX in M’, with
probability A(¢,n,d,r). There are ¢ choices for ¢, and (:) (or (:) — 1) choices of X”,

O

hence the formula.

This formula is not exact (besides the substraction of 1 from <:)) in two aspects:

(i) The probability of the condition NX = U(z) is not included. Further, since this
probability and A(¢,n, d,r) are correlated, they cannot be simply multiplied together.

(ii) The formula does not take into consideration the event that even if "X = U(z)
is not satisfied for all positive X, we could still have NX, = U(7) for some negative
complex Xy, as described in the paragraph after Theorem 6.4.1.

Next we introduce the other C'P. Let C(i) denote the set of columns in M/
containing U().

The column CP. X € CPif X = C(i) and |C(2)| = r.

If C(¢) = C(j), then only one of them needs to be tested in stage-2. By construc-
tion, |C'P| < t.

Theorem 6.6.10 For M" under the column C'P,

Pt =1-90(t,n,d—1,r)Prob(given M, NXy € C for any column C in M").

Proof. The condition NXy € C assures that C' does not contain U(z), i.e., C' & C(3).
O

Corollary 6.6.11 Suppose M’ is an RID with parameter p'. Then under the column
CP,

Pt=1—&(t,n,d—1,r) gtj (2) () TFL = ()5 — ()]



Proof. k is the number of rows covering Xy in M’. None of the n — r columns not in
Xy can contain these r rows. O

Macula and Popyack used a different approach to approximate P*. They compute
the probability ®(1,n,C,r) that a given row covers X but does not intersect the
column C ( call such a C' a success):

®(t,n,Cir)=1—[1-&(1,n,C,r)]".

Since

1 - Q(t7n7d - ]‘7r) % [1 - Q(t7 n7 O? r)]d_l’

due to positive correlation between ®(1,n,C,r) and ®(1,n,C’ r), they turned to
assymptotc analysis by computing the expected number of successful C' to be

B=m—r)l =1 =p)p)T, (6.6.11)

which can be approximated by a Poisson variable with mean 5. Then the probability
that this number is 0 is e™®. Thus

Theorem 6.6.12
Pt ~l—e” (6.6.12)

Macula and Popyack actually allowed r; to vary from complex to complex. Let
r* = maxr;. They modified the column C'P by admitting C(z) to CP if |C(z)| < r*.
For each C(i) € CP, test C(1) \ C for each C' € C(1) and confirm C(7) as a positive
complex only if C(7)\ C tests negative for all C' € C(i). Note that the number of
stage-2 tests is inflated to |C P|(r* + 1).

Macula, Rykov and Yekhanin observed that the complement (exchanging 0 with 1)
of a r-disjunct matrix satisfies the requirement that for any r+1 columns Cy, C4, ..., C,,
there exists a row intersecting 'y, ..., C,, but not Cy. Let (4, ..., C, be the columns in
a positive complex X. Then for each column Cy not in X, M’ has a row covering X
but not Cy. To reduce the number of rows in M’ they proposed to use the complement
of an a-almost r-disjunct matriz, meaning the probability that a random set X of r
columns has probability at least « to have no other column C' containing NX. Then
Theorem 6.6.10 is reduced to

Theorem 6.6.13 Suppose M’ is the complement of an a-almost r-disjunct matriz.
Then under the column C'P,

Pt =1-9®(t,n,d—1,r)a.

Macula, Rykov and Yekhanin also commented that the g-nary MDS code used
in Chapter 3 to construct d-disjunct matrices can be used to construct a-almost
r-disjunct matrices with r > d and o — 1.

22



6.7 Sequential Algorithms for H,

Chang and Hwang [3] first cast the group testing problem on graphs. They formulated
the problem of identifying a unique positive item in a set A and a unique positive item
in a set B as a problem of identifying a unique edge in a bipartite graph G(A, B).
Throughout this section, we assume i (or H) is a graph (hypergraph) with n vertices
and edge set F.

Theorem 6.7.1 (G, 1) = [log|F|] if G is a complete bipartite graph.

Note that [log|E|] is the trivial information-theoretic lower bound. Chang and
Hwang also conjectured that Theorem 6.7.1 holds even if the bipartite graph is not
complete, but contains exactly 2* edges for some k.

The proof of Theorem 6.7.1 uses group tests (as we point out in Sec. 6.1 that
for d = 1 group tests can be translated into edge-tests). Aigner [1] brought out the
edge-test notion explicitly and conjectured for a general graph G,

HG,1) < log | B[] +c.

Du and Hwang [6] sharpened the conjecture by setting ¢ = 1, which was proved by
Damaschke [5].

Theorem 6.7.2 t(G,1) < [log |E|] + 1.

There are many examples of (& for which ¢(G,1) = [log |F|] + 1.
Triesch [23] extended Theorem 6.7.2 to H, by proving

Theorem 6.7.3 ¢(H,,1) < [log|E|| +r— 1.

Triesch gave the proof using the group-test (as versus edge-test) terminology for
easier description. Every vertex in the edge in D is considered a positive vertex.

A wvertez-cover of H is a vertex-set which intersects every edge of H. Choose a
vertex-cover C' = {vy,...,v;} by the following greedy algorithm. Let H' = H and v,
be the vertex with maximum degree in H'. For 2 < i < s, let H* be the hypergraph
obtained from H'~! by deleting vy,...,v;_; (and their edges), and let v; denote the
vertex with maximum degree in H'. Let dg:(v;) denote the degree of v; in H*. Tt is

easily verified
dHl (Ul) 2 dH2(U2) 2 R st(US).

Define
l; = [log |E|/dp:(vi)].
Then

Sy O o= log L °L dp,(vi)
Yoot <Y o T = %7 H|TE| = 1.

=1 =1 =1

23



Now, we give the proof of Theorem 6.7.3.

Proof of Theorem 6.7.3. 1t is proved by induction on the rank r. For r = 1, the
problem is simply the classic group testing problem with one positive item and hence
t(Hy,1) = [logn] = [log |E|]. For r > 2, consider the vertex cover C' = {vy,---,v,}
obtained by the greedy algorithm. Since >%_, 27% < 1, by Kraft’s Inequality, there is
a binary search tree T with leaves vy, vq, - -+, vs ordering from left to right such that
the length of the path from the root to leaf v; is at most [;. Each internal node u of
T is associated with a test whether there exists a positive vertex among the leaves
under the left son of u. Since ' is a vertex cover, there must exist a positive vertex in
C'. Let v; denote the positive vertex. Denote by T, the subtree of T' rooted at vertex
a. One searches this v; as follows.

begin
Ininitially, set a := the root of T
while a is not a leaf
do begin b := the left son of «a;
test on {v; | j is a leaf of T} };
if the outcome is negative
then a := the right son of a
else a := b;
end-while;
v; 1= a;
end.

Note that this algorithm can find a positive vertex v; through at most /; tests.
Moreover, when v; 1s found, all vq,---,v;,_; have been found to be good. Therefore,
the remaining positive vertices are those adjacent to v; in H;. The total number of
them is dg,(v;). Removing v; from them results in a hypergraph of rank at most r — 1.
By the induction hypothesis, [log dgi(v;)] + r — 2 tests are enough to identify the
remaining positive vertices. Therefore, the total number of tests is at most

L + [logdgi(vi)] +r —2 < [log |F|] +r — 1.

O

As commented in Sec 6.1, a group test on S = {vy,...,v;} can be connected to an
edge test in V'\ S without affecting the testing tree structure, except a "yes” answer
to the group test corresponds to a "no” answer to the edge-test. Johann [12] observed
that the edge-test version of the Triesch algorithm can still identify a positive edge
even when d > 1. We will refer to this modification as the T'J-procedure. Note that

24



the group testing version identifies the first positive edge while the edge-test version
the last; so that their excutions may result in different number of tests. But their
worst-case performances are identical even through different paths are travelled.

For H a complete r-hypergraph, the (H#,,1) problem is reduced to the classical
group testing with n items including r positive ones.

Corollary 6.7.4 t(r,n) < [log (2)} +r—1.

Corollary 6.7.4 is known in classical group testing (Corollary 2.4.2 in [7]).
For r =1, Theorem 6.7.3 is reduced to Theorem 6.7.1. For d > 1, Du and Hwang
[7] conjectured

H(H : d) < d([log(|E|/d)] + )

for some constant ¢. (Note that dlog(|E|/d) is the leading term of the information
bound.) Johann [12] proved the conjecture with ¢ = 7 when H is a graph G. We
improve the constant to 6.

Theorem 6.7.5 t(G : d) < d(([log(|E|/d)] + 6).

The proof of Theorem 6.7.5 is based on the construction of a class of algorithms
Ay for integer ¢ which requires at most d([logl| +5 — 1/¢) + |E|/{ 4+ 1 tests. By
setting ¢ = ||E|/d], this quantity is at most d(([log(|E|/d)] + 6).

The algorithm A, depends crucially on three ideas. The first is that each positive
edge is identified by the TJ-procedure (with r = 2) in [log |E|| 4+ 1 tests. The second
is a method to avoid repeatedly identifying the same positive edge. The third is that
it is possible to find a subset of untested edges with proper size under some general
condition. Namely,

Lemma 6.7.6 Suppose S and S" are two disjoint subsels of V and 1 < ¢ < |F|/2
such that

(i) [E(S') U B(S,8)| >

(it) Yo € S, |E(v, 5)| < 2¢.

Then there exists a subset W C 5" with

(< |E(W)U E(W,S)| < 20
Proof. Let I'(v) denote the set of v’s neighbors. If there is a vertex v € S satisfying
£<Irw)n s <2,

then set W = {v} will do. So we may assume |I'(v) N S| < £ for every v € S’. Let
S" = {vy,...,v}, and let

s=max{: € {1,....k} | E({vr,...,v;}) U E({vq,...,v:}, 5)| < £}

25



Because of (i), we have 1 < s < k. Let Wy = {vy,...,vs41}. Then
|E(Wy)U E(Wy,S)| > ¢

holds. If
B((W,) U E(W, 8)] <2,

then set W = W; will do. Otherwise, define sets Wy, W3, ..., W, recursively through

I/VZ' = I/Vi_l \ {Ui_l},i = 2, ceey S

Since
EWia)| + [E(Wioy, S)| = [[EW)] + [E(W:, 5]
= [EWia)| = [E(W)| + |E(Wi, S)| = [E(W;, 5)]
< JE({vicr {vi o vab) [ + 1+ [E({viea ), 5))
< JE{vy, o)+ [E({0r, 0 0s), 5)) [ 41
< 4
one of W;, 2 < < s, will do. O

The algorithm A, consists of two steps:

Step 1. Ay partitions the n vertices into a number of sets Vi, ..., V}, such that each
V; contains no positive edge and for each v € V;; 1 <1 < h, v has a positive edge
with each Vj, 7 < 1.

Step 2. Foreachv € V;, 2 <i < hand 1 <j <:—1, identify all edges in {v}UV].

At the beginning, set S = ( and S’ = V. In general, when Vi, ..., V} are nonempty,
set S =V] and 8" =V \{Vi,..., Vi }. Call a vertex v € S” heavy if |['(v) N S| > 2¢.

For every heavy vertex v € S, let S; denote a set of 2/ neighbors of v in S. Test
v U S;. If positive, identify a positive edge (v, u) and assign v to the first V; it has no
neighbor. If negative, set I'(v) = I'(v) \ Sy and repeat the procedure (even though v
may not be heavy any more) until I'(v) = @ (the last S; may contain fewer than 2¢
vertices).

Next, we consider the case that S’ contains no heavy vertex. If | F(S")UFE(S, S")| >
¢, use Lemma 6.7.6 to find the subset W C S'; if |E(S") U E(S,5")| < £, set W = 5.
Test W U S. If negative, assign W to Vi; otherwise, identify a positive edge (u,v).
Assign u and v to satisfy the requirement stated in Step 1. Update S and S’, and
repeat the procedure until S' = ().

We now describe the "assigning” part in more detail. If the test on W is negative,
assign W to V}; otherwise identify a positive edge (u,v) by the TJ-procedure and
assign u, v to some V; and V; satisfying the condition in Step 1. We show that we
only need to go through the assigning procedure for one of them.

Suppose the TJ-procedure identifies vertex v in the vertex-cover. Among the set
of vertices adjacent to u, order them so that those in V; are at the head of order.

26



Now apply the TJ-procedure to identify the first vertex u such that (v, u) is a positive
edge. If u € V], then we only need to assign v. If u € Vi, then V] has no positive
edge to any vertex in W, in particular, to either u or v, hence v can be assigned to
V1 without any testing.

To assign v, we examine whether v U V;, 2 = 2,3, ..., k contains a positive edge in
that order until we find a V; such that vUV; contains no positive edge. Then we assign
v to V;. If no such V; exists, we create a new Vjy; to store v. To examine v U V;, it
suffices to consider I';(v) = I'(v) NV, If |I;(v)]| < 4, set W = vUT;(v). Otherwise, let
W be an arbitrary f-subset of I';(v). Test vUT;(v). If negative, set I';(v) = I';(v) \ W
and do the same. If we reach I';(v) = 0, then assign v to V;. Otherwise, at some stage
v U W is positive. Use the TJ-procedure to identify a positive edge (v, w). Examine
vU Vi,

In identifying the positive edges between v and V; in Step 2, we first remove all u
from the latter if (u,v) has already been identified, either as a positive edge or as a
negative edge. Let I''(v) be the set of neighbors of v in V. If [I'(v)| < ¢, test vUI"(v).
Otherwise, let W C I"(v) be of size £. Test v UW. If negative, set I"(v) = I"(v) \ W.
If positive, identify a positive edge (v,u) and set I'(v) = I"(v) \ {u}. Repeat the
procedure with update I'(v).

We analyze the number of tests required in Step 1. We first count the number of
tests consumed in identifying positive and negative edges. Call a test with negative
outcome a bad test if it contains fewer than ¢ edges. In Step 1 each positive edge in
an m-set is identified by at most [log m| 4 2 tests, one more than the Triesch’s result
due to the additional test on W U S. Each time a positive vertex is assigned, the last
test could be bad (all other tests, even negative, are counted in the [logm] + 2 tests
in identifying a positive edge). Further, the test on the last S’ can be bad. Note that
for a heavy vertex, although the test on the last S; can be bad, this test must be
proceeded by a test on 2¢ negative edges. So these two tests average out to at least
{ edges, i.e., we need not count the bad test.

Let d; denote the number of positive edges identified and n; the number of nonbad
tests taken in Step 1. If a positive edge is identified in testing E(W) U E(W U V),
then it takes one test for the initial test and at most [log2/] 4 1 tests in using the
TJ procedure (fewer tests for a heavy item). Further, there is at most one bad test
among all tests of this type. If a positive edge is identified in assigning a vertex to
some V; then it takes [log ¢] 4+ 1 tests in using the TJ procedure and at most one bad
test can occurs among the negative tests. Therefore the total number of tests in Step
1 is at most

di([log2l] +2) +ny +di + 1

In Step 2, there are at most d; vertices not in V; since each of them implies a distinct
positive edge. In checking the positive edges of v € V, the test on v UV may contain
one bad test. But again, each bad test can be assigned to the identification of a
positive edge. Let dy and ny denote the counterparts of d; and n; in Step 2. Then

27



the number of tests in Step 2 is at most
dy([log 0] +2) + ny + d4
Adding up, the total number of tests is at most
(di + dy)([log £] +5) + ny + ny + L.

By noting
dl —|— dg — d

(n1 +ng)l < |E| —d,

we obtain an upper bound

|E|—d
]

1 E
+1:d(ﬂog£]+5——)+u+1.

d([log (] +5) + )+

The proof of Theorem 6.7.5 is completed.

Recently, Hwang [11] gave a competitive algorithm for graphs with d unknown.
Chen and Hwang [4] extended to hypergraphs. They followed Johann’s approach in
general , but had to resolve some problems unique to hypergraphs.

In Johann’s algorithm, each positive edge is broken into two subsets. Should a
rank-r edge be broken into two subsets, r subsets or something in between? Later,
when searching for positive edges between two subsets, Johann simply takes one
vertex u from one subset and then remove {(v | (u,v) is an identified positive edge}
from the other subset to avoid the identification of a positive edge already identified.
For the hypergraph case, if an r-edge is broken into r subsets, then we need to mix
vertices from more than two subsets; if not, then we need to take more than one
vertex from a subset. How do we avoid the identified positive edges? Finally, there is
the difficulty in analysis which, to a large degree, depends on the choice of breaking
a positive edge in (i).

To avoid being overly complicated, Chen and Hwang chose the simplest setting of
partitioning each positiv e edge into two subsets V5 and Vi. At the b egining V5 = V.
Test Vg, if positive, use the TJ-procedure to identify a positive edge e. Assign an
arbitrary vertex v of e to Vi and set Vo = V5 \ {v}. Test V4 again. Do this until
testing outcome on V4 is negative. There are still unidentified positive edges e with at
least one vertex in V. These edges are identified essentially through an enumeration
process. Let K be a nonempty subset of V;. We identify all positive edges contained
in KUV;. But since all positive edges of the type K'UV/, where K C K and V] C V}
were identified easier when K was set to be K', we only identify positive edges of the
type K UV}, where V/ = V;. This is done by solving a subproblem where ¢ C V} is
a positive edge in the subproblem if and only if K U¢’ is a positive edge in the origin
al problem.

28



To avoid the identified positive edges, let V'’ be the vertex-set of the subproblem
and C' € V' a vertex-cover of the positive edges. Then C' is moved from V' to V/
before any testing. Thus in testing V', we will never encounter a positive edge.

Note that the subproblem is same as the original problem except

(i) r is changed to r — | K|,

(ii) K and C are attached to the subproblem.

Thus we will enlarge the original problem to allow K and C' (both equal to () in
the original problem) so that the problem can be solved recursively. Note than in the
subproblem when the maximum rank is 1 and K is given. Then an identified positive
edge can be avoided by removing {v € V' | K UV is an identified positive edge}.

By inspecting the algorithm, we note that each positive edge is either identified
by the TJ-procedure during a partition stage, or by a direct but during a search
stage. Thus every positive edge is identified in d(log ||+ r — 1) tests. C'H(r) does
not attempt to optimize the test size as in Johann’s algorithm (and pay a price of
increasing the leading term from dlog(|E|/d) to dlog |E|, but still manage to control
the number of negative tests. Since the parameter d is used in the algorithm only
in determin ing the optimal size, C'H(r) assumes no knowledge of d and is thus a
competitive algorithm.

We first give an algorithm for r-hypergraphs.

Let K; denote the subset imposed on C'H(1), i.e., K; is a part of every test in
C H (7). If the original problem is defined on an r-hypergraph, then |K;| = r —i. The
vertices V; of C'H (1) are divided into Vig and V;;. Define E(K;) = {e CV; | eUK; € E}
and D(K;) = {e C Vi | eUK; € D}. Finally, let I denote the set of currently identified
positive edges (in the original problem). Define I(K;) = {e C Vi | e UK, € I}. For
CH(r), Vio = Vand Vj; = K, = I = (. Thus E(K,) = E, D(K,) = D and
I(K,)=0.

We first define C' H(1) and then give a recursive algorithm C H (1).

Algorithm C'H(1)
Input: K7y, Vig, Vi1, I. Attach K to every test.

Step 1. Test Vig. If positive, use the halving procedure, which we will treat
as a special case of the TJ-procedure, to identify a positive vertex u.
Set [ := [ U{e}, Vip := Vip \ {u} and go back to the beginning of Step
1. If negative, go to Step 2.

Step 2. For every vertex v € Viq, test K3 U {v}. If positive, set | :=
T'U{K;U{v}}. If negative, stop.

Algorithm CH(1) (v > 2)
Input: £, D, K;, Vio, V1, I. Attach K; to every test.

29



Partition Stage:

Step 1. Test Vjg. If positive, use the TJ-procedure to identify a positive
edge ¢ = {v1,vy,...,v;} C Vip. Add the vertex vy to Vj;. Set Vjo :=
Vio\{vi} and I := TU{K;U{v}}. If Vijg| > i, go back to the beginning
of Step 1.

Step 2. If V;1 1s nonempty, go to the search stage.
Search Stage:
Step 1. Set k= 1.

Step 2. Let K be a k-subset of V. Set K;_;, = K; UK. Construct a vertex
cover C' on [(K;_y). Call subroutine CH (1 — k) with Vi_xo = Vo,
Vickn = C, Ki_y and I. Do this for all k-subsets K. Set k:=k+1. If
k < 1, go back to the beginning of Step 2.

Step 3. Test all i-subsets S (except those such that SU K; € I) of Vj;. If
positive, set [ := T U{SU K,}.

Step 4. Stop.
We will refer to tests in Step 3 as direct hits.

Theorem 6.7.7 Let F be an arbitrary r-hypergraph which contains d positive edges,
where d is not necessarily known. Then the algorithm CH(1) identifies all positive
edges of E with al most d[log, |E|] + (i — 1)V/21d" + o(d') tests.

Proof. Clearly, all edges identified as positive by the algorithm are through either
the TJ-procedure or direct hits, both are error-free. Thus it suffices to prove that a
positive edge is always identified.

Suppose a positive edge with vertex set X is not identified at the partition stage
of CH(7). Then a nonempty subset X’ C X must lie in Vj;. At the search stage, the
selection of K runs through all k-subsets of Vj; for 1 < & < ¢. One such selection is
K = X'. Suppose |X'| = k. Then the problem is reduced to the subroutine C' H (i — k)
with K imposed. By induction on ¢, the induced positive edge X \ K can be identified
in the subroutine, which implies (X \ K) U K = X is a positive edge.

It remains to count the number of tests C'H (i) uses. Note that TJ-procedure
uses at most [log, |F|] + ¢ tests. Since a positive edge is identified by either the TJ-
procedure or a direct hits, the number of tests consumed in identifying one positive
edge is bounded by [log, |F|] +7. This bounded number of tests includes the possible
positive test initiating the identification process, and all negative tests occurred during
the process of identifying the positive edge. Thus, the number of tests identifying d
positive edges is at most d([log, |E|] + 7).

Further, it suffices to count the number N (i) of negative tests occured elsewhere
in CH(:). There are three sources for negative tests in N(¢): one negative test from
the partition stage, those from the subroutines and direct hits.

30



Denote Dy, as the set of all positiv e edges in K U V(FEy(K)). Let dx = |Dg].
Note that for K # K', Dg and Dgs may overlap in positive edges con taining some
vertices in K N K’ and other vertices in V(Fo(K)). Hence we can only bound dg by
d. However for |[K| =1, Dx and Dg are disjoint; hence 3" g x|=1 di is bounded by
d. We count the number N(7) of negative tests in C'H(z) by induction on 1.

For «+ = 1, N(i) is easily verified to be at most 1. Since each positive vertex can
be identified by the halvin g procedure in [log, |F|] tests, Theorem 6.7.7 holds for
1= 1.

We prove the general ¢ > 2 case by induction.

Ni) <14 X Nkt Y N(1)+<|‘/?1|)

k=1 KCViy:|K|=k KCVi:|K|=i—1 ¢

f S (k=D rodi N+ Y (L d)+d

<
k=1 KCV;;:|K|=k KCVip:|K|=i—1
L i—2 e , : :
< Y -9 Y Y (- k- )T 4 dT (1 d) 4 d o d)
KCV;1:|K|=1 k=2 KCVi:|K|=k
et . N A . . .
< (-2t 3 dt (i -3)lET Y ( )dl—’f +2d" 4 2d" + o(d")
KCV;1:|K|=1 k=2 k
< (1 =3B = 3)d + 2d + o(d')

= ((i —3)) +2)d" + o(d)
< (i-3)ld + o(d).

Thus, N(z) < (1 — 1)L%J di + o(di) holds for general 1.

Let 7T'(¢) denote the total number of tests required by C'H(i). Since T'(z) <
d([log, | E|1+i)+ N (i) and N (i) < (i—1)lzld +-0(d"), we have T'(i) < d([log, |E|]+i)+
(i—1)lzld +o(d') for i > 2. Therefore, algorithm C' H(i) needs at most d([log, |E|] +
i)+ (1 — 1)L§J di + o(di) tests to identify all d positiv e edges in F.

We now extend the algorithm to general H. Let £ be a hypergraph of rank ¢, i.e.,
le] < ¢ for all edges e € E. To identify the set D C F in a hypergraph, we follow
the general approach in algorithm C H () for i-hypergraph with a slight modification.
Let C'H « (1) denote the algorithm for hypergraph of rank i.

The search stage in C'H * (1) will be a little different from C' H (7). When we choose
a k-subset K of Vj; before constructing a vertex cover and then callin g CH * (i — k),
we should test K itself. If the outcome is positive, then K € D. By our assumption,
there is no other positive edge containing K, so we do not need to call CH * (i — k)
further. If the outcome is negative, call CH * (i — k) to identify all induced positive
edges in Fo(K).

Algorithm CH * (1) is same as C'H(1). Now, we give the algorithm C'H * (z)

recursively.

31



Algorithm C'H * (1) (1 > 2)

input: F, K;, Vio, Vi1, I (if C H % (1) is not a subroutine, then V;o := V(F)
and Vi := K; :=1:=10).

Partition Stage

Step 1. Test Vio. If positive, use the TJ-procedure to identify a positive
edge e = {v1,v2,...,0,} C Vig (s < 1). Add the vertex vy to Vjg. Set
Vio := Vo \{v1} and I := T U {{e} U K;}. If Vo # @}, go back to the
beginning of Step 1.

Step 2. If Vi1 # (), go to Search Stage.
Search Stage:
Step 1. Set k := 1.

Step 2. Choose a k-subset K of V;1, where G(K; U K) does not contain
any identical positive edge in [. Set K;_; := K; U K. Test K;_j.
If positive, let [ := I U{K,;_;}. Else, construct a vertex cover C'
(CNKi—p =0)on I(K;_ UV (Eo(K;_t))). Call subroutine C'H (i — k)
with £ := EO(I(Z'—k)a V= V(Eo([(i_k)), Vio :i= V(EO([(Z'—k)) \ C and
Viy = C. If for some v € ‘/2'0, K,_, U {U} € [([Xfi_k U V(EO([\‘fi—k)))
(possibly only for k = ¢ — 1), delete v from V. Attach K;_; to any
test in C'H (1 — k). Do this for all k-subsets K. Set k := k4 1. If
k < 1, go back to the beginning of Step 2.

Step 3. Test all i-subsets S (except those such that SU K; € I) of Vj;. If
positive, set [ := T U {S U K,}.

Step 4. Stop.

Theorem 6.7.8 Let F be a hypergraph of rank r with d positive edges, where d is
not necessarily known. The the algorithm C'H % (r) identifies all positive edges in E
with at most d[log, |E|] + (r — D)l2ld" 4 o(d") tests.

Proof. Similar to the proof of Theorem 6.7.7, we can show that C'H * (r) identifies
all positive edges of the hypergraph F.

To count the number of tests C'H * (r) uses, let N % (r) and T * (r) be the
counterparts of N(r) and T(r) in CH * (r). The analysis of the test number of
C H * (r) is also similar to that of C'H(r). The only difference is that the subroutine
of CH « (r) should need N * (r — k) 4+ 1 tests instead of N * (r — k) tests in C H(r).
But it does not change the result; so N  (r) < (r — 1)lzld" 4 o(d"). Consequently,
T+ (r) < d[log, |E|] + (r — D5ld" + o(d") for r > 2. Therefore, algorithm C'H * (r)
needs at most d[log, |E|] + (r — 1)Lz1d" + o(d") tests to identify all d positive edges
of F. O

32



References

1]
2]

[11]

[12]

[13]

[14]

M. Aigner, Search problems on graphs, Disc. Appl. Math. 14 (1986) 215-230.

H.B. Chen, D.-Z. Du and F.K. Hwang, An unexpected meeting of four seemily
unrelated problems: graph testing, DNA complex secreening, superimposed
codes and secure key distribution, preprint, 2005.

G.J. Chang and F.K. Hwang, A group testing problem, SIAM J. Alg. Disec.
Methods 1 (1980) 21-24.

T. Chen and F.K. Hwang, A competitive algorithm in searching for many edges
in a hypergraph, 2003, preprint.

P. Damaschke, A tight upper bound for group testing in graphs, Disc. Appl.
Math. 48 (1994) 101-109.

D.-Z. Du and F.K. Hwang, Combinatorial Group Testing and Its Applications,
World Scientific, Singapore, 1993.

D.-Z. Du and F.K. Hwang, Combinatorial Group Testing and Its Applications,
2nd edition, World Scientific, Singapore, 2000.

D.-Z. Du, F.K. Hwang, W. Wu and T. Znati, A new construction of transversal
designs, to appear in Journal of Computational Biology.

D.-Z. Du, F.K. Hwang, M. Thai, W. Wu and T. Znati, Construction of disjunct

matrices for group testing in the complex model, manuscript.

A. Dyachkov, P. Villenkin, A. Macula and D. Torney, On families of subsets
where no intersection of /-subsets is covered by the union of s others, .J. Combin.

Thy. (Series A), 99 (2002) 195-218.

F. K. Hwang, A competitive algorithm to find all defective edges in a graph,
Disc. Appl. Math. 148 (2005) 273-277.

P. Johann, A group testing problem for graphs with several defective edges, Disc.
Appl. Math. 117 (2002) 99-108.

H.K. Kim and V. Lebedev, On optimal superimposed codes, J. Combin. Design
12 (2004) 79-91.

Y. Li, M. Thai, Z. Liu and W. Wu, Protein-to-protein interactions and group
testing in bipartite graphs, to appear in International Journal of Bioinformatics
and Applications.

33



[15] A.J. Macula and L. J. Popyack, A group testing method for finding patterns in
data, Disc. Appl. Math. 144 (2004) 149-157.

[16] A.J. Macula, V.V. Rykov and S. Yekhanin, Trivial two-stage group testing for
complexes using almost disjunct matrices, Disc. Appl. Math.

[17] A.J. Macula, D.C. Torney and P.A. Villenkin, Two-stage group testing for com-
plexes in the presence of errors, DIMACS Series in Disc. Math. and Theor.
Comput. Sci. 55 (2000) 145-157.

[18] C.J. Mitchell and F.C. Piper, Key storage in secure networks, Disc. Appl. Math.
21 (1988) 215-228.

[19] D.R. Stinson, On some methods for unconditionally secure key distribution and
broadcast encryption, Designs, Codes, Crypto. 12(1997) 215-343.

[20] D.R. Stinson and R. Wei, Generalized cover-free families, Disc. Math. 27 (2004)
463-477.

[21] D.R. Stinson, R. Wei and L. Chu, Some new bounds for cover-free families, .J.
Combin. Thy. Series A 90 (2000) 224-234.

[22] D.C. Torney, Sets pooling designs, Ann. Combin. 3(1999) 95-101.

[23] E. Triesch, A group testing problem for hypergraphs of bounded rank, Disec.
Appl. Math. 66 (1996) 185-188.

[24] H. Wang and C. Xing, Explicit construction of perfect hash families from alge-
braic curves over finite fields, J. Combin. Thy. Ser. A 93 (2001) 112-124.

[25] S. Yakhanin, Some properties of superimposed codes based on MDS codes,
preprint, 1999.

[26] Yu. L. Sagalovich, On separating systems, Problemy Peredachi Informatsii 30
(1994) 14-35 (in Russian).

34



