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Abstract

A minization problem arosen from the study of the non-unique probe selection with
group testing technique is as follows: Give a binary matrix, find a d-disjunct submatrix
with the minimum number of rows and the same number of columns. We show that
when every probe hybridizes at most two viruses, i.e., every row contains at most two
1s, this minimization is still MAX SNP-complete, but has a polynomial-time approxi-
mation with performance 14 2/(d+ 1). This approximation is constructed based on an
interesting result that the above minimization is polynomial-time solvable when every

probe hybridizes exactly two viruses.
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1 Introduction

Currently, non-unique probe selection is a hot topic in computational molecular biology.
A probe is a short oligonucleotide of size 8-25, used for identifying viruses in a biological
sample through hybridization. When each probe hybridizes to a unique virus, identification
is straightforward. However, unique probes are very hard to be obtained, especially for
virus subtypes which are closely related, although temperature and salt concentration are
very helpful to reduce the number of viruses bybridized by a probe. Schilep, Torney and
Rahman [9] introduced a method to use non-unique probes with group testing techniques.
They consider each virus as an item and for each probe, the set all viruses hybridized to
it as a pool. Based on classical theory of nonadaptive group testing, when the incidence
matrix between items and pool is d-separable, the test-outcome can identify up to d viruses
in biological sample.

For n items with ¢ pools, the incidence matix is an ¢ X n binary matrix with rows
labeled by pools and columns labeled by items and cell (7, j) contains l-entry if and only if
the 7th pool contains item j. A binary matrix is d-separable if all boolean sums of at most
d columns are distinct. If each column is seen as a set of rows corresponding to l-entries
in the column, then the boolean sum can be seen as a union of columns which is a classic
statement in the study of group testing.

When a probe is hybridized by some virus in a biological sample, we say that the test-
outcome is positive; otherwise, the test-outcome is negative. Test-outcomes for all probes

can be written as a column vector which is exactly the union of columns corresponding



viruses contained in the biological sample, where 1 denotes a positive outcome and 0 denotes
a negative outcome. Therefore, the definition of d-separable matrix means that different
sets of at most d viruses receive differen t test-outcomes.

Torney and Rahman [9] suggested a method consists of three steps:

Step 1. Collect a large set of non-unique probes.

Step 2. From this large set of probes, find a minimum subset of probes to identify up
to d viruses.

Step 3. Decode the presence or absence of viruses in the given biological sample from

test-outcome.

The minimization problem in Step 2 can be described as follows:

MIN-d-SS (Minimum d-Separable Submatrix). Given a binary matrix M, find

a minimum d-separable submatrix with the same number of columns.

For any fixed d, MIN-d-SS is NP-hard[3]. They suggested a greedy algorithm which
adds probe one by one until the incidence matrix with considered viruses form a d-separable
matrix.

Since it is hard to decode the test-outcome from a d-separable matrix[3], Thai et al. [10]
considered to use a d-disjunct matrix instead. A binary matrix is d-disjunct if any union of
d columns cannot contains the (d + 1)th column. Decoding test-outcome from a d-disjunct

matrix is very easy[3]. This introduces another minimization problem:



MiN-d-DS (Minimum d-Disjunct Submatrix). Given a binary matrix M, find a

minimum d-disjunct submatrix with the same number of columns.

For d = 1, MIN-d-SS is exactly the well-known minimum test cover problem [5] (also
called the minimum test set problem [2, 1, 7] or the minimum test collection [6]). The
minimum test cover problem has a greedy approximation with performance 142 Inn where
n is the number of items [1, 2].

Often, the pool size cannot be too large since selected candidate probes is usually nearly
unique. This motivated the study of above minimization problems with bounded pool size.
For instance, let us consider the case that every pool has size at most 2. Halldérsson et
al. [6] and De Bontridder et al. [2] proved that in this case, MIN-1-SS is still APX-hard,
which means that there is no polynomial-time approximation scheme for it unless NP=P.
They also showed that MIN-1-SS in this case has a polynomial-time approximation with
performance ratio 7/6 + ¢ for any fixed € > 0.

In this paper, we will present some interesting results that while MiN-d-DS is polynomial-
time solvable in the case that all pools have size two, it is MAX SNP-complete in the case
that all pools have size at most two, but there is a polynomial-time approximation with

performance ratio 1 4+ 2/(d+ 1) for d > 1.

2 Main Results

First, let us indicate that



Theorem 1 There exist greedy approzimations with performance ratio 1 + (d+ 1) Inn for

MiIN-d-DS and 1+ 2dIn(n+ 1) for MiN-d-SS.

Proof. The proof is quite easy. For example, let us consider MIN-d-DS. Consider the col-
lection § of all possible pairs (C, D) of one column C' and a subset D of d columns. Clearly
|S| < n?*1. A row is said to cover such a pair (C, D) if at this row, the entry of column C
is 1 and all entries of columns in D are 0. Now, we choose rows one by one to maximize
the total number of pairs newly covered by the row. This is a special case of the set cover
problem. It is well-known that the greedy algorithm for the set cover has performance ratio

1+In|S| <1+ (d+1)Inn. O

Our main interest in this paper is to study MIN-d-DS in the case that all pools have
size at most two. For simplicity of notation, we denote by MIN-d-DS-2 the MiN-d-DS in

this special case. The following lemma plays an important role.

Lemma 2 Consider a collection C' of pools of size at most 2. Let G be the graph with all
items as vertices and all pools of size 2 as edges. Then C gives a d-disjunct matriz if and

only if every item not in a singleton pool has degree at least d + 1 in G.

Proof. Suppose there exists an item ag not in any singleton pool of C' and its degree in GG
is at most d. Let (ag, a1, (ag,asz), ..., ag,axr) (k < d) be all edges of G at ag. Then ag is
contained in the union of columns with label ay,as, ..., ax. Therefore, C does not form a

d-disjunct matrix.



Conversely, suppose every item is either in a singleton pool or of degree at least d + 1.
Then in the former case, the singleton pool does not contain any other item, and in the
latter case, for any d other items ay, ..., a4, there is a pool of size two containing ag but not

anyone of ay, ..., aq. Hence, C forms a d-disjunct matrix. O

As a consequence of above lemma, we have

Theorem 3 MIN-d-DS is polynomial-time solvable in the case that all given pools have

size exactly 2

Proof. Let H be the graph with all items as vertices and all given pools as edges. By Lemma
2, MIN-d-DS is equivalent to find a subgraph G, with minimum number of edges, such that
every vertex has degree at least d + 1 in G. It is equivalent to maximize the number of
edges in H — G such that every vertex v has degree at most dy(v) —d —1in H — G where
drr(v) denotes the degree of v in H. The latter maximization problem has been known to

be polynomial-time solvable for a long-time. |

Theorem 4 Min-d-DS-2 for d > 2 is MAX SNP-complete.

Proof. Cnsider a well known MAX SNP-complete problem [4]:

VC-Cusic: Given a cubic graph G (a graph is cubic if every vertex has degree

exactly three), find the minimum vertex-cover of G.

We show a L-reduction from VC-CuBIC to MIN-2-DS-2.



Suppose G = (V, E) is an input of VC-CuBIc. For each edge (u,v) of G, we add break
(u,v) into two edge (u, wp) and (wp, v), and add other four vertices wy, wgy, w3, w4 and seven

edges (wq, w1), (wo, we), (w1, ws), (w1, wa), (we, ws), (wg, ws), (w3, ws) (Fig.1). The result

<

Figure 1: Construction from G to G.

graph is denote by G' = (V', E'). Denote E" = {(u, wo), (wo, v) | (u,v) € E}.

Let C = E'"U{{u} | « € V} be an input of MIN-1-DS. By Lemma 2, every feasible
solution of MIN-1-DS must contain all edges in E' — E”. Since wg is not contained by a
singleton pool, every feasible solution must contains either (u,wg) or (wp,v). Consider a
minimum solution C* with smallest number of pools of size 2. Then C* does not contain
both (u,wg) and (wp, v). In fact, if it contains both, then we may replace (u, wg) by {u} to
reduce the number of pools of size 2. It follows that either « or v is contained in a singleton
pool of C*. Therefore, all items in singleton pools of C* form a vertex-cover of G.

Conversely, if X is a vertex-cover of GG, then C'(X) = {{u} | v € X} U{e € E' |

e is incident to a vertex in X } is a feasible solution of MIN-2-DS-2 with input C. Therefore,



C(X) is a minimum vertex-cover of GG if and only if C'(X) is a minimum solution of MIN-
2-DS.

Suppose X* is a minimum vertex-cover of G. Note that | X*

> |F|/3. Hence

|C(X™)| = 8| E| + |X*| < 25| X*

Moreover, suppose X is a vertex-cover of G. Then C'(X) is a feasible solution of MIN-2-
DS-2 satisfying
[C(X) = C(X7)| = |IX] = | X7
Therefore, VC-CUBIC is L-reducible to MIN-2-DS-2.
Since MIN-2-DS-2 is a special case of MIN-d-DS-2 for any d > 2, we can easily construct
L-reduction from MIN-2-DS-2 to MIN-d-DS-2 for any d > 2. By Theorem 1, MIN-d-DS
has polynomial-time approximation with constant performance ratio. Therefore, MIN-d-

DS-2 for d > 2 is MAX-SNP-complete. a

Corollary 5 There exists a positive number r such that MIN-d-DS-2 has no polynomial-

time approzimation with performance ratio r unless NP=P.

Next, we present a better approximation for MIN-d-DS-2.

Lemma 6 Let s be the number of given singleton pools. Then any feasible solution of

MIN-d-DS-2 contains at least s + (n — s)(d + 1) /2 pools.

Proof. Suppose C is a feasible solution of MIN-d-DS. By Lemma 2, every item is either in

a singleton pool or in at least d + 1 pools of size 2. Suppose C contains s singleton pools.



Then C contains at least s + (n — s)(d + 1)/2 pools. ]

Now, we describe an approximation algorithm with two steps.

Step 1. Compute a minimum solution of the following polynomial-time solvable problem:
Let G be the graph with all items as vertices and all given pools of size 2 as edges. Find a
subgraph H, with minimum number of edges, such that every item not in a singleton pool
has degree at least d + 1.

Step 2. Suppose H is a minimum solution obtained in Step 1. Choose all singleton pools
at vertices with degree less than d+1in H. All edges of H and chosen singleton pools form

a feasible solution of MIN-d-DS-2.

Theorem 7 The feasible solution obtained in the above algorithm is a polynomial-time

approzimation with performance ratio 1 +2/(d+1).

Proof. Suppose H contains m edges and k vertices of degree at least d + 1. Suppose
an optimal solution containing s* singletons and m™ pools of size 2. Then m < m™ and

(n—k)—s"<2m*/(d+1). Hence,

m—k)+m<s"+m™+2m*/(d+1) < (s"+m™)(1+2/(d+ 1)).
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