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In fold recognition by threading one takes the amino acid sequence of a
protein and evaluates how well it ®ts into one of the known three-dimen-
sional (3D) protein structures. The quality of sequence-structure ®t is
typically evaluated using inter-residue potentials of mean force or other
statistical parameters. Here, we present an alternative approach to evalu-
ating sequence-structure ®tness. Starting from the amino acid sequence
we ®rst predict secondary structure and solvent accessibility for each resi-
due. We then thread the resulting one-dimensional (1D) pro®le of pre-
dicted structure assignments into each of the known 3D structures. The
optimal threading for each sequence-structure pair is obtained using
dynamic programming. The overall best sequence-structure pair constitu-
tes the predicted 3D structure for the input sequence. The method is ®ne-
tuned by adding information from direct sequence-sequence comparison
and applying a series of empirical ®lters. Although the method relies on
reduction of 3D information into 1D structure pro®les, its accuracy is,
surprisingly, not clearly inferior to methods based on evaluation of resi-
due interactions in 3D. We therefore hypothesise that existing 1D-3D
threading methods essentially do not capture more than the ®tness of an
amino acid sequence for a particular 1D succession of secondary struc-
ture segments and residue solvent accessibility. The prediction-based
threading method on average ®nds any structurally homologous region
at ®rst rank in 29% of the cases (including sequence information). For the
22% ®rst hits detected at highest scores, the expected accuracy rose to
75%. However, the task of detecting entire folds rather than homologous
fragments was managed much better; 45 to 75% of the ®rst hits correctly
recognised the fold.
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Introduction

Reducing the sequence-structure gap by
homology modelling

Large scale gene-sequencing projects accumulate
gene data, and consequently protein sequences, at a
breathtaking pace (Oliver et al., 1992; Fleischmann
et al., 1995; Dujon, 1996; Johnston, 1996) . However,
information about three dimensional (3D) structure
is available for only a small fraction of known pro-
teins (Bernstein et al., 1977). Thus, although exper-
imental structure determination has improved
(Lattman, 1994), the sequence-structure gap con-
tinues to increase. One of the main tasks of theor-
etical biology is to reduce this gap by predictions.
However, the only somewhat reliable way to pre-
dict 3D structure is homology modelling (Greer,
# 1997 Academic Press Limited
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1991; Lesk & Boswell, 1992; May & Blundell, 1994):
the structure of a protein of unknown structure
(dubbed U) can be modelled by homology if a pro-
tein of known 3D structure is found which has
more than 25 to 30% pairwise sequence identity
with U (Chothia & Lesk, 1986; Doolittle, 1986;
Sander & Schneider, 1991).

Possible scope of remote homology modelling

Two naturally evolved proteins can have rather
different sequences and still fold into homologous
structures. Currently there are thousands of remote
homologues, i.e. homologues with less than 25%
pairwise sequence identity, stored in a database of
structurally aligned remote homologues (Holm
et al., 1993; Holm & Sander, 1994). To illustrate the
possible scope of remote homology modelling by
numbers: homology modelling is currently appli-
cable to over 11,000 SWISS-PROT (Bairoch &
Apweiler, 1996) sequences with more than 25%
pairwise sequence identity to a known structure.
However, the majority of all homologous proteins
has supposedly less than 25% pairwise sequence
identity (unpublished results). Thus, for a signi®-
cant fraction of the currently known sequences
remote homology modelling could yield 3D predic-
tions.

Long way from fold recognition to remote
homology modelling

The problem of detecting remote homologues is
of the ``needle in the haystack'' type: aligning the
unique folds (150) against the entire PDB (3000)
would yield 450,000 pairs, of which about 1500 are
remote homologues (Holm & Sander, 1994), i.e. the
goal is to ®nd the one true homologue among 100
to 300 decoys. A test of threading methods at the
®rst meeting to evaluate structure prediction accu-
racy (Moult et al., 1995) suggested levels of 10 to
40% accuracy in correctly detecting the homolo-
gous fold (Lemer et al., 1995; Shortle, 1995). How-
ever, detection of the homologue is the simpler
part of a successful remote homology modelling.
More problematic is to correctly align the homolo-
gous proteins and to correctly build the model
(Bryant & Altschul, 1995; Lemer et al., 1995; Sippl,
1995). Only for a few cases has threading been
shown to yield correct 3D models (FloÈckner et al.,
1995).

Here, we extend our previously proposed novel
method for threading predictions of one-dimen-
sional (1D) structure into 3D structures (Rost,
1995a,b). First, 1D structure pro®les were predicted
from multiple sequence alignments. Then, the 1D
predictions were aligned to 1D projections of
known structures. The novel aspect reported here
was the combination of information from 1D pre-
dictions and sequences. We had to focus on the
main aspects of the method, a detailed description
of the algorithm is electronically available (Rost,
1996c). The accuracy of the method in detecting re-
mote homologues was evaluated on a data set of
89 unique protein folds. The ability to correctly
build remote homologous models was investigated
for all correctly detected remote homologues.
Finally, we compared the performance of the meth-
od to other tools based on three different data sets.

Methods

Brief outline of the algorithm

The algorithm started from a protein sequence
which was aligned by MaxHom (Sander &
Schneider, 1991) against SWISS-PROT (Bairoch &
Boeckmann, 1994) (Figure 1). The resulting mul-
tiple sequence alignment was used as the input to
neural network systems predicting secondary
structure (PHDsec; Rost & Sander, 1994a) and sol-
vent accessibility (PHDacc; Rost & Sander, 1994b).
The predictions were converted into 1D structural
pro®les. Up to this point the method was con-
strained to a straight prediction in 1D, i.e. without
any reference to 3D structure or the ®nal goal of
threading. Effectively, the amino acid sequence
had now been translated into a 1D string of struc-
ture symbols (``predicted structure pro®le''), with
some cooperativity taken into account. The idea
was now to ®nd the 3D fold that had the most
similar structure pro®le (in terms of secondary
structure and accessibility). The next step was to
represent each of the known folds in the database
as an observed structure pro®le. Finally, predicted
and observed 1D structure pro®les were optimally
aligned by a dynamic programming algorithm
(MaxHom). The best hit of the alignment pro-
cedure was recorded, and the ®nal best hit was
taken as the predicted fold. The predicted 3D struc-
ture was modelled based on the alignment of the
input sequence into the predicted fold.

Alignment of 1D structure

Three alternatives for the aligned strings

For a practical application of the method, pre-
dicted 1D structure pro®les were aligned to ob-
served 1D structure pro®les (PHD versus PDB). To
investigate the in¯uence of the accuracy of 1D
structure prediction, we performed the following
calibration experiment: observed 1D structure pro-
®les were aligned against observed 1D structure
pro®les (PDB versus PDB). Another possible exten-
sion of the concept was the alignment of predicted
against predicted 1D structure pro®les (PHD versus
PHD). Such a search could yield a prediction of a
fold identity between two proteins both of un-
known structure. Alignments of 1D structure
strings can reveal structural homologues as 1D
structure is conserved between remote homologues
(Rost, 1996b).



Figure 1. Threading predicted 1D
structure pro®les into known 3D
structures. (1) A multiple sequence
alignment is generated for a given
sequence of unknown structure
(U). (2) The alignment pro®le of U
is used as the input to a neural net-
work system (PHD) that predicts
secondary structure and relative
solvent accessibility. (3) The result-
ing predicted 1D structure pro®le
for U is aligned by dynamic
programming (program MaxHom;
Sander & Schneider, 1991) to 1D
structure strings assigned from
known structures by the program
DSSP (Kabsch & Sander, 1983). Ab-
breviations: H, helix; E, strand; L,
rest; *, buried (<15% solvent
accessible); *, exposed (515% sol-
vent accessible).
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Free parameters for dynamic programming

The predicted strings were aligned based on a
Smith-Waterman type dynamic programming al-
gorithm (Smith & Waterman, 1981). This algorithm
was implemented in the program MaxHom
(Sander & Schneider, 1991; Schneider, 1994). The
following free parameters had to be adjusted:
(1) the similarity matrix, and (2) the penalties as-
sociated with the introduction of gaps in the align-
ment.

Similarity matrix for six states

Various strategies were explored to ®nd the opti-
mal matrix for weighting matches between 1D
structure pairs (Rost, 1995a,b). Here we used a
matrix re®ned and starting from database counts
(Rost, 1996c). Finally, we simpli®ed the resulting
matrix by making it symmetrical and slightly more
balanced.

Similarity for 120 states

The combination of information from 1D struc-
ture and sequence was accomplished by combining
the 1D structure similarity matrix (Figure 3 of Rost,
1996c) with a McLachlan (McLachlan et al., 1984)
or a Blosum62 (Henikoff & Henikoff, 1992) ex-
change matrix:

Mij � a�M1D structure
ij � �100ÿ m� �Msequence

ij �1�
where Mij determined the score for a match at a
given position between state i in the ®rst string
and state j in the second string, and m � 0 to 100
tuned the percentage of 1D structure contribution
to the ®nal alignment score E (note that m � 0 cor-
responded to a simple sequence alignment; m � 100
marked an alignment based on 1D structure only).

Gap open and gap elongation penalty

The optimal choice of gap penalties depends on
the context, i.e. the particular alignment pair
(Vingron & Waterman, 1994). For an alignment of
a search sequence against a database, there is a
trade-off between coverage (correct hits found ver-
sus all possible correct hits) and accuracy (correct
hits versus all hits found) of detection for the choice
of the gap parameters go (penalty for opening a
gap) and ge (penalty for continuing an open gap).
We compiled results for various gap open penal-
ties. The relative values of the two were found to
be of marginal importance; we used: ge � 0.1� go.
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Evaluation of prediction accuracy

Cross validation and parameter optimisation

To ascertain that knowledge about structure was
not used for the 1D prediction we used prediction
networks that had been trained on proteins with
less than 25% pairwise sequence identity with the
predicted protein (cross validation). Furthermore,
free parameters for the dynamic programming al-
gorithm were optimised before the ®nal results
were compiled. This was achieved by varying free
parameters based on a data set of 46 non-unique
protein structures (listed by Rost, 1995b).

Measuring the accuracy of fold recognition

Prediction accuracy was de®ned as the cumulat-
ive percentage of correct predictions up to rank R,
Q(R) (de®ned in equation 6 of Rost, 1996c). To
measure the accuracy obtained on subsets selected
according to a ®xed z-score (equation 5 of Rost,
1996c) we de®ned CorR(y) as the cumulative per-
centage of correct hits up to rank R for a given
threshold z > y (equation 7 of Rost, 1996c). The cor-
responding coverage was CovR(y), de®ned as the
percentage of hits found at R for y (equation 8 of
Rost, 1996c). Cor(y) and Cov(y) determined the
trade-off between accuracy and coverage. Results
will be given for ®rst ranks (R � 1), only. The de®-
nitions for coverage and accuracy versus a given
cut-off address the following questions. What is
the expected accuracy to ®nd correct homologues
if the hit list is cut at rank R and at a z-score > y?
And for what proportion of the proteins are pre-
dictions made at the given cut-off?
Table 1. Accuracy of fold detection

smax m
Method Seq. matrix (3) go (2)

PDB versus PDB ± 1 4 100
PHD versus PDB ± 1 4 100

PHD versus PDB McLachlan 1 2 50
PHD versus PDB Blosum62 2 2 50

PHD versus PHD Blosum62 2 2 50

Sequence only McLachlan 3 2 0
Random pick ± ± ± ±

Accuracy scores (equation numbers in italics refer to Rost, 1996c):
dard deviation; Cor1(z > x), percentage of correct ®rst hits with a z-sc
sets of 1 to 23 proteins, thus the standard deviations are >10); Cov1(
score > x; go, gap open penalty; smax, maximal entry of the normali
part (equation (1)); and m, in¯uence of 1D structure relative to se
m � 50, 1D structure : sequence � 50 : 50, m � 0, only sequence alignm
of aligning known structures against a database of known structur
structures against a database of known structures (i.e. the fold-detec
a database of predicted structures (i.e. detection of remote homolog
dom pick refers to the likelihood of hitting the correct remote hom
than 1/723 as for some of the 89 proteins there was more than one r
Measuring accuracy of remote homology modelling

We measured alignment quality by (1) the per-
centage of pairwise sequence identity between the
predicted and the structural alignment; (2) the
average number of residues shifted between the
predicted and the structural alignment; and (3) an
alignment shift score (equation 9 of Rost, 1996c).
For the quality of the model we simply determined
backbone root mean square deviations (rmsd;
Sippl, 1982). The superposition was based on the
sequence alignment obtained from the threading
without any further optimisation (loop regions
were included when compiling the rmsd values).
We regarded the structural alignments taken from
the FSSP database (Holm & Sander, 1994) as the
correct ``standard-of-truth''. However, alignments
between two structures are not always unique (Zu-
Kang & Sippl, 1996) . In some cases the alternative
correct structural alignment might have ®tted the
prediction better.

Data sets used for validation

Set of 89 unique folds

As of early 1996, there were more than 200 un-
ique protein folds in the PDB (Holm & Sander,
1994). These were used as a starting point to com-
pile a set of 89 proteins used to evaluate the accu-
racy in detecting remote homologues (Rost, 1996a).
The resulting list of remote homologues comprised
a rather dif®cult test set, as it included many cases
for which the structural alignment covered only
fragments of the two aligned proteins rather than
extending over the entire ``folds''. Consequently,
the results provided conservative estimates for the
accuracy of 1D structure threading. The ``correct''
Cor1(z > x) Cov1(z > x)
(7) (8)

Q(1) with x � with x �
(6) 4.5 3.5 4.5 3.5

35 � 5 100 85 7 22
23 � 4 100 33 2 23

28 � 5 80 63 5 12
29 � 5 88 75 10 22

27 � 4 100 85 10 15

16 � 4 30 29 25 26
2

Q(1), percentage of correct ®rst hits (� values estimate one stan-
ore > x, data given for x � 4.5 and 3.5 (values refer to small sub-
z > x), percentage of proteins for which the ®rst hit reached a z-
sed combined matrix; Seq. matrix, matrix used for the sequence
quence (equation (1)), i.e. m � 100, only 1D structure aligned;
ent. The abbreviations for the methods refer to the alternatives

es (i.e. optimal prediction scenario, PDB versus PDB), predicted
tion scenario, PHD versus PDB) and predicted structures against
y between pairs of unknown structure, PHD versus PHD); Ran-
ologue in a list of 723 proteins by chance (signi®cantly higher
emote homologue in the list of 723).



Figure 2. Cumulative accuracy of
detection versus rank of hit. How
many of the homologues were
detected up to a certain rank R of
the alignment list? For ranks R � 1
to 11, the cumulative percentages
of correctly detected folds is shown
(Q(R), for R � 1, ..., 11; see equation
6 of Rost, 1996c). Thick lines: align-
ments mixing 1D structure and
sequence 50:50 (m � 50, equation
(1); ®lled circles, McLachlan
exchange matrix; ®lled triangles,
Blosum62 matrix. Thin lines: align-
ments based on sequence (McLa-
chlan matrix, crosses) and on 1D
structure information only (open
squares). For all results, 1D struc-
ture information was obtained by
cross-validated prediction (PHD),
i.e. the knowledge about the 3D
structure of the threaded sequence
had been removed from the exper-
iment and was used only to evalu-

ate the results; the gap open penalty was chosen as 2. For example (arrow), the correct hit was found among the ®rst
®ve hits in more than 50% of the cases for an alignment including 1D structure, and in less than 15% of the cases for
a simple sequence alignment. Or: 40% of the remote homologues were identi®ed among the ®rst two hits when com-
bining 1D structure and sequence; among the ®rst ®ve when using only 1D structure and among the ®rst 15 (not
shown) when using sequence alignment only.
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remote homologues for the 89 search proteins and
the 723 sequence-unique (<25% pairwise sequence
identity) proteins used to search remote homol-
ogues are listed on the World Wide Web (Rost,
1996a).

Data sets for comparison with other methods

Finally, we compiled the results of our method
based on three tiny sets of proteins for which re-
sults were published in the literature: (1) a set of 11
proteins used by Jones et al. (1992) to evaluate the
performance of the program THREADER (Table 4
of Rost, 1996c); (2) a set of 11 representative pro-
tein families used by Russell et al. (1996) to evalu-
ate the performance of the programs THREADER
and MAP (Table 5 of Rost, 1996c); and (3) a set of
11 proteins used for the Asilomar 1994 prediction
contest (Lemer et al., 1995; Table 6 of Rost 1996c).

Results

Fold recognition

Loss of information by projection onto 1D
limiting factor

When threading 1D structure pro®les taken from
the DSSP (Kabsch & Sander, 1983) assignments
based on coordinates of known 3D structures (in
other words completely correct ``predictions''), the
®rst hit was correct in 35% of all test cases (PDB
versus PDB, m �100; Table 1). When using real pre-
dictions from PHD (at an average accuracy of
about 70%), the ®rst hit was correct in 23% of the
cases (PHD versus PDB, m � 100, Table 1). Thus,
the limited prediction accuracy of PHD (70%) re-
duced detection accuracy by ``only'' 12 percentage
points; whereas the loss of information by project-
ing 3D structure onto 1D accounted for 75 percen-
tage points in reducing detection accuracy.

Significant improvement by including
sequence information

When 1D structure and sequence information
was combined (equation (1)) detection accuracy in-
creased markedly: for a 50:50 mixture of 1D-struc-
ture-to-sequence (m � 50 in equation (1)), 29% of
the ®rst hits were correct (Table 1); and in half of
the test cases, the correct homologue was detected
among the ®rst ®ve alignment hits (Figure 2). The
choice of a particular sequence matrix (McLachlan
versus Blosum62) yielded different alignments (and
most often different ®rst hits). However, the over-
all accuracy for the entire test set was similar
(Figure 2, Table 1). For a random prediction, the
®rst hit would be correct in 2% of the cases. For
a sequence alignment method (MaxHom with
McLachlan matrix), the ®rst hit was correct in
about 15% of all cases (Table 1).

Stronger hits more likely to be correct

When the alignment list was cut off at a z-
score > 4.5 (equation 5 of Rost, 1996c), the ®rst hit
was correct in 88% of the cases (Table 1). At this
higher level of accuracy only ten out of the 89 test



Figure 3. Focusing on stronger predictions. The percen-
tage of correct ®rst hits can be increased by focusing on
hits detected with higher z-scores. However, the increase
of accuracy was at the expense of coverage. For
example, at z > 3.5 75% of all ®rst hits were correct, but
only for 22% of all test proteins did the ®rst hit reach a
z-score > 3.5. In other words, a ®fth of the test cases pre-
dicted most strongly reached an accuracy of 75% (Q(1)).
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proteins were detected (Figure 3). The correlation
between z-score and prediction accuracy illus-
trated, in particular, the strength of prediction-
based threading, as opposed to simple sequence
alignment. The sequence alignment used as refer-
ence resulted in relatively many correct ®rst hits
(15%), but it was very dif®cult to separate the chaff
from the wheat: for 25% of the ®rst hits the z-score
was above 4.5, and of these only 30% were pre-
dicted correctly (Table 1). In other words, sequence
alignments reached a similar level of accuracy as
prediction-based threading for every fourth pro-
tein.

Successful detection of remote homology in the
absence of 3D information

One of the features of prediction-based threading
is that the detection of remote homology is not
restricted to knowing the structure of the target.
Instead, a sequence of unknown structure can
be threaded through a library of predicted 1D
structure assignments. The result was surprisingly
not much inferior to the case of using known 3D
structures: 27% of the hits were correctly detected
at ®rst rank (PHD versus PHD; Table 1).

Better recognition of entire folds than of
shorter fragments

The test set of 89 proteins was deliberately
chosen to answer the following question: how
accurately can the method detect any remote hom-
ologous fragment in a library of protein structures
(remote homology detection)? An easier task is to
detect similarities between entire folds (fold detec-
tion). We generated subsets of our full test set by
excluding all cases for which the structural align-
ments covered only a small fraction of the aligned
pair. For example, if the goal is to detect simi-
larities that cover at least 70% of the lengths of
both proteins, the expected accuracy (correct ®rst
hit) rose to 50% (Figure 4 of Rost, 1996c). Thus,
prediction-based threading was clearly more suc-
cessful in capturing homologies between entire
folds than in detecting homologies between local
regions.

Remote homology modelling

Few correct predictions of 3D structure

Given a correctly detected remote homologue,
how accurate was the alignment? This question
was addressed in two ways. First, the predicted
alignments were compared to the structural align-
ments. For the hits correctly detected at ranks 1
and 2, the average shift score (equation 9 of Rost,
1996c) was 38%, the average identity of the resi-
dues between predicted and structural alignments
was 33%, and the average shift 11 (Table 3 of Rost,
1996c). More than half of the hits correctly detected
at ®rst rank reached an alignment shift score above
50% (15 out of 25); and one half (13 out of 25) had
more than 50% of the residues identical with the
structural alignment (Table 3 of Rost, 1996c) ; three
representative alignments are given in Figure 7 of
Rost, (1996c). For the second way to evaluate the
alignment, we simply superimposed the backbone
model resulting from the predicted alignment with
the known structure of the search protein. For only
six of the test cases correctly detected at ®rst rank
(total of 25) the ®nal model for the 3D structure of
the threaded sequence deviated less than 2 AÊ rmsd
from the optimal superposition of the two struc-
tures (Table 3 of Rost, 1996c).

Comparison to other threading methods

A favourable set of 11 proteins

Russell et al. (1996) recently evaluated their pre-
diction-based threading method (MAP) and the
THREADER program of Jones et al. (1995) based
on a small set of 11 proteins. For the ®rst hit they
reported an accuracy of 37 to 45% (depending on
the threshold used for de®ning homologue struc-
tures) for MAP and of only 9 to 19% for THREA-
DER (Jones et al., 1992). With the same 11 families,
our prediction-based threading resulted in 78%
correct ®rst hits (Table 5 of Rost, 1996c). The re-
ported quality of the alignments (percentage iden-
tical residues between predicted and structural
alignment) was 15% for MAP and 11% for THREA-
DER (Russell et al., 1996). For our prediction-based
threading the average number of correctly aligned
residues was 27% (Table 5 of Rost, 1996c). Thus,
although the set used by Russell et al. (1996) was
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much more conservative than the one used initially
by Jones et al. (1992) (both THREADER and our
method yielded 100% correct ®rst hit on that set;
Table 4 of Rost, 1996c), it still yielded very optimis-
tic estimates for prediction accuracy when com-
pared to the performance on our set of 89 proteins.
Did we select a set that yielded too pessimistic
estimates of performance accuracy?

The 11 Asilomar 1994 targets

A ®nal test of our method on 11 proteins that
were used as threading targets at the ®rst Asilomar
meeting for the evaluation of prediction methods
(Lemer et al., 1995; Moult et al., 1995) suggested
that the estimates derived on our initial set of 89
proteins might be closer to the ``reality'' of using
automated threading than those derived on favour-
able test sets. For the Asilomar 11 we correctly de-
tected the remote homologues at ®rst rank in four
cases (i.e. 36%; Table 6 of Rost, 1996c). The average
percentage of correctly aligned residues was 21%;
the average shift nine residues; and the alignment
shift score on average AS � 26% (equation 9 of
Rost, 1996c). Thus, the alignments were mostly
wrong. How did the results compare to the blind
predictions made for the meeting? The best
methods performed better than our method: (1) the
expert-driven usage of THREADER by David
Jones and colleagues (Jones et al., 1995) detected
®ve out of nine proteins correctly at ®rst rank; and
(2) the best alignments of the potential-based
threading method perfected by Manfred Sippl and
colleagues (FloÈckner et al., 1995) were clearly better
than our best ones.

Remote homology modelling

Correctness of the alignment and consequently
the 3D model obtained by threading has hardly
been evaluated in the literature. One common
example is the homology between the heat shock
protein 70 (PDB code: 2hsc) and the A chain of the
muscle protein actin (PDB code: 2atnA). Searching
with 2hsc, the 1D-pro®le threading brought up
2atnA at ®rst rank. The predicted alignment agrees
for 44% of the residues with the structural align-
ment taken from FSSP (Holm & Sander, 1994;
Figure 8 of Rost, 1996c). For a threading method
based on energy calculations, Abagyan et al. (1994)
published the predicted alignment for the last 232
residues of the same pair. They report that the
alignment was wrong for the C-terminal part of
the molecules, for the 232 aligned residues their
alignment is for 14% of the residues identical with
the structural alignment. Interestingly, for the same
region the prediction-based threading has 22% of
the residues identical with the structural align-
ment, i.e. clearly worse than the average for the
entire protein.
Conclusion

Successful fold recognition by threading
predicted 1D structure profiles

Fold motifs could be detected automatically by
aligning predicted and known 1D structure pro®les
(secondary structure and solvent accessibility).
However, even for an (in practice unrealistic) opti-
mal prediction of 1D structure (assignment from
known coordinates), the ®rst hit was correct in
only 35% of all test cases (Q(1), Table 1). A realistic
prediction of 1D structure (obtained by cross-vali-
dated PHD predictions) yielded 23% detection ac-
curacy. This result suggested two conclusions.
(1) The loss of information by projecting 3D infor-
mation onto 1D structure pro®les was the bottle-
neck of the method. To illustrate this problem: at
least 16 unrelated structures contain the secondary
structure motif ``H-E-E-H-E-E'' (data not shown).
An additional incorporation of information about
inter-residue distances may open that bottle-neck.
(2) Further improvements of 1D structure predic-
tions could improve the accuracy of prediction-
based threading signi®cantly.

Better fold recognition by combining 1D
structure profiles and sequence information

The novel step introduced here (combining 1D
structure pro®les with sequence information,
equation (1)) increased detection accuracy signi®-
cantly: 29% of all ®rst hits were correct (Table 1),
and in about 53% of the test cases the correct hom-
ologues was found among the ®rst ®ve hits
(Figure 2). Thus, the prediction-based threading
was clearly superior to sequence alignments (15%
correct ®rst hits, Figure 2). Furthermore, accuracy
could be increased by focusing on the subset of
those hits which were predicted with higher z-
scores. For example, for the 10% of all proteins pre-
dicted at z > 4.5 (equation 5 of Rost, 1996c) the ex-
pected accuracy of correctly detecting the fold at
®rst rank rose to 88% (Table 1, Figure 3). Homolo-
gous folds were detected more accurately than
homologous fragments. For example, for a test set
with true homologues for which the alignment
covered 70% of both aligned sequences, one half of
the ®rst hits were correct (Figure 4 of Rost, 1996c).
A feature of prediction-based threading that may
become particularly interesting for applications in
practice is that remote homology can successfully
be detected between protein pairs without knowl-
edge of 3D structure: when using 1D structure pre-
dictions as a fold library, we correctly detected the
remote homologue in 27% of the test cases at ®rst
rank (Table 1).

Prediction-based threading competitive with
other threading techniques

A recent analysis based on a small set of 11
structure families (Russell et al., 1996), suggested a



Table 2. Performance on a test set of 11 proteins used by Russell et al. (1996)

Homologous pairs PHDthreader Others
idSeq idRCB idStr pide zDALI R Z ali(%) RRCB RJTT

1bfg 4fgf 1irp 16 9.0 1 3.5 12 10 6
2fal 1mba 1hlb 13 15.4 1 5.0 58 1 1
1hnf 3cd4 15 12.7 2 2.3 0 1 >10
1lkkA 1shaA 2pna 24 9.5 1 4.1 60 >10 >10
2mhr 2hmqA 1ilk 16 2.8 1 2.8 0 2 >10
2pgd 1fps 11 2.8 2 2.4 0 1 2
1plc 1aac 21 11.0 1 4.2 75 2 1
1rcb 1fps 7 3.3 4 2.3 0 2 >10
1thx 2trxA 1trw 21 16.3 1 4.7 60 1 1
1ubi 1ubq 1frr 13 4.0 1 3.1 34 1 4
1ubsA 1wsyA 1nal 14 12.7 1 3.1 0 3 3

For some examples we used the representative of the family used by Russell et al. (1996) that we found in the current FSSP release
(Holm & Sander, 1994). Abbreviations: idSeq, PDB � chain identi®er for the search sequence; idRCB, family member used by Russell
et al. (1996); idStr, identi®er for the aligned homologue; R, rank of ®rst correct hit for our method; Z, z-score for our method; ali(%),
percentage of residues identical between predicted and structural alignment; RRCB, rank of ®rst correct hit for MAP method (Russell
et al., 1996); RJTT, rank of ®rst correct for THREADER method (Jones et al., 1992) (result taken from Russell et al. (1996)). Alignment
averages: hASi � 32%, hali%i � 27%, 5S4 � 16; zDALI, structural similarity (Holm & Sander, 1994).
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signi®cant detection accuracy (correct ®rst hits)
below 20% for the potential-based threading pro-
gram THREADER (Jones et al., 1992) . The predic-
tion-based threading method of Russell et al.
reached 37 to 45% accuracy. For the same 11 fa-
milies our method had 75% correct ®rst hits (one
standard deviation > 15%; Table 2). When (in retro-
spect) evaluating our method on the 11 threading
targets used for the Asilomar 1994 prediction con-
test (Moult et al., 1995) we had four ®rst hits cor-
rect (36%). However, other methods performed
better (Lemer et al., 1995): an expert-driven usage
of THREADER had more correct ®rst hits (Jones
et al., 1995), and the potential-based threading by
Sippl and colleagues obtained the best alignments
more accurately (FloÈckner et al., 1995). Fischer and
Eisenberg (Fischer & Eisenberg, 1996; Fischer et al.,
1996) have recently developed a method for pre-
diction-based threading that is very similar to the
one presented here They evaluated their own and
previous potential-based threading methods based
on a large set of 64 remote homologues and re-
ported 31% correct hits for potential-based thread-
ing (Bowie et al., 1990, 1991; LuÈ thy et al., 1991,
1992) and 48% correct hits for prediction-based
threading (Fischer & Eisenberg, 1996). This con-
®rms the conclusions suggested by the results pre-
sented here and previously (Rost, 1995a,b): in
correctly identifying the ®rst hit, prediction-based
threading is, at least, as accurate as potential-based
threading.

Correct prediction of 3D structure by remote
homology modelling for single cases

The correct detection of remote homology is the
precondition for remote homology modelling.
However, correct detection does not imply correct
alignments. On the contrary, for most correctly de-
tected remote homologues the alignment was, at
least, partially wrong (for one half of the hits cor-
rectly predicted at ®rst rank the identity between
predicted and structural alignment was above
50%; Table 3 of Rost, 1996c). The same is true for
most other threading techniques (FloÈckner et al.,
1995; Lemer et al., 1995; Shortle, 1995; Fischer &
Eisenberg, 1996; Russell et al., 1996). How can a
false alignment result in the detection of the true
remote homologue among a huge set of decoys?
The answer remains open.

Method available by automatic
prediction service

The prediction-based threading of 1D structure
pro®les (PHDthreader) is available via an auto-
matic prediction service (send the word help to the
internet address PredictProtein@EMBL-Heidel-
berg.DE, or use the World Wide Web (WWW) site
http://www.embl-heidelberg.de/predictprotein/).
By default, input strings (1D structure pro®le) are
generated by a PHD prediction; however, users
can also opt to provide their own predictions of
secondary structure and solvent accessibility.

Will threading replace structure determination?

The number of different protein folds is prob-
ably limited (Chothia, 1992). Thus, will threading
eventually close the sequence-structure gap by re-
mote homology modelling? Three reasons make
this appear an over-optimistic science ®ction.
(1) Correct alignments are still the exception rather
than the rule. (2) Even when the alignments are
correct, remote homology modelling at levels of
less than 30% pairwise sequence identity is yet
another unsolved problem (even for close homol-
ogues, modelling is not always successful). (3) The
more unique folds are contained in the database,
the more dif®cult the detection will become. This
was illustrated by the following experiment. We
aligned our 89 test proteins against three different
``fold libraries'': (1) the largest set of sequence-un-
ique proteins as of spring 1996 (723 chains; Rost,
1996a), (2) the largest set of 1995 (449 chains), and
(3) a set of unique folds (plus the detectable homol-

mailto:PredictProtein@EMBL-Heidelberg.DE
http://www.embl-heidelberg.de/predictprotein/
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ogues, 403 chains). The percentage of correctly de-
tected ®rst hits was inversely proportional to the
size of the data set: 29% (1), 31% (2) and 33% (3).
This result, probably, stems from the fact that the
selection procedure is non-linear. Thus, the likeli-
hood of random errors is increased by increasing
the fold library. In other words, we doubt that
threading is likely to close the sequence-structure
gap in the future, but it can contribute to bridging
it today.
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