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Abstract

The Constrained Multiple Sequence Alignment problem
is to align a set of sequences subject to a given constrained
sequence, which arises from some knowledge of the struc-
ture of the sequences. This paper presents new algorithms
for this problem, which are more efficient in terms of time
and space (memory) than the previous algorithms [14], and
with a worst-case guarantee on the quality of the alignment.
Saving the space requirement by a quadratic factor is par-
ticularly significant as the previous O(n4)-space algorithm
has limited application due to its huge memory requirement.
Experiments on real data sets confirm that our new algo-
rithms show improvements in both alignment quality and
resource requirements.

1. Introduction

Multiple sequence alignment (MSA) is one of the prob-
lems in computational biology that have been studied ex-
tensively [2, 5, 8, 6, 10, 12, 13]. Roughly speaking, given
a set of k ≥ 2 sequences, the MSA problem is to align
similar subsequences in the same region. From the com-
putational point of view, the optimal alignment of two se-
quences can be found in O(n2) time, where n is the length
of the longer sequence. Yet, for three or more sequences, it
has been proved that finding the optimal alignment is NP-
hard, i.e., intractable1 [2, 16]. In the literature, there are
a number of MSA algorithms that attempt to approximate
the optimal alignments, some of them can provide a worst-
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1There are several possible ways to define the optimal alignment. In
this paper we adopt the widely-used Sum-of-Pair (SP) score, which asks
for an alignment that minimizes the sum of the alignment cost of all pairs
of sequences.

case approximation ratio [1, 4, 11], while some others work
well in practice [9, 15]. Notice that with all these algo-
rithms, users (biologists) can only control the alignment re-
sults by adjusting parameters like the scoring function and
gap penalty. In other words, users could not incorporate
their knowledge of the functionalities or structures of the
input sequences, which is indeed very useful for accurate
and biologically meaningful alignment. This naturally trig-
gers the studies of sequence alignment that allows users to
provide additional constraints.

Tang et al. [14] were the first to investigate the MSA
problem with an additional input of a constrained sequence,
which imposes a structure on the alignment by requiring
every character in the constrained sequence to appear in an
entire column in the alignment of the multiple sequences.
As an example, Tang et al. considered the alignment of
RNase sequences. Such sequences are all known to contain
three active-site residues His(H), Lyn(K), His(H)
that are essential for RNA degrading. Therefore, one would
expect that in an alignment of RNase sequences, each of
these three residues should be aligned in the same col-
umn, i.e., an alignment satisfying the constrained sequence
“HKH”.

Tang et al. [14] presented the first algorithm for find-
ing an optimal constrained sequence alignment for two se-
quences; both the time and space (memory) requirements
of the algorithm are O(αn4), where α is the length of con-
strained sequence. For aligning k ≥ 3 sequences, they gave
a heuristic algorithm (called progressive alignment algo-
rithm) with time and space requirements being O(αkn4)
and O(αn4), respectively. When applied to align multi-
ple RNase sequences, this algorithm produces satisfactory
alignments. Yet the application of the algorithm is limited
as the memory requirement is too big and it runs too long.
For example, for aligning sequences of length 250 with a
constraint of length 3, the memory requirement already ex-
ceeds 15 Gigabytes. Nowadays ordinary workstations are
equipped with at most 4 Gigabytes.

This paper attempts to improve the results of Tang et al.
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Time Space Approx.
Ratio

Tang et al. ’s
algorithm O(αkn4) O(αn4) –
[14]
Improved
Tang et al. ’s O(αk2n2) O(αn2) –
algorithm
(this paper)

Center-star O(αCk2n2) O(αk2n2) 2 − 2
k

(this paper)

Figure 1. Performance of constrained multi-
ple sequence alignment approximation algo-
rithms.

from a theoretical as well as a practical point of view. For
pair-wise alignment, we give a new algorithm for finding
the optimal constrained alignment that uses O(αn2) time
and O(αn2) space. Based on this result, we can immedi-
ately improve the time and space complexities of the Tang
et al. ’s multiple sequence progressive alignment algorithm
by a quadratic factor. Furthermore, we give an algorithm,
called center-star, for constrained multiple sequence align-
ment with worst-case performance guarantee; more pre-
cisely, for aligning k sequences, the new algorithm can pro-
duce an alignment that approximates the optimal alignment
within a factor of (2− 2

k ). This algorithm adopts the frame-
work of Gusfield’s (unconstrained) multiple sequence align-
ment algorithm [4]. The time and space complexities of the
new algorithm are respectively O(αCk2n2) and O(αk2n2),
where C is the maximum number of occurrences of the
constraint in individual sequences. The improved memory
requirement allows us to handle sequences with thousands
of characters on ordinary workstations. See Figure 1 for a
summary of these results.

We have implemented all the algorithms mentioned
above and tested them with several real data sets. In all data
sets, the center-star algorithm shows improvement in all as-
pects. In particular, the quality of the alignment is 15% to
30% better, while the memory requirement is at most one-
hundredths of Tang et al. ’s algorithm. Results are briefly
summarized in Figure 2. More details will be given in Sec-
tion 5.

The rest of this paper is organized as follows. Section 2
defines the constrained sequence alignment, and Section 3
presents the new optimal constrained pair-wise sequence
alignment algorithm. Section 4 presents algorithms for con-
strained multiple sequence alignment. In particular, an ap-
proximation algorithm is given with an approximation ra-
tio (2 − 2

k ). We report empirical results of our developed

No. sequences 7 6 6 5
Max length 125 185 186 327

Constraint (α) 3 3 4 3

Tang’s score 46319 71208 63315 ***
Ctr-star score 40051 49874 45241 57325

Tang’s time (sec) 127 381 254 ***
Ctr-star time (sec) 25 77 82 482

Tang’s space (MB) 425 1192 654 ***
Ctr-star space (MB) 4.2 2.8 3.1 6.2

*** – Memory exhausted

Figure 2. Alignment scores of CMSA algo-
rithms

CMSA tools in Section 5. Finally, we conclude this paper
by giving some further research directions in CMSA.

2. Preliminaries

Let Σ be the set of characters (residues), S =
{S1, S2, ..., Sk} be a set of k sequences, with maximum
length n, over Σ. Let Si[x..y] denote the sub-string of Si

starting at the x-th character to the y-th character of Si,
where 1 ≤ x < y ≤ n. In particular, let Si[x] denote
the x-th character in the sequence Si.

We define the pair-wise sequence alignment of two se-
quences S1 and S2 as two equal-length sequences S′

1 and
S′

2 such that |S′
1| = |S′

2| = n′, and removing all space char-
acters “−” from S′

1 and S′
2 gives S1 and S2 respectively.

For a given distance function δ(x, y) which measures the
mutation distance between two characters (residues), where
x, y ∈ Σ ∪ {−}, the pair-wise score of two length-n′ se-
quences S′

1 and S′
2 is defined as

∑
1≤x≤n′ δ(S′

1[x], S′
2[x]).

In the multiple sequence alignment (MSA) problem, we are
given k sequences S = {S1, S2, . . . , Sk}, an MSA is an
alignment matrix A, with k rows and n′(≥ n) columns, such
that removing space characters from the i-th row of A gives
Si for 1 ≤ i ≤ k. The sum-of-pair (SP) score of an MSA is
defined as the sum of the pair-wise scores of all pairs of the
sequences,

∑
1≤p<q≤k

∑
1≤x≤n′ δ(Ap,x, Aq,x) where each

row of the alignment matrix is treated as a sequence, Ap

is the p-th row of the alignment matrix A and Ap,x is the
character at the p-th row and the x-th column of A. It is
shown in [2, 16] that finding an alignment matrix with the
minimum sum-of-pair alignment score is NP-complete.

In the constrained multiple sequence alignment prob-
lem (CMSA), we are given, in addition to the inputs
of the MSA problem, a constrained sequence P =
(P [1], P [2], . . . , P [α]), where P is a common subsequence
of Si ∈ {S1, S2, . . . , Sk}. The solution of a CMSA prob-
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lem is a constrained alignment matrix A which is an align-
ment matrix such that each character in P appears in an
entire column of A and also in the same order, i.e. there ex-
ists a list of integers {c1, c2, . . . , cα} where 1 ≤ c1 < c2 <
. . . < cl < . . . < cα ≤ n′, and for all 1 ≤ i ≤ k and all
1 ≤ l ≤ α, we have Aicl

= P [l].
Let A be a constrained alignment matrix for S =

{S1, S2, . . . , Sk} and the constrained sequence P . Define
sp score(A) as the SP score of the constrained alignment
matrix A. Let A∗

s be the optimal constrained alignment ma-
trix for S and A′

s be the constrained alignment matrix de-
rived by some approximation algorithm. The approxima-
tion algorithm is said to have an approximation ratio φ if
and only if for all S and P ,

sp score(A′
s)

sp score(A∗
s)

≤ φ.

3. Constrained Pair-wise Sequence Alignment
(CPSA)

3.1. Problem definition

The constrained pair-wise sequence alignment (CPSA)
problem is a special case for CMSA problem with k = 2.
Given two sequences S1 and S2, a constrained se-
quence P (with length α) and a distance function δ, the
problem is to compute an optimal CPSA, (S′

1
S′

2
), such that

|S′
1| = |S′

2| = |n′|, and
∑

1≤i≤n′ δ(S′
1[i], S

′
2[i]) is mini-

mized subject to P [γ] = S′
1[cγ ] = S′

2[cγ ] for 1 ≤ γ ≤ α,
and 1 ≤ c1 < c2 < . . . < cα ≤ n′. Note that removing all
spaces in S′

1 and S′
2 gives S1 and S2 respectively.

3.2. Optimal Constrained Pair-wise Sequence
Alignment

The optimal constrained pair-wise algorithm presented
in [14] has time and space complexities O(αn4) and
O(αn4), respectively. This algorithm first computes the
O(n4) pair-wise alignment scores of all substrings in S1

and all substrings in S2 and then further determines the best
positions such that the constrained characters are aligned.
The overall time complexity is O(αn4). To improve the
time complexity, our algorithm takes into consideration the
constrained alignment as we compute the alignment score.
This approach makes it not necessary to consider all the
pair-wise alignments between every pair of substrings of S1

and S2, and thus, facilitates the reduction in the time com-
plexity.

Below we show how to compute the sum-of-pair score
of the optimal CPSA by dynamic programming and how to
obtain the alignment by backtracking through the path of
computation of the score. Recall that for any sequence S,

S[x..y] denotes the substring of S starting at the x-th char-
acter and ending at the y-th character of S. The dy-
namic programming computes the optimal CPSA incremen-
tally by considering the pair-wise alignment of S1[1..1]
with S2[1..1], . . ., S1[1..i] with S2[1..j] and so on, for
1 ≤ i ≤ |S1| and 1 ≤ j ≤ |S2|.

We define D(i, j, γ) to be the optimal constrained pair-
wise sequence alignment score of sequences S1[1..i] and
S2[1..j] with constrained characters P [1..γ] matched. In
particular, D(n1, n2, α) is the optimal CPSA score of S1

and S2 with respect to the constrained sequence P , where
|S1| = n1, |S2| = n2 and |P | = α. The following
theorem gives a recurrence formula for D(i, j, γ) in terms
of D(i′, j′, γ′) with smaller i′, j′ and γ′ values.

Theorem 3.1 For any 0 ≤ i ≤ n1, 0 ≤ j ≤ n2 and 0 ≤
γ ≤ α, D(i, j, γ) =

min




D(i − 1, j − 1, γ − 1) + δ(S1[i], S2[j])
if S1[i] = S2[j] = P [γ],

D(i − 1, j − 1, γ) + δ(S1[i], S2[j])
if i, j > 0,

D(i − 1, j, γ) + δ(S1[i],−)
if i > 0,

D(i, j − 1, γ) + δ(−, S2[j])
if j > 0.

with boundary conditions
D(0, 0, 0) = 0,
D(i, 0, γ) = ∞ for γ ≥ 1, 0 ≤ i ≤ n1, and
D(0, j, γ) = ∞ for γ ≥ 1, 0 ≤ j ≤ n2.

Proof. To align {S1[1..i], S2[1..j]} with P [1..γ] in γ
columns, there are four possible cases.

• If S1[i] = S2[j] = P [γ], we can align S1[i] and S2[j]
with P [γ] while aligning {S1[1..(i−1)], S2[1..(j−1)]}
with P [1..(γ−1)]. Then, the score is D(i−1, j−1, γ−
1) + δ(S[i], S[j]).

• If i, j > 0, we can align S1[i] and S2[j] while aligning
{S1[1..(i− 1)], S2[1..(j − 1)]} with P [1..γ]. Then the
score is D(i − 1, j − 1, γ) + δ(S[i], S[j]).

• If i > 0, we can align S1[i] with a space while aligning
{S1[1..(i− 1)], S2[1..j]} with P [1..γ]. Then the score
is D(i − 1, j, γ) + δ(S[i],−).

• Similarly, if j > 0, we can align S2[j] with a space
while aligning {S1[1..i)], S2[1..(j−1)]} with P [1..γ].
Then the score is D(i, j − 1, γ) + δ(−, S[j]).

The alignment to be chosen is the one such that the new
score is the minimum. Therefore, D(i, j, γ) can be com-
puted by taking the minimum of the above four values. �
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Algorithm 1 The dynamic programming algorithm for the
optimal CPSA score.

1. Initialize D(0, 0, 0) = 0, D(i, 0, γ) = ∞, and
D(0, j, γ) = ∞ for 0 ≤ i ≤ n1, 0 ≤ j ≤ n2, and
1 ≤ γ ≤ α.

2. For γ = 0 to α do

For i = 0 to n1 do

For j = 0 to n2 do

If D(i, j, γ) is not initialized, compute D(i, j, γ)
according to Theorem 3.1 in terms of D(i−1, j−
1, γ − 1), D(i − 1, j − 1, γ), D(i − 1, j, γ) and
D(i, j − 1, γ).

Based on Theorem 3.1, we can compute the sum-of-pair
score of the optimal CPSA using dynamic programming
(see Algorithm 1).

After filling in the three dimensional table D(i, j, γ), we
can obtain the CPSA by backtracking through the compu-
tation path from D(n1, n2, α) to D(0, 0, 0). Let S′

1 and S′
2

be the aligned sequence for S1 and S2, respectively. Ini-
tially, set S′

1 and S′
2 to two empty strings, and start back-

tracking from D(n1, n2, α). If D(i, j, γ) is computed from
D(i − 1, j − 1, γ) or D(i − 1, j − 1, γ − 1), prepend S1[i]
and S2[j] to S′

1 and S′
2, respectively. If D(i, j, γ) is com-

puted from D(i − 1, j, γ), prepend S1[i] and a space to
S′

1 and S′
2, respectively. If D(i, j, γ) is computed from

D(i, j − 1, γ), prepend a space and S2[j] to S′
1 and S′

2,
respectively. Repeat backtracking until reaching D(0, 0, 0),
and (S′

1
S′

2
) is the optimal constrained sequence alignment of

{S1, S2} with P .

Theorem 3.2 The optimal constrained pair-wise alignment
can be computed in both O(αn1n2) time and space, where
|S1| = n1, |S2| = n2 and |P | = α.

Proof. The 3-dimensional table D is of size [(n1+1)×(n2+
1) × (α + 1)]. The computation of each entry D(i, j, γ)
needs only the values of D(i − 1, j − 1, γ − 1), D(i −
1, j − 1, γ), D(i − 1, j, γ) and D(i, j − 1, γ), thus, each
D(i, j, γ) can be computed in constant time. Therefore, the
optimal CPSA score of two sequences of lengths n1 and n2

and constrained sequence P of length α can be computed
in O(αn1n2) time.

On the other hand, in each step of the backtracking from
D(n1, n2, α) to D(0, 0, 0), at least one of the indexes i, j
or γ decreases by one. Thus, there are at most α + n1 + n2

steps. Notice that each step takes constant time. Therefore,
the backtracking takes O(α + n1 + n2) time. Thus, the
whole algorithm takes O(αn1n2) time.

Table D has O(αn1n2) entries; each entry D(i, j, γ) re-
quires constant amount of space (for storing the alignment
score and the direction of the computation path). Therefore,
the algorithm requires O(αn1n2) space. Thus, the theorem
follows.

�

4. Constrained Multiple Sequence Alignment

In this section, we study the constrained multiple se-
quence alignment problem. In Section 4.1, we reduce
the time and space complexities of the progressive CMSA
heuristic algorithm presented in [14] from O(αkn4) to
O(αk2n2). In Section 4.2, we show an algorithm that
computes the optimal CMSA in O(αnk) time based on the
sum-of-pair score. In Section 4.3, we apply the center-star
approximation algorithm [4] to the CMSA problem, and
show that the constrained version of the center-star algo-
rithm achieves an approximation ratio (2− 2

k ) in time com-
plexity O(αCk2n2), where C is the maximum number of
occurrences of constraint P in S. Throughout this section,
we assume that the distance function δ(x, y) follows the tri-
angular inequality, i.e. δ(x, y) ≤ δ(x, z) + δ(z, y), for any
x, y, z ∈ Σ

⋃{−}, and δ(−,−) = 0.

4.1. Improved Progressive CMSA Algorithm

Tang et al. [14] presented an O(αkn4) time and O(αn4)
space progressive heuristic algorithm for the CMSA prob-
lem for a set of k sequences of length at most n and a con-
strained sequence P of length α. In Tang et al. ’s algorithm,
a k × k distance matrix of the k sequences is constructed,
where the (i, j) entry represents the pair-wise sequence
alignment score of Si and Sj (note that this alignment score
does not consider the constrained sequence P ). A min-
imum spanning tree (MST) is then constructed using the
Kruskal algorithm [3] based on the distance matrix of these
sequences. Sequences are then progressively aligned using
the CPSA algorithm in the order of the construction of MST.
This algorithm performs exactly (k − 1) constrained pair-
wise sequence alignments. By using the constrained pair-
wise alignment algorithm described in Section 3.2, the time
and space complexities can be improved from O(αkn4) and
O(αn4) to O(αk2n2) and O(αn2) respectively.

4.2. An Algorithm for the Optimal CMSA

In this section, we extend the optimal CPSA algorithm
described in Section 3.2 to k sequences. This involves the
construction of a (k + 1)-dimensional matrix D, which
takes O(αnk) time and space. More precisely, let the
multi-dimensional array D(i1, i2, . . . , ik; γ) be the optimal
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CMSA score matrix for {S1[1..i1], S2[1..i2], . . . , Sk[1..ik]}
with P [1..γ] aligned in γ columns. Then the optimal align-
ment score for {S1 . . . Sk} with respect to the constrained
sequence P is given by D(n1, n2, . . . , nk; α), where ni =
|Si| for 1 ≤ i ≤ k. D(i1, i2, . . . , ik, γ) can be computed by
the following recurrence:

i) D({0}k; 0) = 0
ii) D(i1, i2, . . . , ik; γ) =

min




D(i1 − 1, i2 − 1, . . . , ik − 1; γ − 1)
+ δ(S1[i1], S2[i2], . . . , Sk[ik])
if S1[i1] = S2[i2] = . . . = Sk[ik] = P [γ],

min
ε∈{0,1}k

(D(i1 − ε1, i2 − ε2, . . . , ik − εk; γ)

+ δ(ε1S1[i1], ε2S2[i2], . . . , εkSk[ik])),
where εj = 0 or 1, εjSj [ij ] with εj = 0 represents a space
character, and δ(x1, . . . , xk) =

∑
1≤i<j≤k δ(xi, xj).

Based on the above recurrence, we have a dynamic pro-
gramming that computes the optimal CMSA for multiple
sequences, which is a generalization of the dynamic pro-
gramming for the CPSA problem. Practically, optimal
CMSA can be computed for less than 6 short sequences of
length at most 200 [7]. In the following section, we present
another approximation algorithm for the CMSA problem.

4.3. The Center-star Alignment Approximation for
CMSA

For the unconstrained multiple sequence alignment prob-
lem, Gusfield [4] presented the center-star algorithm which
is an approximation algorithm with an approximation ratio
(2− 2

k ). Based on the center-star approximation algorithm,
we derive an approximation algorithm for CMSA that yields
an approximation ratio (2 − 2

k ).
For a set of k sequences S = {S1 . . . Sk}, the center

sequence Sc ∈ S is the sequence such that the sum of con-
strained pair-wise alignment scores to the other (k − 1) se-
quences is minimized, with the additional constraint that P
must appear in the same list of positions of Sc in every con-
strained pair-wise alignment of Sc with Sj , where j �= c.

The star-sum score of a CMSA with respect to a center
sequence Sc is the sum of pair-wise score of Sc with all
Sj ∈ S − {Sc}. The constrained center-star approximation
algorithm is to find the CMSA and its center sequence Sc

such that the star-sum score with respect to Sc is minimized.

The constrained version of the center-star approxima-
tion algorithm

i) For each Si in S, treat Si as the center sequence Sc

and for each list of positions (c1, c2, . . . , cα) that Sc

is aligned with P , i.e. P [γ] = Sc[cγ ] ∀ 1 ≤ γ ≤ α,
align all other Sj with Sc at the positions specified by
(c1, c2, . . . , cα).

ii) Find the Sc and (c1, c2, . . . , cα) with the minimum
star-sum score.

iii) Merge the (k − 1) constrained pair-wise sequence
alignments between Sc and other Sj under the posi-
tions (c1, c2, . . . , cα) into a constrained alignment ma-
trix.

We elaborate on steps (i) to (iii) of the above algorithm
in the discussion below.

Aligning a sequence and the center sequence with a list
of constrained positions Without loss of generality, as-
sume that the center sequence is S1. Given c1, c2, . . . , cα,
we perform the CPSA algorithm of S1 to S2 . . . Sk un-
der (c1, c2, . . . , cα), using a slightly modified recurrence in
Theorem 3.1, treating Sc as S1 and Si as S2 (2 ≤ i ≤ k).
D(i, j, γ) =

min




D(i − 1, j − 1, γ − 1) + δ(S1[i], S2[j])
if cγ = i, S1[i] = S2[j] = P [γ],

D(i − 1, j − 1, γ) + δ(S1[i], S2[j])
if i, j > 0,

D(i − 1, j, γ) + δ(S1[i],−)
if i > 0,

D(i, j − 1, γ) + δ(−, S2[j])
if j > 0.

.

Suppose n1 = |S1| and n2 = |S2|. Notice that using the
above recurrence, for any 1 ≤ γ ≤ α, the computation path
from D(n1, n2, α) to D(0, 0, 0) must pass through some
points D(cγ , j, γ) with 1 ≤ j ≤ n2. This implies that the
alignment occurs in S1 at the positions (c1, c2, . . . , cα).

Optimal center sequence & the constrained positions
Consider each sequence Si and a list of positions of oc-
currence (c1, c2, . . . , cα) of P in Si where 1 ≤ i ≤ k.
The combination (Si; c1, c2, . . . , cα) that gives the mini-
mum sum of constrained pair-wise alignment scores with
other sequences under the positions (c1, c2, . . . , cα) is se-
lected as the center sequence Sc and the list of positions to
be aligned with P . The time for locating (Sc; c1, c2, . . . , cα)
is then O(αkCn2) for k sequences, where C is the maxi-
mum number of sets of positions that P appears in each
sequence.

Merging the (k − 1) constrained pair-wise alignments
Based on the optimal center sequence, we construct a
CMSA, denoted by A. Suppose the center sequence of S
is S1 under a list of positions (c1, c2, . . . , cα). There are
(k − 1) constrained pair-wise alignments, one for S1 align-
ing with Sj , for 2 ≤ j ≤ k. Suppose |S1| = n, and
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let A1,j be the optimal constrained pair-wise alignment of
S1 and Sj under (c1, c2, . . . , cα). Define s0 and sn be the
longest sequences of spaces inserted before S1[1] and af-
ter S1[n] in all (k − 1) A1,j’s, respectively. Similarly for
1 ≤ i ≤ n − 1, let si be the longest sequence of spaces be-
tween S1[i] and S1[i + 1] in all (k − 1) A1,j’s. Initially, set
A to contain a single row S′

1 = [s0 ⊕ S1[1] ⊕ s1 ⊕ S1[2] ⊕
. . . ⊕ si−1 ⊕ S1[i] ⊕ si ⊕ . . . ⊕ S1[n] ⊕ sn], where the ⊕
operator denotes the string concatenation operation. Notice
that |S′

1| = |S1| +
∑

0≤i≤n |si|.
For each Sj with 2 ≤ j ≤ k, add Sj to A according to

the optimal constrained pair-wise sequence alignment of S1

and Sj , ( S̄1
S̄j

), i.e. insert columns of spaces to ( S̄1
S̄j

) until S̄1

is identical to S′
1.

Notice that the insertion of spaces during the construc-
tion of A does not change the pair-wise alignment score
of S1 with each of the other sequences with respect to P un-
der the positions (c1, c2, . . . , cα). Therefore, A is the con-
strained multiple sequence alignment for S = {S1, . . . , Sk}
and P with the minimum star-sum score.

Performance of the constrained version of the center-
star algorithm The following theorem shows that the
center-star approximation algorithm for CMSA has an ap-
proximation ratio (2 − 2

k ). Define the distance ∆(S′
i, S

′
j)

of two aligned sequences S′
i and S′

j as the sum of pair-wise
distances between the two characters at the same positions
in S′

i and S′
j , i.e., ∆(S′

i, S
′
j) =

∑
1≤p≤|S′

i
| δ(S

′
i[p], S′

j [p]).

Theorem 4.1 Given S = {S1, . . . , Sk} and a constrained
sequence P . Suppose As is the alignment output by
the constrained center-star algorithm, A∗ be the opti-
mal constrained alignment with respective to P . Then,
sp score(As)
sp score(A∗) ≤ 2 − 2

k .

Proof. For any alignment matrix A, let ss scorei(A) be
the star-sum score of A with the row Ai as the center se-
quence. Let As

c be the optimal center sequence of As.
Since A∗ is a CMSA for S and P , sp score(A∗) =∑

1≤i<j≤k ∆(A∗
i , A

∗
j ). Then,

sp score(A∗)
= 1

2

∑
1≤i,j≤k,i �=j ∆(A∗

i , A
∗
j )

= 1
2

∑
1≤i≤k (

∑
1≤j≤k,i �=j ∆(A∗

i , A
∗
j ))

= 1
2

∑
1≤i≤k (ss scorei(A∗))

≥ k
2 min1≤i≤k (ss scorei(A∗))

≥ k
2 (ss scorec(As)).

On the other hand,
sp score(As)

= 1
2

∑
1≤i,j≤k ∆(As

i , A
s
j)

≤ 1
2

∑
1≤i,j≤k (∆(As

i , A
s
c) + ∆(As

c, A
s
j))

= 2(k−1)
2

∑
1≤i≤k,i �=c ∆(As

i , A
s
c)

= (k − 1)(ss scorec(As)).

Note that the inequality above (i.e., from line 2 to line 3) is
due to the triangular inequality. Therefore, sp score(As)

sp score(A∗) ≤
2(k−1)

k = 2 − 2
k , and the theorem follows. �

5. Empirical Results

In Section 5.1, we first evaluate the performance of
our CPSA algorithm. We then evaluate the performance
of (i) constrained center-star approximation algorithm, (ii)
the improved progressive alignment, and (iii) the original
CMSA algorithm presented in [14], on four sets of RNase
sequences taken from the NCBI2. In Section 5.2, we show
that, in practice, C, the maximum number of occurrences
of the constrained sequence as a sub-sequence in the input
sequences, is relatively small compared to O(n2).

5.1 Experiments on CMSA Algorithms

All our experiments are conducted on an Intel worksta-
tion of 2.0 GHz CPU with 4GB of main memory. First,
we use CPSA to align two RNase sequences (with lengths
about 150) with three constrained characters (α = 3), using
our CPSA algorithm (Section 3.1) and the constrained pair-
wise sequence algorithm in [14] with 3 constrained charac-
ters. The CPSA algorithm presented in [14] took 127 sec-
onds and 400 MB memory. For the same problem instance,
our CPSA algorithm runs within a fraction of second with
only 1.5 MB of memory space. This shows the practicality
of our CPSA algorithm especially for long sequences and
long constrained sequence.

To evaluate the performance of different CMSA algo-
rithms, we implemented the original Tang et al. ’s progres-
sive CMSA algorithm [14] and our constrained center-star
and the improved progressive CMSA algorithms. We ran
these CMSA algorithms on four sets of RNase sequences.
In data set 0, we used the same set of 7 RNase sequences
used in [14]. We obtained 3 other data sets of RNase se-
quences from the NCBI; data sets 1 and 2 contain 6 RNase
sequences of lengths about 180, and data set 3 consists of 5
long RNase sequences (with maximum length 327). Since
we cast the CMSA as a minimization problem, we used a
modified scoring function based on Pam70. These four
data sets were aligned using the CMSA algorithms, mea-
suring the running time, memory requirement and the mod-
ified minimizing-Pam70 alignment score. These alignments
were then post-processed using the web-tool ClustalW3 as
described in [14]. The performance of these three CMSA
algorithms is shown in Figure 3. The alignments of data

2National Center of Biotechnology Information, URL:
http://www.ncbi.nlm.nih.gov.

3The ClustalW web tool is provided by European Bioinformatics Insti-
tute, URL: http://www.ebi.ac.uk/clustalw/.
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Tang’s Alg. Center-star Alg.
Score Score

Data set 0 38668 38668
Data set 1 69368 47216
Data set 2 63315 31776
Data set 3 62966 59021

Figure 4. Alignment scores of the two algo-
rithms after the refinement by ClustalW

sets 0 to 3 using the constrained center-star algorithm are
shown in Figures 6 to 9. Due to the page limit, the align-
ment matrices are divided into blocks of 40 characters, the
first 40 characters of each sequence are listed first before
the subsequent blocks. Columns that match the constrained
characters are marked by an asterisk (*).

Comparing the alignment matrices produced by center-
star approximation algorithm and Tang et la.’s progressive
CMSA algorithm [14] in data sets 1, 2 and 3, we note that
the constrained characters P [1]..P [α] are aligned at dif-
ferent columns of the alignment matrices. Computation-
ally, the center-star approximation algorithm for CMSA
produces sequence alignments with better SP alignment
scores (see Figure 3).

5.2 Number of Constraint Occurrences

We refer to [14] for an application used for CMSA.
In their experiments, 7 RNase sequences were aligned so
that the three active-site residues, HKH, were in the same
columns in the alignment matrix. This motivates the CMSA
problem as all RNase sequences contain the active-site
residues HKH that are essential for the main functionality
of the RNase, degrading to RNA. In our experiment, we
show that the number of occurrences (C) of the constraint
HKH in each sequence is reasonably small. Since the value
of C is relatively small, the running time of our center-star
algorithm is more efficient than the O(αkn4) algorithm de-
scribed in [14]. There are total 2869 sequences from the
NCBI. In these 2869 RNase sequences, a total of 2266 se-
quences, or 78%, contained less than 500 residues. For each
RNase, we measured the mean, mode and average number
of occurrences of the constraint HKH and the result is re-
ported in Figure 5.

CMSA is usually done for a set of sequences of approx-
imately the same length. As shown in the Figure 5, for
CMSA of sequences with length below 500, C = 105 on
average and C ≤ 241 for 90% of these sequences. Even
among the longer RNase sequences, the average number of
occurrences is only about 464. Thus, running time of our
center-star algorithm has time complexity O(500αk2n2) on
average which is much shorter compared to the running

No. samples 1954 2351
Percentage 83.11% 100.0 %
Max sequence length 500 3989
Median Occurrences 42 56
Average Occurrences 105 464
80 Percentile 124 413
90 Percentile 241 1248

Figure 5. Occurrences of constraint “HKH” in
RNase sequences

time of O(αkn4) in [14].

6. Conclusion

Using traditional MSA tools, biologists have limited
control over the output of the sequence alignment. They
can only choose high level alignment parameters such as
gap penalty, scoring function etc. As such, they are unable
to incorporate their knowledge about the sequences, such as
known functionalities and structures of the input sequences
for use by the sequence alignment tool. This information is
essential for accurate and biologically meaningful sequence
alignment. Constrained sequence alignment provides users
with the ability to differentiate important residues that need
to be aligned together over other residues. This problem
was first studied by [14]. However, many existing tech-
niques developed for MSA in the literature do not work for
the CMSA problem due to the time and space complexities
of O(αn4). In this paper, we reduce the time and space
complexities of solving the optimal pair-wise constrained
alignment from O(αn4) to O(αn2). With this improve-
ment, existing techniques for MSA can now be modified
to solve the CMSA problem. We have demonstrated how
the center star sequence approximation algorithm can be ap-
plied to solve the CMSA problem. With the reduction in
time and space complexities, it is hoped that the improved
quality of sequence alignment can help biologists.
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Data set 0
Number of sequences : 7
Max sequence length : 125
Constrained sequence : HKH
Sequence ID

Seq1: H-RNase3
Seq2: H-RNase2
Seq3: BP-RNaseA
Seq4: BS-RNase
Seq5: H-RNaseA
Seq6: H-RNase4
Seq7: RC-RNase

*
-K--E-TA-A-AK-FERQHMDSSTSAASSSNYCNQMMKSR
-RPPQFTR-A-QW-FAIQHI-S-LNPPR----CTIAMRAI
MK--P-PQFTWAQWFETQHINM-TSQQCN-N-AMQVI-N-
-K--E-SA-A-AK-FERQHIDSSTSSVSSSNYCNEMMTSR
-K--E-SR-A-KK-FQRQHMDSDSSPSSSSTYCNQMMRRR
-M--Q-DG-MYQR-FLRQHVHPEETGGSDR-YCNLMMQRR
----Q-NW-A-T--FQQKHI-INTPIINC-N--TIMDNNI

*
NLTKDRCKPVNTFVHESLADVQAVCSQKNVAC-KN-GQT-
NNYRWRCKNQNTFLRTTFANVVNVCGNQSIRC-PH-NRTL
NFQR-RCKNQNTFLRTTFANVVNVCGNPNITCPSNRSRN-
NLTQDRCKPVNTFVHESLADVQAVCSQKNVAC-KN-GQT-
NMTQGRCKPVNTFVHEPLVDVQNVCFQEKVTC-KN-GQG-
KMTLYHCKRFNTFIHEDIWNIRSICSTTNIQC-KN-GKM-
YIVGGQCKRVNTFIISSATTVKAICT--GVIN-MN-VLS-

N-CYQSYSTMSITDC--R-ETGSSKY-PNCAYKTTQANKH
NNCHRSRFRVPLLHCDLI-NPGAQNI-SNCRYADRPGRRF
N-CHHSGVQVPLIHC--NLTTPSPQNISNCRYAQTPANMF
N-CYQSYSAMSITDC--R-ETGNSKY-PNCAYQTTQAEKH
N-CYKSNSSMHITDC--R-LTNGSRY-PNCAYRTSPKERH
N-CHEG--VVKVTDC--R-DTGSSRA-PNCRYRAIASTRR
T--TR-FQ-LN-T-C--T-RTSITPR-P-CPYSSRTETNY

*
IIVACEG-NP------Y-V-PVHFDA-S--V
YVVACDNRDPRDSPR-YPVVPVHLDT-T--I
YIVACDNRDPRRDPPQYPVVPVHLD--R--I
IIVACEG-NP------Y-V-PVHYDA-S--V
IIVACEG-SP------Y-V-PVHFDA-S--V
VVIACEG-NP------Q-V-PVHFDG-----
ICVKCE--NQ------Y---PVHFAGIGRCP

Figure 6. Alignment of 7 sequences in data
set 0, with P =HKH
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Data set 1
Number of sequences : 6
Max sequence length : 185
Constrained sequence : HKH
Sequence ID

Seq1: gi|119124|sp|P12724|ecp_human
Seq2: gi|2500564|sp|P70709|ecp_rat
Seq3: gi|13400006|pdb|ldyt|
Seq4: gi|20930966|ref|xp_142859.1|
Seq5: gi|20873960|ref|xp_127690.1|
Seq6: gi|20930966|ref|xp_142859.1|

Seq1: ------------------MVIS---PGSLLLVFLLS--LD
Seq2: ----------------------------------------
Seq3: ------------------MTMS---PCPLLLVFVLG--LV
Seq4: ------------------MVVD---LPRYLPLLLL---LE
Seq5: ---------------MKPLVIKFAWPLPLLLLLLLPPKLQ
Seq6: MDDEWERPEQATSAAEHPHTAA---QAAYNLADKLG--LE

Seq1: V--IPP-TLAQDNYRYKNFL---N---QH-YDAKP-TGRD
Seq2: ----------KET-AAAKFE---R---QH-MDSSTSAASS
Seq3: V--IPP-TLAQNE-RYEKFL---R---QH-YDAKP-NGRD
Seq4: L--WEP-MYLLCS-QPKGLS---R---AHWFEIQH-VQTS
Seq5: GNYWDFGEYELNP-EVRDFI---R---EYESTGPTKPPTV
Seq6: VPSWNPTTSSLRQ-KDRKLESNPRPAPSQKFYTEPIHNST

*
Seq1: YRYCESMMKK-RKLT--SPCK-EVNT-FIH----------
Seq2: SNYCNQMMKS-RNLTK-DRCK-PVNT-FVH----------
Seq3: DRYCESMMKE-RKLT--SPCK-DVNT-FIH----------
Seq4: RQPCNTAMRGVNNYT--QHCK-QINT-FLH----------
Seq5: KRIIEMITIGDQPFNDYDYCNTELRTKQIHYKGRCYPEHY
Seq6: YPRCDDPMLVVNRYR--PRCK-DIDT-FLH----------

Seq1: ---DTKNNIKAICGENGRPYGVNLRI-SNSRFQ---ITTC
Seq2: ---ESLADVQAVCSQKNVACKNGQTN-CYQSYSTMSITDC
Seq3: ---GTKKNIRAICGKKGSPYGENFRI-SNSPFQ---ITTC
Seq4: ---ESFQNVAATCSLHNITCKNGRKN-CHESAEPVKMTDC
Seq5: IAGVPYGELVKACDGEEVQCKNGVKS-CRRSMNLIEGVRC
Seq6: ---TSFANV-GVCGHPSGFCKEHKSANCHNSSSQVPIIVC

*
Seq1: KHKG-GSPKPPCQYKAF---K-DFR--YIVIACE-----D
Seq2: RETG-SSKYPNCAYKTTQANK------HIIVACE-----G
Seq3: THSG-ASPRPPCGYRAF---K-DFR--YIVIACE-----D
Seq4: SHTG-GA-YPNCRYSSD---K-QYK--FFIVACEH-PKKE
Seq5: VLET-GQQMTNCTY------KTILMIGYPVVSCQW--DEE
Seq6: NLTTPGRTYTQCRYQM----KGSVE--YYTVACKPRTPWD

*
Seq1: G--W---PVHFDESFISM
Seq2: NP-Y--VPVHFDAS-V--
Seq3: G--W---PVHFDESFISP
Seq4: DPPYQLVPVHLDKI-V--
Seq5: TKIF--IPDHIYNMSLPK
Seq6: SPIYPVVPVHLHGT-F--

Figure 7. Alignment of 6 sequences in data
set 1, with P =HKH

Data set 2
Number of sequences : 6
Max sequence length : 186
Constrained sequence : HKSH
Sequence ID

Seq1: gi|20930966|ref|XP_142859.1|
Seq2: gi|119124|sp|P12724|ECP_HUMAN
Seq3: gi|2500564|sp|P70709|ECP_RAT
Seq4: gi|13400006|pdb
Seq5: gi|20930966|ref|XP_142859.1|
Seq6: gi|20873960|ref|XP_127690.1|

Seq1: MVPKLFTSQICLLLLLGLMGVEGSLHARPPQFTRAQWFAI
Seq2: MGLKLLESRLCLLLSLGLVLMLAS--CQPP--TPSQWFEI
Seq3: ---------------------------RPPQFTRAQWFAI
Seq4: MGSKTLKSQLCLLLLLGLLLMLVSCQAQTP--S--QWFEI
Seq5: MVVDL-PRYLPLLLLLELWEPMYLLCSQPKGLSRAHWFEI
Seq6: MGSKTLKSQLCLLLLLGLLLMLVSCQAQTP--S--QWFEI

* *
Seq1: QHISLNP-PRCTIAMRAINNYR--W--RC-KNQNTFLRTT
Seq2: QHIYNRAYPRCNDAMRHRNRFT--G--HC-KDINTFLHTS
Seq3: QHISLNP-PRCTIAMRAINNYR--W--RC-KNQNTFLRTT
Seq4: QHIYNSAYPRCDDAMRVIHGYSGVYLQRQEK----Y-K--
Seq5: QHVQTSR-QPCNTAMRGVNNYT--Q--HC-KQINTFLHES
Seq6: QHIYNSAYPRCDDAMRVIHGYSGVYLQRQEK----Y-K--

*
Seq1: FANVVNVCGNQSIRCPHNRTLNNCHRSRFRVPLLHCDLIN
Seq2: FASVVGVCGNRNIPCG-NRTYRNCHNSRYRVSITFCNLTT
Seq3: FANVVNVCGNQSIRCPHNRTLNNCHRSRFRVPLLHCDLIN
Seq4: -------C--------HD-S-S----SK--IPVIICDLIT
Seq5: FQNVATCSLHN-ITCKNGR--KNCHESAEPVKMTDCSHTG
Seq6: -------C--------HD-S-S----SK--IPVIICDLIT

Seq1: PGAQNISNCRYADRPGRRFYVVACDNRDPRDSPRYPVVPV
Seq2: P-ARIYTQCRYQTTRSRKFYTVGCDPRTPRDSPMYPVVPV
Seq3: PGAQNISNCRYADRPGRRFYVVACDNRDPRDSPRYPVVPV
Seq4: WSNQH-THCRYKTTVAMKSYTVACNPRTPRNSPRYPFVPC
Seq5: -GA--YPNCRYSSDKQYKFFIVACEHPKKEDPP-YQLVPV
Seq6: WSNQH-THCRYKTTVAMKSYTVACNPRTPRNSPRYPFVPC

*
Seq1: HLDTTI
Seq2: HLDRIF
Seq3: HLDTTI
Seq4: HLDGTI
Seq5: HLDKIV
Seq6: HLDGTI

Figure 8. Alignment of 6 sequences in data
set 1, with P =HKSH
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Data set 3
Number of sequences : 6
Max sequence length : 185
Constrained sequence : HKH
Sequence ID

Seq1: gi|10068295|gb|AAE40716.1|
Seq2: gi|17549935|ref|NP_510780.1|
Seq3: gi|28509297|ref|XP_282983.1|
Seq4: gi|28499937|ref|XP_204162.2|
Seq5: gi|4902995|dbj|BAA77929.1|

Seq1: -MP--INIISDSVYVVNAVLALETAGNFKQSSPVSEILMK
Seq2: MLRWLVALLSHSCFVSKGGGMFYAVRKGRQTGVYRTWAE-
Seq3: -MR--VNGRNLTNLRFADDIVLIANHPNTASKMLQELVQK
Seq4: -MP--INIISDSVYVVNAVLALETAGNFKQSSPVSEILMK
Seq5: -M---V-LIS----LLNPETQ-NRSQNMSQNNPLRALLDK

Seq1: IQNCILMREHPFYIQHIRAHTSLPGPMVKGNAIADSATRD
Seq2: CQQ-QVNRFPSASFKKFAT--EKEAWAFVGAGPPDGQQSA
Seq3: CSE-VGLEINTGKTKVLRNRFADPSKVYFGSPSPTTQLDD
Seq4: IQNCILMHEHPFYIQHIRAHTSLPGPMVKGNAIADSATRD
Seq5: -QD-ILL------LDGAMA-TELEA---RGCNLAD-SLWS

*
Seq1: M---VFL---SQSSIESAKKFH-QLYYVPASTL--RQ-KF
Seq2: P---AET--HGASAVAQENASH-RE-EPETDVLCCNACKR
Seq3: VDEYIYLGRQINAQNNLMPEIH-R--RRRAA----WA-AF
Seq4: M---VFL---SQSSIESAKNFH-QLYHVPASTL--RQ-KF
Seq5: A---KVL---VENP-ELIREVHLDYYRAGAQCA--ITASY

*
Seq1: KLTRK--EARDIVLQCG-----KCVE--------FVNA-P
Seq2: RYEQS--TNEEHTVRRA-----KHDE--------EQST-P
Seq3: NGIKN--TTDSITDK-------K----------------I
Seq4: KLTRK--EARNIVLQCG-----KCVE--------FVNA-P
Seq5: QATPAGFAARGLDEAQSKALIGKSVELARKAREAYLAENP

Seq1: SVG-VNPRG-LRPLD-VWQMD--GMHIP-SFG-KLQ-YV-
Seq2: VVS-EAKFSYMGEFAVVYTDGCCSGNGRNRARAGIGVYWG
Seq3: RAN-LFDSI-VLPAL-TYGSE--AWTFTKALSERVR-IT-
Seq4: SVG-VNPRG-LRPLD-VWQMD--VTHIP-SFG-KLQ-YV-
Seq5: QAGTLLVAGSVRPYG-AYLTD--GSEYRGDYHCTVEAFQA

*
Seq1: --H-----------------------VSIDTSSGVLHASP
Seq2: PGH------------------------------------P
Seq3: --H-ASLERRLVG--ITLTQQRERDLHREDIRTMSLVRDP
Seq4: --H-----------------------VSIDTSSGVLHASP
Seq5: F-HRPRVEALLVAGADLLACETLPNFSEIEALAELLTAYP

Seq1: LTGEKAVH-VIS-HCLE-----AWAA----WGKPLVLKTD
Seq2: LN-------ISE-R-LP-----GRQT-----N--------
Seq3: LN-----F-VKK-RKLGWAGHVARRK----DGRWTTLMTE
Seq4: LTGEKAVH-VIS-HCLE-----AWAA----WGKPLVLKTD
Seq5: RARAWFSFTLRDSEHLS-DGTPLRDVVALLAGYPQVVALG

Seq1: NGPAYTSSKFSQFCKQMQVKHITGLPYNPQG---QGIIER
Seq2: ----------------------------------------
Seq3: WRPYGWKRPVGRPPMRWTDSLRKEITTRDAD---GEVITP
Seq4: NGPAYTSSKFSQFCKQM-----------------------
Seq5: INCIALENTTAALQHLHGLTVLPLVVYPNSGEHYDAVSKT

Seq1: AHHT------LKQYL-QKQKGGIEAMTPKMALSLTIFTLN
Seq2: ----------------------------------------
Seq3: WSTI------AKDRK-EWLAVIRRNTTNS-----------
Seq4: ----------------------------------------
Seq5: WHHHGEHCAQLADYLPQWQAAGARLIGGCCRTTPADIAAL

Seq1: F---
Seq2: ----
Seq3: ----
Seq4: ----
Seq5: KARS

Figure 9. Alignment of 5 sequences in data
set 3, with P =HKH

Proceedings of the Computational Systems Bioinformatics (CSB’03)

0-7695-2000-6/03 $17.00 © 2003 IEEE


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


