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2 WINFRIED JUST1. IntroductionThe importance of good multiple sequence alignment algorithms is evidenced bythe large number of programs that have been developed for this task (Fasman andSalzberg 1998). Finding an optimal alignment of k sequences appears to quicklybecome computationally intractable as k increases. For example, dynamic program-ming algorithms that are guaranteed to �nd a best scoring alignment of k sequenceswith mean length n have a running time of O(nk) (Carillo and Lipman 1988). Thisexplains the widespread use of heuristic algorithms for multiple alignment. It hasbeen formally proved by Wang and Jiang (1994) and Bonizzoni and Della Vedova(2000) that there are scoring matrices for which the problem of �nding a multiplealignment of k sequences with optimal SP-score is NP-hard. Unfortunately, thescoring matrix used by Wang and Jiang (1994) for obtaining this result is not ametric, which makes it very di�erent from the matrices that are actually used inbiological applications. The proof technique used by Bonizzoni and Della Vedova(2000) uses matrices in which the indel (insertion/deletion) penalties depend onwhich character a space symbol is aligned with. While such variable indel penaltiesare sometimes used for aligning amino acid sequences, the use of scoring schemeswith uniform indel penalties seems much more common. Thus for most scoringschemes used in practice, computational intractability of the multiple alignmentproblem had not been formally proven prior to the results of the present paper.Here we show that the multiple alignment problem is NP-hard for each scoringmatrix from a broad class M that includes most scoring schemes that are actuallyused in biological applications.A brute force algorithm for �nding optimal multiple alignments would have toevaluate all possibilities of inserting gaps into the sequences to be aligned. How-ever, the optimal alignments found in practice usually contain relatively few gaps(Pascarella and Argos 1992), (Benner et al. 1993). This observation led to thequestion whether the problem becomes less complex if one limits the number ofgaps that can be inserted into the sequences (Jiang 1999). An extreme version ofsuch restrictions is what we call here gap-0 alignment. In this version, sequencescan be shifted relative to each other, but no internal gaps are allowed. Unpublishedresults of Bonizzoni, Della Vedova, and Jiang show that there is a scoring matrixthat does not satisfy the triangle inequality for which gap-0 alignment is still NP-hard, and the problem is even MAX-SNP-hard if the scoring matrix is consideredpart of the input (Jiang 1999). Subsequently, a �xed scoring matrix M was foundsuch that M is a metric and gap-0 multiple alignment for M is NP-hard (Just1999). Here we show that the gap-0 multiple alignment problem is NP-hard foreach scoring matrix from a broad classM1 �M. We also show that there is a �xedscoring matrix M0 over a three-letter alphabet such that the multiple alignmentproblem and the gap-0 multiple alignment problem for M0 are MAX-SNP-hard.Unfortunately, M0 does not satisfy the triangle inequality.2. Definitions and ResultsLet us formally state the multiple alignment problem and the gap-0 multiplealignment problem. At the outset, we are given a �nite alphabet � = fa1; :::; awgand a (w+ 1)� (w+ 1) scoring matrix M = (si;j)i6w;j6w. Intuitively, for i; j > 0,si;j represents the penalty for aligning character ai with character aj. For i > 0, thenumbers s0;i; si;0 are called indel penalties. Penalties s0;i; si;0 are incurred whenever



COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 3the character ai is aligned with a special character � 62 � that stands for a space.A given scoring scheme may also specify additional gap opening penalties that areincurred in addition to the indel penalties for aligning ai with the �rst or last �in a string of �'s (in this case, what we call \indel penalty" will usually be calledgap extension penalty). Our results do not depend on whether or not gap openingpenalties are added to the indel penalties.We will say that a scoring matrix is metric if it satis�es the following conditions:1) si;j > 0 for all i 6= j;2) si;i = 0 for all i;3) si;j = sj;i for all i; j.4) si;j + sj;k > si;k for all i; j; k.The last of the above properties is called the triangle inequality.Metric scoring matrices are of considerable theoretical interest, since they allowfor the natural interpretation of pairwise alignment scores as distances betweensequences (see e.g. (Wheeler 1993) and (Fitch 1993) for a discussion of the role ofthe triangle inequality in this context). However, scoring matrices used in practice,such as the PAM matrices of Dayho� et al. (1978) and the BLOSUM matricesof Heniko� and Heniko� (1992) give log-odds scores rather than distances. Inparticular, for the latter type of matrices, the multiple alignment problem will beformally cast as a maximization rather than a minimization problem. In this paperwe will use the language of \distances" as a convenient and intuitive metaphor, butour development of the theory and our results will not require any of the properties1)-4). A maximization problem can of course be transformed into an equivalentminimization problem by multiplying each score by �1.Given two sequences t0, t1 of symbols from � [ f�g of length n and a scoringmatrix M , we de�ne a distance dM(t0; t1) as the sum of penalties speci�ed by Mfor aligning the j-th character t0;j of t0 with the j-th character t1;j of t1, plus gapopening penalties if applicable, where j ranges over the length of the sequences. Ifwe have a k-tuple ht0; :::; tk�1i of sequences of equal length, then the SP-score forthese sequences is given by SPM (t0; :::; tk�1) =Pi<j<k dM (ti; tj).For a k-tuple ht0; :::; tk�1i of sequences as above, an alignment a of these se-quences is obtained by preserving the order of symbols in each sequence, but pos-sibly inserting space symbols �. We will always assume that there are suitablenumbers of space symbols inserted at the end of each sequence so that the alignedsequences hat0; : : : ; atk�1i are all of the same length. Alignments are not allowedto contain columns that consist entirely of space symbols. An alignment a is calleda gap-0 alignment if spaces are possibly added at the beginning and at the end ofsequences, but not between symbols (i.e., sequences can be shifted relative to eachother, but no internal gaps are allowed). A gap-0-1 alignment is a gap-0 alignmentof sequences of equal length such that each of the aligned sequences contains exactlyone space, either at its end or at its beginning.Given an alignment a of sequences ht0; :::; tk�1i, we de�ne the SP-score withrespect to M for this alignment as SPM (at0; :::; atk). Now let us formally de�nethe multiple alignment problem, the gap-0 multiple alignment problem, and the gap-0-1 multiple alignment problem for a given alphabet � and scoring matrix M . Ineach case, the instance is a k-tuple of sequences of common length1 of characters1In most biological applications, the sequences to be aligned have approximately equal length,but not necessarily exactly equal length. Note that if multiple alignment of sequences of exactly



4 WINFRIED JUSTfrom �. The problem is to �nd a multiple alignment (respectively gap-0 multiplealignment, or gap-0-1 multiple alignment) of the given sequences that minimizesthe SP-score with respect to M .Now let � = fA; Tg and let us say that a scoring matrix M is generic if it is ofthe form � A T� x y zA y vA uT z u vTFIG. 1. A generic scoring matrix.where the parameters x; y and z are �xed nonnegative numbers2 and the inequalityu > maxf0; vA; vTg holds. Let us say that a (w + 1) � (w + 1) scoring matrix Ncontains a generic submatrix if there are 1 � i; j � w such that after deleting allrows and colums of N except those numbered 0; i; j one obtains a generic matrixM .Now let M2 be the class of all scoring matrices that contain a generic submatrixM , letM1 be the class of all scoring matrices that contain a submatrix isomorphicto a generic matrix M with z > vT , and let M be the class of all scoring matricesthat contain a submatrix isomorphic to a generic matrixM with y > u and z > vT .Recall that an optimization problem isNP-hard if the existence of a polynomial-time algorithm that is guaranteed to �nd the optimal solution for all instances ofthis problem implies that P = NP (Garey and Johnson 1979). Here is the mainresult of this paper.Theorem 1. (a) For every scoring matrix M 2 M, the multiple alignment prob-lem is NP-hard.(b) For every scoring matrix M 2 M1, the gap-0 multiple alignment problem isNP-hard.(c) For every scoring matrix M 2 M2, the gap-0-1 multiple alignment problem isNP-hard.Of course we have M2 � M1 � M. Even the class M is very broad; notethat M contains each scoring matrix M for which there is ai 2 � such that Mpenalizes mismatches of ai with some aj 2 � relative to ai{ai and aj{aj matches,penalizes all spaces aligned with ai more heavily than mismatches between ai andaj, and penalizes all spaces to some extent. ThusM appears to cover most scoringschemes used in biological applications. A notable exception are scoring schemesthat use a �xed gap penalty or a �xed penalty for gaps that exceed a speci�edlength. Our proof will implicitly show that the gap-0-1 multiple alignment problemfor the latter scoring schemes is still NP-hard, but the question remains open forgap-0 multiple alignment and multiple alignment.Some soring schemes used in practice do not penalize insertion of spaces at thebeginning and end of sequences. While such scoring schemes do not formally belongto the classes M2, M1 and M, it will be clear from the proofs that the analogueof Theorem 1 remains valid for them.equal length is computationally intractable, then so is the more general problem of multiplealignment of sequences of \roughly equal" length.2In matrices of practical interest, x = 0. Our proofs work regardless of whether x = 0 or x > 0.



COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 5We will also consider the following scoring matrix M0 for the alphabet �0 =fA; T;Cg: � A T C� 0 2 2 2A 2 0 1 0T 2 1 0 0C 2 0 0 0FIG. 2. The scoring matrix M0:This scoring matrix does belong to M, but it does not satisfy the triangle in-equality and thus is not metric.Some NP-hard optimization problems have so-called polynomial time approx-imation schemes (abbreviated PTAS), that is, for every " > 0 there exists apolynomial-time algorithm A" that is guaranteed to �nd for each instance a so-lution that is within a factor of 1 + " of the optimal solution for this instance.3It can be shown that if an optimization problem belongs to a class called MAX-SNP-hard problems, then it does not have a PTAS (unless P = NP) (Arora et al.1992).Theorem 2. For the three-letter alphabet �0 and the scoring matrix M0 de�nedabove, each of the following problems is MAX-SNP-hard:(a) The multiple alignment problem.(b) The gap-0 multiple alignment problem.(c) The gap-0-1 multiple alignment problem.It is not known whether there exists a scoring matrix N that is a metric suchthat the multiple alignment problem, the gap-0 alignment problem, or the gap-0-1multiple alignment problem for N is MAX-SNP-hard (Jiang et al. 1999). Thisquestion is open even if one only requires that all diagonal entries are zero, whereasall o�-diagonal entries are positive (Della Vedova 1999).3. ProofsWe will prove Theorems 1 and 2 by reducing the SIMPLE MAX-CUT(B) prob-lem to the respective multiple alignment problems. Recall that an instance ofsize k of the SIMPLE MAX-CUT(B) problem is a simple graph G = hV;Ei suchthat jV j = k and each vertex of G has degree at most B. The problem is to �nd apartition of the set of vertices V into disjoint sets V0 and V1 such that the numberof edges that connect a vertex in V0 with a vertex in V1, i.e., the size of the cutdetermined by hV0; V1i, is as large as possible. There exists a �xed positive integerB such that the SIMPLE MAX-CUT(B) problem is NP-hard; in fact, B = 3 works(Garey and Johnson 1979).Proof of Theorem 1. Clearly, if the gap-0 multiple alignment problem is NP-hardfor each generic scoring matrix M with z > vT , then the gap-0 multiple alignmentproblem is NP-hard for all matrices in M1. Analogous observations can be madefor M2 and M. This allows us to prove Theorem 1 by proving NP-hardness of3Many authors use a slightly more stringent de�nition of a PTAS that requires " to be aparameter of a single algorithm. But MAX-SNP -hardness implies the nonexistence even of theweak kind of PTAS de�ned here.



6 WINFRIED JUSTthe multiple alignment problems mentioned in it for the respective generic scoringmatrices M .Let k be a positive integer, and let B be such that the SIMPLE MAX-CUT(B)problem is NP-hard. Given a graph G = hV;Ei with k vertices and degree at mostB, we de�ne a k2-tuple �tG = ht0; : : : ; tk2�1i of sequences as follows: EnumerateV = fv0; : : : ; vk�1g, E = fe0; : : : ; e`�1g. Each sequence ti will have length k12`.Intuitively speaking, for i < k, the sequence ti will encode the vertex vi. Sequencesti for i � k will be dummy sequences consisting entirely of T 's. The role of thelatter is to ensure that undesirable alignments are heavily penalized. Edge em =fvi; vhg will be encoded by characters th;j ; ti;j, where j = k7`n+ k7m+ r, n < k5,r 2 f1; 2; 3g. More precisely, we de�ne ti;j, the j-th character in ti, as follows. Form < `, em = fvh; vig, h < i, n < k5 we let:th;k7`n+k7m+2 = ti;k7`n+k7m+1 = ti;k7`n+k7m+3 = A.In all other cases, we let ti;j = T .Figure 3 illustrates this construction. We exhibit a situation where em =fvh; vig; em0 = fvg; vhg, m < m0, n < n0 < k5.tg;k7`n+k7m tg;k7`n+k7m0 tg;k7`n0+k7m# # #tg: ... T T T T T ... T T A T T ... T T T T T ...j j j j j j j j j j j j j j jth: ... T T A T T ... T A T A T ... T T A T T ...j j j j j j j j j j j j j j jti: ... T A T A T ... T T T T T ... T A T A T ...j j j j j j j j j j j j j j jtp: ... T T T T T ... T T T T T ... T T T T T ...FIG. 3. Coding a graph in the proof of Theorem 1.Now consider a gap-0-1 alignment a of the sequences �tG. Such an alignmentnaturally induces a partition of V into disjoint subsets V a0 and V a1 , where V a1consists of all vertices vi such that a appends a space at the beginning of ti (i.e.,shifts ti to the right) and V a0 consists of all vertices vi such that a appends a spaceat the end of ti (i.e., ti remains in place). Let ca denote the number of edges inG that connect vertices in V 0a with vertices in V a1 , i.e., ca denotes the size of thecut induced by the partition hV a0 ; V a1 i. We will show that if k is su�ciently large(i.e., k � k0 for some �xed k0) and a is an optimal gap-0-1 alignment for a genericmatrixM of the sequences �tG, then ca is maximal. To see that this su�ces for theproof of Theorem 1(c), note that the partition hV a0 ; V a1 i can be decoded from a by apolynomial-time algorithm and every partition of V can be represented as hV a0 ; V a1 ifor a suitable gap-0-1 alignment a. It follows that if there exists a polynomial-time algorithmA for gap-0-1 alignment with respect to M , then a polynomial-timealgorithm for the SIMPLE MAX-CUT(B) problem can be obtained as follows: For



COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 7graphs with k � k0 vertices, encode the graph as a multiple sequence alignmentproblem in the way described above, run algorithm A to �nd the optimal gap-0-1alignment, and then decode the partition hV a0 ; V a1 i from the alignment. For the�nitely many graphs of degree � B with fewer than k0 vertices, construct a lookuptable of optimal solutions of the SIMPLE MAX-CUT problem, and use it for thealgorithm. Note that using the lookup table only adds a constant (although possiblya large one) to the execution time of the algorithm. Throughout the remainder ofthis paper, we will without further comments always assume that k is \su�cientlylarge."So let M be a generic scoring matrix. Let us estimate the SP-score for thealigned sequences hat0; : : : ; atk�1i. This score has two components: indel (pluspossibly gap opening) penalties and scores for character matches/mismatches. Sinceindel and gap opening penalties occur only in the �rst and last columns, the totalof those penalties will be of order O(k4), which for su�ciently large k will benegligible. Recall that u, the penalty for A-T mismatches, was assumed to begreater than maxf0; vA; vTg. The total number of character mismatches in theunaligned sequences is 3k5`(k2 � 1). The idea of the proof is to �nd a gap-0-1alignment a that maximally reduces this number by creating as many A-A matchesas possible. A gap-0-1 alignment can create an A-A match only if the two A's arein adjacent columns, and each such newly created match will eliminate preciselytwo A-T mismatches. Note that whenever e = fvh; vig 2 E and vh; vi end up indi�erent parts of the partition hV a0 ; V a1 i (i.e., the edge e is cut by the partition),then a total of k5 A-A matches between sequences th and ti are created, thatis, 2k5 A-T mismatches between these sequences are eliminated. No other A-Tmismatches can be eliminated by a gap-0-1 alignment, nor can a gap-0-1 alignmentintroduce additional A-T mismatches. It follows that the total SP-score for thealigned sequences is equal tok12`vT k2(k2 � 1)=2 + 3k5`(u � vT )(k2 � 1)� cak5(2u� vA � vT ) + O(k4);and thus for su�ciently large k, the optimal gap-0-1 alignment of �tG yields a par-tition of V that maximizes ca.For the proof of Theorem 1(b), let M be a generic scoring matrix with z >maxf0; vTg. We will refer to the vector hat0;j; : : : ; atk2�1;ji of j-th characters ofthe aligned sequences as the j-th column of the alignment. Note that we cancompute the SP-score (excluding gap opening penalties) of an alignment a asPiPj 0:5sca(ti;j), where i ranges of the sequences in the alignment, j ranges overthe columns in the alignment, and sca(ti;j) is the sum over all pairwise scores be-tween ti;j and the other symbols in the same column. (In particular, if a0 is thealignment without any space symbols, then sca0(ti;j) =Pi0 6=i dM (ti;j; ti0;j).)Lemma 3. If z > maxf0; vTg and a is an optimal gap-0 alignment or an optimalmultiple alignment of the sequences �tG, then at most O(k6) columns of a containspace symbols.Proof. Consider the alignment a0 that does not contain any spaces whatsoever,and let a be an alignment with better score than a0. Note that our assumptionon z implies that the score for a0 can be improved only by replacing some A-Tmismatches by T-T matches, or, if y < u, by A-� matches. On the other hand,replacing any T-T match by a T-� match will worsen the score by z � vT . Since



8 WINFRIED JUST` � Bk=2, only O(k6) of the columns of the unaligned sequences contain any A's.Thus the maximum possible improvement in the score of a0 that can be achievedby inserting spaces is of the order O(k8). For each column c of a, let us de�ne thenet gain contributed by this column asng(c) = Xti;j2c sca0 (ti;j)� sca(ti;j):Of course, a negative net gain is a net loss. Now suppose a column c of a containsat least one space symbol and ng(c) � 0. If z > u, then it is easy to see that thiscolumn must contain at least one occurrence of A. If z � u, then either c containsat least one occurrence of A, or c contains at most bu=zc space symbols and at leastd(k2�1)(z�vT )=(u�vT )e T's from columns of a0 that contain an occurrence of A.Let us relax these requirements a little and say that column c of a is benign if eitherit contains an occurrence of A or c contains at most 2du=ze+1 space symbols and atleast 0:5d(k2�1)(z�vT )=(u�vT )e T's from columns of a0 that contain an occurrenceof A. Then there are at mostO(k6) benign columns in a, and each column that is notbenign contributes a net loss of at least 0:5(k2�1)minfz�vT ; (z�vT )2=(u�vT )g.Since the total gain of order O(k8) must outweigh the combined net loss of allcolumns, we conclude that all but O(k6) columns of a are benign, and the lemmafollows.The de�nition of the partition hV a0 ; V a1 i for a gap-0-1 alignment a of �tG can begeneralized to gap-0 alignments in a natural way. In the latter case, V a0 will consistof all vertices vi such that a appends an even number of spaces at the beginningof ti, and V a1 will consist of all vertices vi such that a appends an odd number ofspaces at the beginning of ti. For each gap-0 alignment a one can de�ne a gap-0-1 alignment a� that appends a space at the beginning of ti if and only if i < kand vi 2 V a1 . Then V a0 = V a�0 and ca = ca� . Let a0 denote the alignment thatcontains no spaces, and let us analyse how much the SP-score of a0 can be reducedby an optimal gap-0 alignment a. The total penalty for A-T mismatches can bereduced by creating A-A matches or, if y < u, by shifting some o�ending A's to theside where they are aligned with spaces rather than T's. The A's come in groupsof three that reside in consecutive columns of a0 and are separated by spacers oflength k7�3. Lemma 3 implies that a can shift sequences only by distances that aremuch shorter than the spacers. It follows that a can create matches only betweentwo A's that sit in adjacent columns of a0, and a cannot reduce penalties by shiftingmore than the three leftmost A's \to the side." But for each match between A'sfrom neighboring columns of a0 that is created by a, such a match is also createdby a�. Thus, the SP-score for the optimal gap-0 alignment a will again be equal tok12`vT k2(k2 � 1)=2 + 3k5`(u � vT )(k2 � 1)� cak5(2u� vA � vT ) + O(k4);and a induces a partition of V that maximizes ca, which implies Theorem 1(b).Finally, let M be a generic scoring matrix with y > u and z > vT , and let abe a multiple alignment that minimizes SPM (at0; : : : ; atk2�1). Let us think of thesequences �tG as forming k5 consecutive blocks, where block number n consists ofall columns of a0 numbered k7`n through k7`(n + 1). For 0 < n < k5 � 1, let usrefer to columns numbered k7`n� bk7=2c through k7`(n + 1) � bk7=2c � 1 of a asa-block number n. Furthermore, a-block number 0 will consist of all positions to theleft of a-block number 1, and a-block number k5 � 1 will consist of all positions to



COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT 9the right of a-block number k5 � 2. Lemma 3 implies that for all n, the A's fromblock number n of the unaligned sequences must end up in a-block number n ofthe aligned sequences hat0; : : : ; atk2�1i.Now let us consider a-block number n, which will be denoted by Bn, and let usestimate the combined net gain or net loss over all columns of Bn. There are twopossibilities:Case 1: Bn does not contain a space symbol.In this case, we let V a;n0 be the set of all vi such that a inserts an even numberof space symbols into ti to the left of Bn, and let V a;n0 be the set of all vi such thata inserts an odd number of space symbols into ti to the left of Bn. Let ca;n be thesize of the cut determined by the partition hV a;n0 ; V a;n1 i of V . An argument as inthe proof of part (b) shows that the combined net gain of all columns of a on Bnwill be at most 2ca;n(2u� vA � vT ).Case 2: Bn does contain a space symbol.First note that insertion of space symbols might increase the number of A-Amismatches over what can be achieved by a gap-0 alignment, since the number ofsuch matches will no longer be bounded by the size of any cut. However, Lemma 3still implies that these matches have to be between A's from adjacent columns. Thusthe number of A-A matches is bounded by `; in other words, the combined net gainsca0 (ti;j)�sca(ti;j) over all symbols ti;j in Bn is bounded by 2`(u�vA�vT ), whichis of order O(k), since ` � Bk=2. Now let " = minfy�u; z�vT g. Then any columnthat contains a space symbol contributes a net loss of at least "(k2�1)�2u+vA�vT ,and it follows that the SP-score for a on Bn is worse than the SP-score for a0 onBn.Now let us estimate the total SP-score for the alignment a. Let U be the set ofall n < k5 such that a-block number n does not contain spaces. ThenSPMa (�tG) � `vT (k16�k14)=2+3k5`(u�vT )(k2�1)�Xn2U ca;nk5(2u�vA�vT )+O(k4):Let b be an optimal gap-0-1 multiple alignment of the sequences �tG. Since theoptimal multiple alignment a cannot have a score that is worse than that of anoptimal gap-0-1 multiple alignment, we must haveSPMa (�tG) � vT (k16� k14)=2+3k5`(u� vT )(k2� 1)� 2cbk5(2u� vA� vT )+O(k4):It follows that ca;n = cb for most n, and thus for most n the partition hV a;n0 ; V a;n1 imaximizes the size of the cut in G. Since the largest of the numbers ca;n and thecorresponding partition hV a;n0 ; V a;n1 i can easily be extracted from a by a polynomial-time algorithm, part (a) of Theorem 1 follows.Proof of Theorem 2. Our argument does not require a formal de�nition of the classMAX-SNP . It su�ces to know that there is a positive integer B such that theSIMPLE MAX-CUT(B) is MAX-SNP-complete (Papadimitriou and Yannakakis1991). We will show MAX-SNP-hardness of our multiple alignment problemsby showing that there are L-reductions of the SIMPLE MAX-CUT(B) problemto scaled versions of each of the following problems: gap-0-1 multiple alignmentfor M0, gap-0 multiple alignment for M0, and multiple alignment for M0. Thisestablishes MAX-SNP-hardness in the sense of Arora and Lund (1997), who callan optimization problem �0 MAX-SNP-hard if there exist a MAX-SNP-completeproblem � and a gap-preserving reduction of � to �0. This a de�nition explicitlyallows scaling of objective functions (see Arora and Lund (1997), page 411).



10 WINFRIED JUSTLet us recall the notion of an L-reduction. If � and �0 are two optimization(maximization or minimization) problems, then � L-reduces to �0 if there are twopolynomial-time algorithms f; g and constants �; � > 0 such that for each instanceI of �:(a) Algorithm f produces an instance I 0 = f(I) of �0, such that the optima of Iand I 0, OPT (I) and OPT (I 0), respectively, satisfy OPT (I 0) � �OPT (I).(b) Given any solution of I 0 with cost c0, algorithm g produces a solution of I withcost c such that jc� OPT (I)j � �jc0 �OPT (I 0)j.Let us de�ne a minimization problem �0 as follows: An instance of �0 is a simplegraph G = hV;Ei with degree at most B. For every partition P = hV0; V1i of V , letcP be the size of the cut determined by P . The objective of �0 is to �nd a partitionP of V that minimizes the number dP = 3jEj � 2cP .Here is the L-reduction of �0 to scaled versions of the multiple alignment prob-lems: Given a graph G = hV;Ei with k vertices and degree at most B, wede�ne a k2-tuple �tG = ht0; : : : ; tk2�1i of sequences as follows: Enumerate V =fv0; : : : ; vk�1g, E = fe0; : : : ; e`�1g. Each sequence ti will have length k12`. Wede�ne ti;j , the j-th character in ti, as follows. For m < `, em = fvh; vig, h < i,n < k5 we let:th;k7`n+k7m+2 = ti;k7`n+k7m+1 = ti;k7`n+k7m+3 = A.th;k7`n+k7m+1 = th;k7`n+k7m+3 = ti;k7`n+k7m+2 = T .In all other cases, we let ti;j = C.Figure 4 illustrates this construction. Again, we exhibit a situation where em =fvh; vig; em0 = fvg; vhg, m < m0, n < n0 < k5.tg;k7`n+k7m tg;k7`n+k7m0 tg;k7`n0+k7m# # #tg: ... C C C C C ... C T A T C ... C C C C C ...j j j j j j j j j j j j j j jth: ... C T A T C ... C A T A C ... C T A T C ...j j j j j j j j j j j j j j jti: ... C A T A C ... C C C C C ... C A T A C ...j j j j j j j j j j j j j j jtp: ... C C C C C ... C C C C C ... C C C C C ...FIG. 4. Coding a graph in the proof of Theorem 3.An argument very similar to the reasoning in the proof of Theorem 1 shows thatif a is the optimal gap-0-1 multiple alignment, gap-0 multiple alignment, or multiplealignment for M0, then(�) SPM0a (�tG) = (3` � 2ca)k5 +O(k4);where ca is the size of the minimal cut in G.
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