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1. INTRODUCTION

The importance of good multiple sequence alignment algorithms is evidenced by
the large number of programs that have been developed for this task (Fasman and
Salzberg 1998). Finding an optimal alignment of k sequences appears to quickly
become computationally intractable as k increases. For example, dynamic program-
ming algorithms that are guaranteed to find a best scoring alignment of k sequences
with mean length n have a running time of O(n*) (Carillo and Lipman 1988). This
explains the widespread use of heuristic algorithms for multiple alignment. It has
been formally proved by Wang and Jiang (1994) and Bonizzoni and Della Vedova
(2000) that there are scoring matrices for which the problem of finding a multiple
alignment of k sequences with optimal SP-score is AN"P-hard. Unfortunately, the
scoring matrix used by Wang and Jiang (1994) for obtaining this result is not a
metric, which makes 1t very different from the matrices that are actually used in
biological applications. The proof technique used by Bonizzoni and Della Vedova
(2000) uses matrices in which the indel (insertion/deletion) penalties depend on
which character a space symbol is aligned with. While such variable indel penalties
are sometimes used for aligning amino acid sequences, the use of scoring schemes
with uniform indel penalties seems much more common. Thus for most scoring
schemes used in practice, computational intractability of the multiple alignment
problem had not been formally proven prior to the results of the present paper.
Here we show that the multiple alignment problem is NP-hard for each scoring
matrix from a broad class M that includes most scoring schemes that are actually
used in biological applications.

A brute force algorithm for finding optimal multiple alignments would have to
evaluate all possibilities of inserting gaps into the sequences to be aligned. How-
ever, the optimal alignments found in practice usually contain relatively few gaps
(Pascarella and Argos 1992), (Benner et al. 1993). This observation led to the
question whether the problem becomes less complex if one limits the number of
gaps that can be inserted into the sequences (Jiang 1999). An extreme version of
such restrictions is what we call here gap-0 alignment. In this version, sequences
can be shifted relative to each other, but no internal gaps are allowed. Unpublished
results of Bonizzoni, Della Vedova, and Jiang show that there is a scoring matrix
that does not satisfy the triangle inequality for which gap-0 alignment, is still A"P-
hard, and the problem is even MAX-SNP-hard if the scoring matrix is considered
part of the input (Jiang 1999). Subsequently, a fixed scoring matrix M was found
such that M is a metric and gap-0 multiple alignment for M is NP-hard (Just
1999). Here we show that the gap-0 multiple alignment problem is A'P-hard for
each scoring matrix from a broad class M1 D M. We also show that there is a fixed
scoring matrix My over a three-letter alphabet such that the multiple alignment
problem and the gap-0 multiple alignment problem for My are MAX-SN P-hard.
Unfortunately, My does not satisfy the triangle inequality.

2. DEFINITIONS AND RESULTS

Let us formally state the multiple alignment problem and the gap-0 multiple
alignment problem. At the outset, we are given a finite alphabet ¥ = {ay, ..., ay}
and a (w+ 1) x (w+ 1) scoring matrix M = (s; j )igw,jgw- Intuitively, for i, 5 > 0,
s;,; represents the penalty for aligning character a; with character a;. For ¢ > 0, the
numbers sq ;, 5; 0 are called indel penalties. Penalties sq ;, s; 0 are incurred whenever
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the character a; is aligned with a special character A € ¥ that stands for a space.
A given scoring scheme may also specify additional gap opening penalties that are
incurred in addition to the indel penalties for aligning a; with the first or last A
in a string of A’s (in this case, what we call “indel penalty” will usually be called
gap extension penalty). Our results do not depend on whether or not gap opening
penalties are added to the indel penalties.

We will say that a scoring matrix is metric if it satisfies the following conditions:
1) s; ; > 0 for all i # j;

2) 5;; = 0 for all 4;

3) s;; = s;, for all 4, j.

4) Si5 + S5k = Sik for all ¢, 7, k.

The last of the above properties is called the triangle inequality.

Metric scoring matrices are of considerable theoretical interest, since they allow
for the natural interpretation of pairwise alignment scores as distances between
sequences (see e.g. (Wheeler 1993) and (Fitch 1993) for a discussion of the role of
the triangle inequality in this context). However, scoring matrices used in practice,
such as the PAM matrices of Dayhoff et al. (1978) and the BLOSUM matrices
of Henikoff and Henikoff (1992) give log-odds scores rather than distances. In
particular, for the latter type of matrices, the multiple alignment problem will be
formally cast as a maximization rather than a minimization problem. In this paper
we will use the language of “distances” as a convenient and intuitive metaphor, but
our development of the theory and our results will not require any of the properties
1)-4). A maximization problem can of course be transformed into an equivalent
minimization problem by multiplying each score by —1.

Given two sequences {g, {1 of symbols from X U {A} of length n and a scoring
matrix M, we define a distance dps(to,%1) as the sum of penalties specified by M
for aligning the j-th character ¢y ; of ¢y with the j-th character ¢; ; of ¢1, plus gap
opening penalties if applicable, where j ranges over the length of the sequences. If
we have a k-tuple {tg,...,t5_1) of sequences of equal length, then the SP-score for
these sequences is given by SPM(tg, ... tp_1) = Zi<j<k dar(ti, ;).

For a k-tuple {to,...,t5—1) of sequences as above, an alignment a of these se-
quences is obtained by preserving the order of symbols in each sequence, but pos-
sibly inserting space symbols A. We will always assume that there are suitable
numbers of space symbols inserted at the end of each sequence so that the aligned
sequences {atp,...,atp_1) are all of the same length. Alignments are not allowed
to contain columns that consist entirely of space symbols. An alignment a is called
a gap-0 alignment if spaces are possibly added at the beginning and at the end of
sequences, but not between symbols (i.e., sequences can be shifted relative to each
other, but no internal gaps are allowed). A gap-0-1 alignment is a gap-0 alignment
of sequences of equal length such that each of the aligned sequences contains exactly
one space, either at its end or at its beginning.

Given an alignment a of sequences (g, ...,t5—1), we define the SP-score with
respect to M for this alignment as SPM (aty, ..., at;). Now let us formally define
the multiple alignment problem, the gap-0 multiple alignment problem, and the gap-
0-1 multiple alignment problem for a given alphabet ¥ and scoring matrix M. In
each case, the instance is a k-tuple of sequences of common length® of characters

1In most biological applications, the sequences to be aligned have approximately equal length,
but not necessarily exactly equal length. Note that if multiple alignment of sequences of exactly
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from X. The problem is to find a multiple alignment (respectively gap-0 multiple
alignment, or gap-0-1 multiple alignment) of the given sequences that minimizes
the SP-score with respect to M.

Now let ¥ = {A, T} and let us say that a scoring matrix M is generic if it is of
the form

A T
Alrx |y | 2z
Aly|val| u
Tz | u |vp

FIG. 1. A generic scoring matrix.

where the parameters z,y and z are fixed nonnegative numbers® and the inequality
u > max{0,va,vr} holds. Let us say that a (w+ 1) x (w4 1) scoring matrix N
contains a generic submatriz if there are 1 < ¢,j < w such that after deleting all
rows and colums of N except those numbered 0, ¢, j one obtains a generic matrix M.
Now let My be the class of all scoring matrices that contain a generic submatrix
M | let My be the class of all scoring matrices that contain a submatrix isomorphic
to a generic matrix M with z > vp, and let M be the class of all scoring matrices
that contain a submatrix isomorphic to a generic matrix M with y > v and z > vp.

Recall that an optimization problem is NP -hard if the existence of a polynomial-
time algorithm that 1s guaranteed to find the optimal solution for all instances of
this problem implies that P = NP (Garey and Johnson 1979). Here is the main
result of this paper.

Theorem 1. (a) For every scoring matriz M € M, the multiple alignment prob-
lem is N'P-hard.

(b) For every scoring matric M € My, the gap-0 multiple alignment problem is
NP-hard.

(¢c) For every scoring matric M € My, the gap-0-1 multiple alignment problem is
NP-hard.

Of course we have My D M; D M. Even the class M is very broad; note
that M contains each scoring matrix M for which there is a; € ¥ such that M
penalizes mismatches of a; with some a; € ¥ relative to a;—a; and a;—a; matches,
penalizes all spaces aligned with a; more heavily than mismatches between a; and
a;, and penalizes all spaces to some extent. Thus M appears to cover most scoring
schemes used in biological applications. A notable exception are scoring schemes
that use a fixed gap penalty or a fixed penalty for gaps that exceed a specified
length. Our proof will implicitly show that the gap-0-1 multiple alignment problem
for the latter scoring schemes is still AP-hard, but the question remains open for
gap-0 multiple alignment and multiple alignment.

Some soring schemes used in practice do not penalize insertion of spaces at the
beginning and end of sequences. While such scoring schemes do not formally belong
to the classes My, M7 and M, it will be clear from the proofs that the analogue
of Theorem 1 remains valid for them.

equal length is computationally intractable, then so is the more general problem of multiple
alignment of sequences of “roughly equal” length.
?In matrices of practical interest, z = 0. Our proofs work regardless of whether z = 0 or & > 0.
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We will also consider the following scoring matrix My for the alphabet ¥y =
{A,T,C}:

AJA|T|C
Al0]2]2]2
Al2|0(|1]|0
T[2]1(0]0
Cl2]0]0]0

FIG. 2. The scoring matrix Mj.

This scoring matrix does belong to M, but it does not satisfy the triangle in-
equality and thus is not metric.

Some N'P-hard optimization problems have so-called polynomial time approz-
imation schemes (abbreviated PTAS), that is, for every ¢ > 0 there exists a
polynomial-time algorithm A, that is guaranteed to find for each instance a so-
lution that is within a factor of 1 + ¢ of the optimal solution for this instance.?
It can be shown that if an optimization problem belongs to a class called MAX-
SNP-hard problems, then it does not have a PTAS (unless P = A'P) (Arora et al.
1992).

Theorem 2. For the three-letter alphabet Yo and the scoring matrix My defined
above, each of the following problems is MAX-SNP-hard:

(a) The multiple alignment problem.

(b) The gap-0 multiple alignment problem.

(¢) The gap-0-1 multiple alignment problem.

It is not known whether there exists a scoring matrix N that is a metric such
that the multiple alignment problem, the gap-0 alignment problem, or the gap-0-1
multiple alignment problem for N is MAX-SAP-hard (Jiang et al. 1999). This
question is open even if one only requires that all diagonal entries are zero, whereas
all off-diagonal entries are positive (Della Vedova 1999).

3. PrROOFs

We will prove Theorems 1 and 2 by reducing the SIMPLE MAX-CUT(B) prob-
lem to the respective multiple alignment problems. Recall that an instance of
size k of the SIMPLE MAX-CUT(B) problem is a simple graph G = (V, E} such
that |V| = k and each vertex of G has degree at most B. The problem is to find a
partition of the set of vertices V into disjoint sets Vy and V; such that the number
of edges that connect a vertex in Vy with a vertex in Vi, i.e., the size of the cut
determined by (Vy, V1), is as large as possible. There exists a fixed positive integer
B such that the SIMPLE MAX-CUT(B) problem is A/P-hard; in fact, B = 3 works
(Garey and Johnson 1979).

Proof of Theorem 1. Clearly, if the gap-0 multiple alignment problem is A"P-hard
for each generic scoring matrix M with z > vp, then the gap-0 multiple alignment
problem is A"P-hard for all matrices in M;. Analogous observations can be made
for M3 and M. This allows us to prove Theorem 1 by proving ANP-hardness of

3Many authors use a slightly more stringent definition of a PTAS that requires ¢ to be a
parameter of a single algorithm. But MAX-SA P-hardness implies the nonexistence even of the
weak kind of PTAS defined here.
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the multiple alignment problems mentioned in it for the respective generic scoring
matrices M.

Let k be a positive integer, and let B be such that the SIMPLE MAX-CUT(B)
problem is AP-hard. Given a graph G = (V| E'} with k vertices and degree at most
B, we define a k2-tuple t¢ = (to,... t;2_1) of sequences as follows: Enumerate
V= {vo,...,v6_1}, F = {eo,...,ei_1}. Each sequence t; will have length k!2¢.
Intuitively speaking, for ¢ < k, the sequence ¢; will encode the vertex v;. Sequences
t; for ¢« > k will be dummy sequences consisting entirely of 7’s. The role of the
latter is to ensure that undesirable alignments are heavily penalized. Edge e, =
{vi, v} will be encoded by characters 5 ;,t; ;, where j = k™n +k"m +r, n < k>,
r € {1,2,3}. More precisely, we define ¢; ;, the j-th character in ¢;, as follows. For
m <, en = {vp, v}, h<i,n<k®we let:
th kTtntkm+2 = ti kintkTmal = b kTntbimts = A
In all other cases, we let ¢; ; =T

Figure 3 illustrates this construction. We exhibit a situation where e, =
{vh,vi}, em = {vg, v}, m<m’, n<n' <k°.

tg,k7ﬁn+k7m tg,k72n+k7m’ tg,k72n’+k7m
| | |
ty: .. T T T T T .. T TATTT .. T T TTTT
o o o
th T T A T T T A T A T T T A T T
o o o
t; T A T A T T T T T T T A T A T
o o o
t, T T T T T T T T T T T T T T T

FIG. 3. Coding a graph in the proof of Theorem 1.

Now consider a gap-0-1 alignment a of the sequences t“. Such an alignment
naturally induces a partition of V into disjoint subsets V' and V{*, where V*
consists of all vertices v; such that ¢ appends a space at the beginning of ¢; (i.e.,
shifts ¢; to the right) and V" consists of all vertices v; such that a appends a space
at the end of ¢; (i.e., t; remains in place). Let ¢, denote the number of edges in
( that connect vertices in V! with vertices in V|, i.e., ¢, denotes the size of the
cut induced by the partition (Vi#, V)*). We will show that if k is sufficiently large
(i.e., k > ko for some fixed ky) and @ is an optimal gap-0-1 alignment for a generic
matrix M of the sequences t, then ¢, is maximal. To see that this suffices for the
proof of Theorem 1(c), note that the partition (Vi#, V}*) can be decoded from a by a
polynomial-time algorithm and every partition of V' can be represented as (V*, V}*)
for a suitable gap-0-1 alignment a. It follows that if there exists a polynomial-
time algorithm A for gap-0-1 alignment with respect to M, then a polynomial-time
algorithm for the SIMPLE MAX-CUT(B) problem can be obtained as follows: For
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graphs with k& > kg vertices, encode the graph as a multiple sequence alignment
problem in the way described above, run algorithm A to find the optimal gap-0-1
alignment, and then decode the partition (Vi#, V}*) from the alignment. For the
finitely many graphs of degree < B with fewer than ky vertices, construct a lookup
table of optimal solutions of the SIMPLE MAX-CUT problem, and use it for the
algorithm. Note that using the lookup table only adds a constant (although possibly
a large one) to the execution time of the algorithm. Throughout the remainder of
this paper, we will without further comments always assume that k is “sufficiently

large.”
So let M be a generic scoring matrix. Let us estimate the SP-score for the
aligned sequences {afg,...,aty_1). This score has two components: indel (plus

possibly gap opening) penalties and scores for character matches/mismatches. Since
indel and gap opening penalties occur only in the first and last columns, the total
of those penalties will be of order O(k*), which for sufficiently large k will be
negligible. Recall that u, the penalty for A-T mismatches, was assumed to be
greater than max{0,v4,vr}. The total number of character mismatches in the
unaligned sequences is 3k°¢(k* — 1). The idea of the proof is to find a gap-0-1
alignment a that maximally reduces this number by creating as many A-A matches
as possible. A gap-0-1 alignment can create an A-A match only if the two A’s are
in adjacent columns, and each such newly created match will eliminate precisely
two A-T mismatches. Note that whenever e = {vy,v;} € E and vp,,v; end up in
different parts of the partition (V#, V|?) (i.e., the edge e is cut by the partition),
then a total of #° A-A matches between sequences ¢, and ¢; are created, that
is, 2k A-T mismatches between these sequences are eliminated. No other A-T
mismatches can be eliminated by a gap-0-1 alignment, nor can a gap-0-1 alignment
introduce additional A-T mismatches. It follows that the total SP-score for the
aligned sequences is equal to

klzﬁkaz(kz -1/2+ 3k5£(u — UT)(]CZ -1)- cak5(2u —vq4—oup)+ O(k4),

and thus for sufficiently large k, the optimal gap-0-1 alignment of {¢ yields a par-
tition of V' that maximizes c,.

For the proof of Theorem 1(b), let M be a generic scoring matrix with z >
max{0,vp}. We will refer to the vector (ato;,...,aty2_1 ;) of j-th characters of
the aligned sequences as the j-th column of the alignment. Note that we can
compute the SP-score (excluding gap opening penalties) of an alignment « as
> Z]' 0.5s¢4(t; 7), where ¢ ranges of the sequences in the alignment, j ranges over
the columns in the alignment, and scq(%; ;) is the sum over all pairwise scores be-
tween ¢; ; and the other symbols in the same column. (In particular, if ag is the
alignment without any space symbols, then scq,(t; ;) = ZZ»,#Z» dar(tij,tij).)

Lemma 3. If z > max{0,vr} and a is an optimal gap-0 alignment or an opiimal
multiple alignment of the sequences 1%, then at most O(k®) columns of a contain
space symbols.

Proof. Consider the alignment ay that does not contain any spaces whatsoever,
and let a be an alignment with better score than ay. Note that our assumption
on z implies that the score for ag can be improved only by replacing some A-T
mismatches by T-T matches, or, if y < u, by A-A matches. On the other hand,
replacing any T-T match by a T-A match will worsen the score by z — vp. Since
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¢ < Bk/2, only O(k®) of the columns of the unaligned sequences contain any A’s.
Thus the maximum possible improvement in the score of ap that can be achieved
by inserting spaces is of the order O(k®). For each column ¢ of a, let us define the
net gain contributed by this column as

ng(c) = Y sca(tiy) = scaltiy)-
tij€C
Of course, a negative net gain is a net loss. Now suppose a column ¢ of a contains
at least one space symbol and ng(e¢) > 0. If z > wu, then it is easy to see that this
column must contain at least one occurrence of A. If z < u, then either ¢ contains
at least one occurrence of A, or ¢ contains at most |u/z] space symbols and at least
[(k* —1)(z —vr)/(u—v7)] T’s from columns of aq that contain an occurrence of A.
Let us relax these requirements a little and say that column ¢ of a is benign if either
it contains an occurrence of A or ¢ contains at most 2[u/z] 41 space symbols and at
least 0.5[(k?—1)(z—vr)/(u—v7)] T’s from columns of ag that contain an occurrence
of A. Then there are at most O(k°) benign columns in a, and each column that is not
benign contributes a net loss of at least 0.5(k? — 1) min{z — vy, (z —vr)?/(u—v7)}.
Since the total gain of order O(k®) must outweigh the combined net loss of all
columns, we conclude that all but O(k®) columns of a are benign, and the lemma

follows. O

The definition of the partition (V, V}*) for a gap-0-1 alignment a of {“ can be
generalized to gap-0 alignments in a natural way. In the latter case, V|/* will consist
of all vertices v; such that a appends an even number of spaces at the beginning
of t;, and V}* will consist of all vertices v; such that « appends an odd number of
spaces at the beginning of {;. For each gap-0 alignment ¢ one can define a gap-
0-1 alignment a* that appends a space at the beginning of ¢; if and only if ¢ < &
and v; € V. Then V' = Voa* and ¢, = cg«. Let ag denote the alignment that
contains no spaces, and let us analyse how much the SP-score of ag can be reduced
by an optimal gap-0 alignment a. The total penalty for A-T mismatches can be
reduced by creating A-A matches or, if ¥y < u, by shifting some offending A’s to the
side where they are aligned with spaces rather than T’s. The A’s come in groups
of three that reside in consecutive columns of ap and are separated by spacers of
length k7 —3. Lemma 3 implies that a can shift sequences only by distances that are
much shorter than the spacers. It follows that a can create matches only between
two A’s that sit in adjacent columns of ag, and a cannot reduce penalties by shifting
more than the three leftmost A’s “to the side.” But for each match between A’s
from neighboring columns of @y that is created by a, such a match is also created
by a*. Thus, the SP-score for the optimal gap-0 alignment a will again be equal to

klzﬁkaz(kz -1/2+ 3k5£(u — UT)(]CZ -1)- cak5(2u —vq4—oup)+ O(k4),

and a induces a partition of V' that maximizes ¢,, which implies Theorem 1(b).

Finally, let M be a generic scoring matrix with ¥y > w and z > vp, and let a
be a multiple alignment that minimizes SPM (aty, ..., aty2_1). Let us think of the
sequences 9 as forming k° consecutive blocks, where block number n consists of
all columns of ag numbered k7¢n through k7¢(n + 1). For 0 < n < k®> — 1, let us
refer to columns numbered k7¢n — |k7/2] through k7¢(n 4+ 1) — [k7/2] — 1 of a as
a-block number n. Furthermore, a-block number 0 will consist of all positions to the
left of a-block number 1, and a-block number k> — 1 will consist of all positions to
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the right of a-block number k&% — 2. Lemma 3 implies that for all n, the A’s from
block number n of the unaligned sequences must end up in a-block number n of
the aligned sequences {ato, ..., atg2_1).

Now let us consider a-block number n, which will be denoted by B,,, and let us
estimate the combined net gain or net loss over all columns of B,,. There are two
possibilities:

Case 1: B,, does not contain a space symbol.

In this case, we let V;"" be the set of all v; such that a inserts an even number
of space symbols into ¢; to the left of By, and let V;"" be the set of all v; such that
a inserts an odd number of space symbols into ¢; to the left of B,,. Let ¢, , be the
size of the cut determined by the partition (Vy"", V}*") of V. An argument as in
the proof of part (b) shows that the combined net gain of all columns of a on B,
will be at most 2¢q »(2u — v4 — vp).

Case 2: B,, does contain a space symbol.

First note that insertion of space symbols might increase the number of A-A
mismatches over what can be achieved by a gap-0 alignment, since the number of
such matches will no longer be bounded by the size of any cut. However, Lemma 3
still implies that these matches have to be between A’s from adjacent columns. Thus
the number of A-A matches is bounded by ¢; in other words, the combined net gain
5Cq,(ti ;) — scqlt; j) over all symbols¢; ; in By, is bounded by 24(u —v4 —vr), which
is of order O(k), since £ < Bk/2. Now let ¢ = min{y—u, z—vp}. Then any column
that contains a space symbol contributes a net loss of at least e(k?—1)—2u+v4 —v7,
and 1t follows that the SP-score for a on B, is worse than the SP-score for ag on
B,,.

Now let us estimate the total SP-score for the alignment a. Let U be the set of
all n < k® such that a-block number n does not contain spaces. Then

SPM(E%) > top (K'0—k*) /24 3k L(u—vr ) (K2 —1)= > _ cank®(2u—va—vp)+O(k?).
nelU

Let b be an optimal gap-0-1 multiple alignment of the sequences {“. Since the
optimal multiple alignment a cannot have a score that is worse than that of an
optimal gap-0-1 multiple alignment, we must have

SPMA%) < vp (k'S — k') /24 3k 0(u — vp ) (k% — 1) — 2¢3k5 (2u — v — vp ) + O(k?).

It follows that ¢4, = ¢, for most n, and thus for most n the partition (V5"", V,"™)
maximizes the size of the cut in . Since the largest of the numbers ¢, ,, and the
corresponding partition (Vy"", V,"") can easily be extracted from a by a polynomial-
time algorithm, part (a) of Theorem 1 follows. O

Proof of Theorem 2. Qur argument does not require a formal definition of the class
MAX-SNP. Tt suffices to know that there is a positive integer B such that the
SIMPLE MAX-CUT(B) is MAX-SNP-complete (Papadimitriou and Yannakakis
1991). We will show MAX-SANP-hardness of our multiple alignment problems
by showing that there are L-reductions of the SIMPLE MAX-CUT(B) problem
to scaled versions of each of the following problems: gap-0-1 multiple alignment
for My, gap-0 multiple alignment for My, and multiple alignment for My. This
establishes MAX-SAP-hardness in the sense of Arora and Lund (1997), who call
an optimization problem II' MAX-SNP-hard if there exist a MAX-SNP-complete
problem II and a gap-preserving reduction of II to II’. This a definition explicitly
allows scaling of objective functions (see Arora and Lund (1997), page 411).
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Let us recall the notion of an L-reduction. If II and II' are two optimization
(maximization or minimization) problems, then Il L-reduces to I’ if there are two
polynomial-time algorithms f, g and constants «, 8 > 0 such that for each instance
I of II:

(a) Algorithm f produces an instance I’ = f(I) of I, such that the optima of I
and I’, OPT(I) and OPT(I'), respectively, satisfy OPT(I') < «OPT(I).

(b) Given any solution of I" with cost ¢/, algorithm ¢ produces a solution of I with
cost ¢ such that e — OPT(I)| < Bl — OPT(I')|.

Let us define a minimization problem II’ as follows: An instance of II' is a simple
graph G = (V| E) with degree at most B. For every partition P = (V5, V1) of V, let
cp be the size of the cut determined by P. The objective of II' is to find a partition
P of V that minimizes the number dp = 3|E| — 2¢p.

Here is the L-reduction of II’ to scaled versions of the multiple alignment prob-
lems: Given a graph G = (V, E) with k vertices and degree at most B, we
define a k%-tuple 1% = (to,... t32_1) of sequences as follows: Enumerate V =
{vo, ..., vk_1}, B = {eo,...,eo_1}. Each sequence t; will have length k*2¢. We
define ¢; ;, the j-th character in ¢;, as follows. For m < €, e,, = {wp, v}, b < 4,
n < k® we let:

U k7 nt b m42 = bk 7en+kTm41 = b kTintkTmes = A.
th b TtntkTmal = L kTentkTm43 = LikTentkTmt2 = 1
In all other cases, we let ¢; ; = C.

Figure 4 illustrates this construction. Again, we exhibit a situation where e,, =

{vh,vi}, em = {vg, v}, m<m’, n<n' <k°.

tg,k7ﬁn+k7m tg,k72n+k7m’ tg,k72n’+k7m
| | |
t,, ... C C CCC .CTATZC . CCCZCGCC
o o o
th C T A T C C AT A C C T A T C
o o o
t; C AT A C ¢ C C C C C A T A C
o o o
tp ¢ C C C C ¢ C C C C ¢ C C C C

FIG. 4. Coding a graph in the proof of Theorem 3.
An argument very similar to the reasoning in the proof of Theorem 1 shows that
if a is the optimal gap-0-1 multiple alignment, gap-0 multiple alignment, or multiple
alignment for My, then

(%) SPMo(§%y = (30 — 2¢4)k® 4+ O(k*),

where ¢, 1s the size of the minimal cut in G.
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Now it is immediately clear that II' L-reduces to each of the three alignment
problems, if the SP-score is scaled by a factor of k~%/? for every multiple alignment
problem that involves k sequences.

Since L-reductions compose, it now suffices to show that the SIMPLE MAX-
CUT(B) problem L-reduces to II'. Let G = (V| E) be a simple graph of degree
at most B. The functions f and g in the definition of an L-reduction will simply
be identity. Note that for any partition P of V' that maximizes the size of the
corresponding cut, each vertex of degree > 1 contributes at least one adjacent edge
to the cut induced by P: If not, the size of the cut could be increased by moving
the offending vertex to the other side of the partition. It follows that if the degrees
in G are bounded by B, then ¢p > |F|/B. Since dp = 3|E| — 2¢p < 3|F|, we can
set « = 3B. Since any increase of cp by 1 corresponds to a decrease of dp by 2, we
can set # = 2, and the conditions of an L-reduction will be satisfied.

O

4. ACKNOWLEDGEMENTS

I would like to thank Liming Cai for bringing the problem to my attention,
and David Juedes, Gianluca Della Vedova and Tao Jiang for valuable comments
on earlier versions of this paper and a prequel (Just 1999) to it. T also thank the
referee of the first version of this paper for pointing out a mistake in the argument.

5. REFERENCES

Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M. 1992. Proof
verification and intractability of approximation problems, 13-22. In Proc. 33rd
IEEE Symp. on Foundations of Computer Science.

Arora, S.; and Lund, C. 1997. Hardness of Approximations, 399-446. In Hochbaum,
D.S., ed., Approzimation Algorithms for NP-hard Problems, PWS.

Benner, S.A., Cohen, M.A., and Gonnet, G.H. 1993. Empirical and Structural
Models for Insertions and Deletions in the Divergent Evolution of Proteins. J. Mol.
Biol. 229, 1065-1082.

Bonizzoni, P., and Della Vedova G. 2000. The complexity of multiple alignment
with SP-score that is a metric. To appear in Theoretical Computer Science.
Carillo, H. and Lipman, D. 1988. The multiple sequence alignment problem in
biology. SIAM J. Appl. Math. 48(5), 1073-1082.

Dayhoff, M. O., Schwartz, R. M., and Orcutt, B. C. 1978. A model of evolutionary
change in proteins. In M. O. Dayhoff, ed., Atlas of Protein Sequence and Structure,
345-352. Nat. Biomed. Res. Found., 5, supp. 3.

Della Vedova, G. 1999. Personal Communication.

Fasman, K.H. and S. L. Salzberg, S.L.. 1998. An introduction to biological sequence
analysis, 21-42. In Salzberg, S.L., Searls, D.B., and Kasif, S., eds., Computational
Methods in Molecular Biology, Elsevier.

Fitch, W. M. 1993. Letter to the Editor: Commentary on the letter by Ward C.
Wheeler. Molecular Biology and Evolution 10(3), 713-714.

Garey, M.R., and Johnson, D.S. 1979. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman.

Henikoff, S., and Henikoff, J. 1992. Amino acid substitution matrices from protein
blocks. Proc. Nat. Acad. of Sci., USA, 89, 10915-10919.

Jiang, T. 1999. Personal Communication.



12 WINFRIED JUST

Jiang, T. Kearney, P., and Li, M. 1999. Some Open Problems in Computational
Molecular Biology. SIGACT News 30(3), 43-49.

Just, W. 1999. On the computational complexity of gap-0 multiple alignment.
Preprint.

Papadimitriou, C., and Yannakakis, M. 1991. Optimization, approximation and
complexity classes. J. of Computer and System Sciences 43, 425-440.

Pascarella, S., and Argos, P. 1992. Analysis of Insertions/Deletions in Protein
Structures. J. Mol. Biol. 224, 461-471.

Wang, L., and T. Jiang, T. 1994. On the complexity of multiple sequence alignment.
Journal of Computational Biology 1(4), 337-348.

Wheeler, W. C. 1993. Letter to the Editor: The Triangle Inequality and Character
Analysis. Molecular Biology and Evolution 10(3), 707-712.



COMPLEXITY OF MULTIPLE SEQUENCE ALIGNMENT

A|lA|T
Alrx |y | 2z
Aly|val| u
Tz | u |vp

FIG. 1. A generic scoring matrix.
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AlA
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0
1
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1
0
0
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FIG. 2. The scoring matrix Mj.
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tg,k7ﬁn+k7m tg,k72n+k7m’ tg,k72n’+k7m
| | |

T T 1~ 1~ 1 .. T T A T T .. T T T
o o |
T T A T T T A T A T T T A
o o |
T A T A T T T T T T T A T
o o |
T T T T T T T T T T T T T

FIG. 3. Coding a graph in the proof of Theorem 1.
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tg,k72n’+k7m

|

tg,k72n+k7m’

tg,k7ﬁn+k7m
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c C C C C

C AT A C ¢c T A T C

¢c T A T C

thi

c C C C C C AT A C

C AT A C

tii

c C C C C c C C C C

c C C C C

7S

FIG. 4. Coding a graph in the proof of Theorem 3.



