
 1996 Oxford University Press 1515–1524Nucleic Acids Research, 1996, Vol. 24, No. 8

SAGA: sequence alignment by genetic algorithm
Cédric Notredame* and Desmond G. Higgins

EMBL outstation, The European Bioinformatics Institute, Hinxton Hall, Hinxton, Cambridge CB10 1RQ, UK

Received December 5, 1995; Revised and Accepted March 4, 1996

ABSTRACT

We describe a new approach to multiple sequence
alignment using genetic algorithms and an associated
software package called SAGA. The method involves
evolving a population of alignments in a quasi evol-
utionary manner and gradually improving the fitness of
the population as measured by an objective function
which measures multiple alignment quality. SAGA
uses an automatic scheduling scheme to control the
usage of 22 different operators for combining align-
ments or mutating them between generations. When
used to optimise the well known sums of pairs
objective function, SAGA performs better than some of
the widely used alternative packages. This is seen with
respect to the ability to achieve an optimal solution and
with regard to the accuracy of alignment by compari-
son with reference alignments based on sequences of
known tertiary structure. The general attraction of the
approach is the ability to optimise any objective
function that one can invent.

INTRODUCTION

The simultaneous alignment of many nucleic acid or amino acid
sequences is one of the most commonly used techniques in
sequence analysis. Multiple alignments are used to help predict
the secondary or tertiary structure of new sequences; to help
demonstrate homology between new sequences and existing
families; to help find diagnostic patterns for families; to suggest
primers for PCR and as an essential prelude to phylogenetic
reconstruction. The great majority of automatic multiple align-
ments are now carried out using the ‘progressive’ of Feng and
Doolittle (1) or variations on it (2–4). This approach has the great
advantage of speed and simplicity combined with reasonable
sensitivity as judged by the ability to align sets of sequences of
known tertiary structure. The main disadvantage of this approach
is the ‘local minimum’ problem which stems from the greedy
nature of the algorithm. This means that if any mistakes are made
in any intermediate alignments, these cannot be corrected later as
more sequences are added to the alignment. Further, there is no
objective function (a measure of overall alignment quality) which
can be used to say that one alignment is preferable to another or
to say that the best possible alignment, given a set of parameters,
has been found.

There are two main alternatives to progressive alignment. One
is to use hidden Markov models (HMMs; 5) which attempt to
simultaneously find an alignment and a probability model of
substitutions, insertions and deletions which is most self consist-
ent. Currently, this approach is limited, in practice, to cases with
very many sequences (e.g. 100 or more) but does have the great
advantage of a sound link with probability analysis. A second
approach is to use objective functions (OFs) which measure
multiple alignment quality and to find the best scoring alignment.
If the OF is well chosen or is an accurate measure of quality, then
this approach has the advantage that one can be confident that the
resulting alignment really is the best by some criterion. Unfortu-
nately, the number of possible alignments which must be scored
in order to choose the best one becomes astronomical for more
than four or five sequences of reasonable length.

Two solutions to this problem exist. The MSA program (6,7)
attempts to narrow down the solution space to a relatively small
area where the best alignment is likely to be. It then guarantees
finding the best alignment in this reduced space. Even with this
reduction, it is limited to small examples of around seven or eight
sequences at most. Nonetheless, it is the only method we know of
that seems capable of finding the globally optimal alignment or
close to it, starting with completely unaligned sequences. A
second approach is to use stochastic optimisation methods such
as simulated annealing (8), Gibbs sampling (9) or genetic
algorithms (GAs; 10). Simulated annealing has been used on
numerous occasions for multiple alignment (e.g. 11–13) but can
be very slow and usually only works well as an alignment
improver i.e. when the method is given an alignment that is
already close to optimal and is not trapped in a local minimum.
Gibbs sampling has been very successfully applied to the problem
of finding the best local multiple alignment block with no gaps but
its application to gapped multiple alignment is not trivial. Finally,
we know of one attempt at using GAs in this context (14). Here
they used a hybrid iterative dynamic programming/GA scheme.

In this paper, we describe a GA strategy and software package
called SAGA (sequence alignment by genetic algorithm) which
appears capable of finding globally optimal multiple alignments
(or close to it) in reasonable time, starting from completely
unaligned sequences. It can find solutions that are as good as or
better than either MSA or CLUSTAL W (3) as measured by the
OF score or by reference to alignments of sequences of known
tertiary structure. The approach has a further advantage in that it
can be used to optimise any OF one can invent. Biologically, the
key to successful application of optimisation methods to this
problem, depends critically on the OF. If the OF is not a good

* To whom correspondence should be addressed

Nucleic Acids Research, 1996, Vol. 24, No. 81516

descriptor of multiple alignment quality, then the alignments will
not necessarily be best in any real sense. The search for useful OFs
for sequence alignment, perhaps for different purposes, is surely
a key area of research. Without SAGA, however, it is difficult to
consider most new OFs as one cannot optimise them.

METHODS

The overall approach is to use a measure of multiple alignment
quality (an OF) and to optimise it using a genetic algorithm. A set
of well known test cases is used as a reference to evaluate the
efficiency of the optimisation.

Objective function

Evaluation of the alignments is made using an OF which is simply
a measure of multiple alignment quality. We use two OFs related
to the weighted sums of pairs with affine gap penalties (15). The
principle is to give a cost to each pair of aligned residues in each
column of the alignment (substitution cost), and another cost to
the gaps (gap cost). These are added to give the global cost of the
alignment. Furthermore, each pair of sequences is given a weight
related to their similarity to the other pairs. Variations involve: (i)
using different sets of sequence weights; (ii) different sets of costs
for the substitutions [e.g. PAM matrices (16) or BLOSUM tables
(17)]; (iii) different schemes for the scoring of gaps (18). The cost
of a multiple alignment (A) is then:

ALIGNMENT COST(A)��
N

i�2

�
i–l

j�1

Wi,j COST(Ai, Aj)

where COST is the alignment score between two aligned
sequences (Ai and Aj) and Wi,j is their weight. The COST
function includes gap opening and extension penalties for
opening and extending gaps. Altschul (18) made an extensive
review describing the different ways of scoring gaps in a multiple
alignment. Two different methods were used in SAGA: (i) natural
affine gap penalties and (ii) quasi-natural affine gap penalties.
These methods differ in how they treat nested gaps, i.e. a gap in
one sequence that is completely contained in the second. In both
cases, positions where both sequences have a null are removed.
With the natural gap penalties, gap opening and extension
penalties are charged for each remaining gap. With the quasi-
natural gap penalties, an additional gap opening penalty is
charged for any gap in one sequence that starts after and ends
before a gap in the second sequence (before the columns of null
are removed). Terminal gaps are penalised for extension but not
for opening.

Sequence weights are an attempt to minimise redundant
information, based on the relatedness of the sequences. In MSA,
a weight for every pair of sequences is derived from a
phylogenetic tree connecting the sequences. In CLUSTAL W
(20), a weight is calculated for each sequence and the pair weight
(Wi,j) for two sequences is simply their product. These weights
differ in detail although both are designed for a similar purpose.

In this study we give results for the optimisation of two OFs:
(i) OF1 weighted sums of pairs using the pam250 weight matrix
with quasi-natural gap penalties and MSA, rationale 2, weights
(19). This is the function optimised by MSA. (ii) OF2 weighted
sums of pairs using the pam250 weight matrix with natural gap
penalties and CLUSTAL W weights (20).

Sequence alignment by genetic algorithm (SAGA)

To align protein sequences, we designed a multiple sequence
alignment method called SAGA. SAGA is derived from the
simple genetic algorithm described by Goldberg (21). It involves
using a population of solutions which evolve by means of natural
selection. The overall structure of SAGA is shown in Figure 1.
The population we consider is made of alignments. Initially, a
generation zero (G0) is randomly created. The size of the
population is kept constant. To go from one generation to the next,
children are derived from parents that are chosen by some kind
of natural selection, based on their fitness as measured by the OF
(i.e. the better the parent, the more children it will have). To create
a child, an operator is selected that can be a crossover (mixing the
contents of the two parents) or a mutation (modifying a single
parent). Each operator has a probability of being chosen that is
dynamically optimised during the run.

These steps are repeated iteratively, generation after gener-
ation. During these cycles, new pieces of alignment appear
because of the mutations and are combined by the crossovers. The
selection makes sure that the good pieces survive and the dynamic
setting of the operators helps the population to improve by
creating the children it needs.

Following this simple process, the fitness of the population is
increased until no more improvement can be made . All these
steps, shown in Figure 1, can be summarised by the following
pseudo-code:

Initialisation 1. create G0
Evaluation 2. evaluate the population of generation n (Gn)

3. if the population is stabilised then END
4. select the individuals to replace
5. evaluate the expected offspring (EO)

Breeding 6. select the parent(s) from Gn
7. select the operator
8. generate the new child
9. keep or discard the new child in Gn+1

10. goto 6 until all the children have been success-
 fully put into Gn+1

11. n = n+1
12. goto EVALUATION

End 13. end

Initialisation. The first step of the algorithm (Fig. 1a) is the
creation of a random population. This generation zero consists of
a set of alignments containing only terminal gaps. A population
size of 100 was used in all of the results presented here. To create
one of these alignments, a random offset is chosen for all the
sequences (the typical range being from 0 to 50 for sequences 200
residues long) and each sequence is moved to the right, according
to its offset.The sequences are then padded with null signs in order
to have the same length, L. The alignments of generation zero will
be the parents of the children used to populate generation one.

Evaluation. To give birth to a new generation, the first step is the
evaluation of the fitness of each individual. This fitness is
assessed by scoring each alignment according to the OF. The
better the alignment, the better its score, and thus the higher its
fitness. If the purpose is to minimise the OF, as is the case for OF1
and OF2, then the scores are inverted to give the fitness. The
expected offspring (EO) of an alignment is derived from the
fitness. It is typically a small integer. The method we used to
derive it is known as remainder stochastic sampling without

1517

Nucleic Acids Research, 1994, Vol. 22, No. 1Nucleic Acids Research, 1996, Vol. 24, No. 81517

Figure 1. The layout of the SAGA algorithm. (a) Initial population (G0). (b) One generation cycle (Gn). The method continues until the terminal conditions are met.
Boxes P1n to Pm

n indicate parents in generation n, boxes C1
n+1 to Cm

n+1 indicate the children of these Parents. Parents and children are alignments. Bold boxes indicate
alignments selected to survive unchanged from one generation to the next. OP is a randomly chosen operator.

replacement (22). In the case of OF1 and OF2 the typical values
of the EO are between 0 and 2, which can be considered as an
acceptable range (21).

Only a portion (e.g. 50%) of the population is to be replaced
during each generation. This technique, known as overlapping
generation (23), means that half of the alignments will survive
unchanged, the other half will be replaced by the children. We
chose in SAGA to keep only the best individuals, and to replace
the others. In practice, all the individuals are ranked according to
their fitness, and the weakest are replaced by new children while
creating the generation n+1 from the generation n. The other
individuals (the fittest) will simply survive as they are during the
breeding.

Breeding. First, the new generation is directly filled with the
fittest individuals from the previous generation (typically 50%).
Next, the remaining 50% of the individuals in the new generation

are created by selecting parents and modifying them. During the
breeding, the EO is used as a probability for each individual to be
chosen as a parent. A wheel is spun where each potential parent
has a number of slots equal to its EO. When an individual is
chosen to be a parent, its EO is accordingly decreased before the
next turn of selection (selection without replacement). This
weighted wheel selection is carried on until all the parents have
been chosen.

To modify the parent(s), an operator has to be chosen. An
operator is a small program that will modify an alignment (e.g.
shuffle the gaps or merge two alignments into a new one). We have
designed several operators. Each of them has a specific probability
of being used. To create a child, one operator is chosen according
to this probability (by spinning another weighted wheel). The
chosen operator is then applied to the chosen parent(s). Some
operators require two parents, others require only one.

Nucleic Acids Research, 1996, Vol. 24, No. 81518

An important aspect of the SAGA population structure is the
constraint we put on the absence of duplicates. In the same
generation, all the alignments have to be different. This technique
helps maintain a high level of diversity in a population of small
size (24). To do so, each newborn child is checked to ensure it is
not identical to any of the children already generated. If it is not,
it will be put into the new generation. Otherwise, it will simply be
discarded along with its parent(s) and the operator, in order to
avoid deadlock problems. This process is carried on until enough
children (e.g. 50% of the population) have been successfully
inserted in the new generation. The Evaluation/Breeding process
will be carried on until the decision is made to stop the search.

End. There is no valid proof that a GA must reach the optimum,
even in an infinite amount of time, as there is for Simulated
Annealing (25). Thus the decision to stop the search has to be an
arbitrary choice using more or less sophisticated heuristic criteria.
We use stabilisation as a criterion: SAGA is stopped when the
search has been unable to improve for some specified number of
generations (typically 100). This condition is the most widely
used when working on a population with no duplicates (26).

The operators

According to the traditional nomenclature of genetic algorithms
(21), two types of operators are represented in SAGA: the
crossovers and the mutations. These programs perform modifica-
tions (mutation) or merging of parent alignments (crossover). In
SAGA we do not make any distinction between these two types
with regard to how we apply them. They are designed as
independent programs that input one or two alignments (the
parents) and output one alignment (the child). Each operator
requires one or more parameters which specify where the
operation is to be carried out. For example, an operator which
inserts a new gap must be told where (at which position in the
alignment) and in which sequences the gap is to be inserted.

The parameters of an operator may be chosen completely
randomly in some range in which case the operator is said to be
used in a stochastic manner. Alternatively, all except one of the
parameters may be chosen randomly and the value of the
remaining parameter will be fixed by exhaustive examination of
all possible values. The value which yields the optimal fitness will
be used. When an operator is applied in this way, it is said to be
used in semi-hill climbing mode. Most of the SAGA operators
may be used in either way.

The crossovers. Crossovers are responsible for combining two
different alignments into a new one. We implemented two
different types of crossover: one-point and uniform. The one
point crossover combines two parent alignments through a single
exchange. Figure 2 outlines this mechanism. The first parent is cut
straight at some randomly chosen position and the second one is
tailored so that the right and the left pieces of each parent can be
joined together while keeping the original sequence of amino
acids. Any void space that appears at the junction point is filled
with null signs. Because of the specificity of this junction point,
where rearrangements can occur, this operator combines both the
traditional properties of a crossover and those of a local
rearrangement mutation. Only the best of the two children
produced that way is kept.

This one point crossover can be very disruptive, especially at
the junction point. To avoid this drawback, we added a second

Figure 2. A one point crossover between two parent alignments to produce two
children. The arrows indicate the way the two parents are cut having randomly
chosen a position in the left hand alignment. Child 1 is produced by combining
the left side of parent 1 and the right side of parent 2. Child 2 is produced by
combining the right side of parent 1 and the left side of parent 2. Only one of
these two children alignments is kept (whichever scores better). The boxed
sections show some patterns from the parent alignments that are combined in
the child.

operator: the uniform crossover, designed to promote multiple
exchanges between two parents in a more subtle manner. This
operator is based on an analogy with biological crossover:
exchanges are promoted between zones of homology.

The first step consists of mapping the alignment positions that
are consistent between the two parents. In an alignment, a position
is a column of residues or nulls stacked on top of each other. Two
positions are said to be consistent between two alignments, if in
each line they contain the same residue (by reference to the
original sequence) or a null coming from the same gap (i.e.
between the same residues). For instance, if in one line of a given
position we have ALA125 and at the same line of a position in the
other alignment we have ALA101 then the two position are not
consistent. This process is outlined in Figure 3. Blocks between
consistent positions can be directly swapped. One can do so in a
semi-hill climbing way, if only the best combination of blocks is
chosen, or in a stochastic way, if the block to place between two
consistent positions is randomly chosen between the two
alignments. Both uniform crossovers, the semi-hill climbing one
and the stochastic one, are implemented in SAGA.

Gap insertion. While the crossovers combine patterns, there is
still a need to generate these patterns. All the remaining operators
were designed to serve this purpose. The gap insertion operator
is the simplest.

This operator extends alignments by inserting gaps. Its
mechanism is detailed in Figure 4. To keep the sequences aligned,
each sequence will get a gap insertion of the same size. The
sequences are split into two groups. Within each group, all the
sequences get the insertion at the same position. The two groups

1519

Nucleic Acids Research, 1994, Vol. 22, No. 1Nucleic Acids Research, 1996, Vol. 24, No. 81519

Figure 3. A uniform crossover. All of the positions in the two parents that are
consistent between the two alignments are marked (stars). Children are
produced by swapping blocks between the two parents where each block is
randomly chosen between two consistent positions.

Figure 4. Gap insertion. (a) The estimated phylogenetic tree connecting the
five sequences is randomly divided into two sub trees. This gives two groups
of sequences (G1 and G2). (b) Two positions P1 and P2 are randomly chosen
in the alignment. A gap of random length (here 2 nulls) is inserted at position
P1 in the sequences of subgroup G1, and the same number of nulls are inserted
at position P2 in subgroup G2.

are chosen, based on an underlying estimated phylogenetic tree
between the sequences. The tree is randomly split into two
sub-trees (Fig. 4a). Each group consists of all the sequences in one
of the two sub-trees. For one of the groups, a position is randomly
chosen (Fig. 4b). A gap of randomly chosen length is then
inserted in each of the sequences of the group at the same position
(P1 in Fig. 4b). A gap of the same length is also inserted into all
of the sequences of the second group at some position within a
maximum distance from the first gap insertion (P2 in Fig. 4b).
This is the stochastic version of the block insertion operator.

The semi-hill climbing version of this operator is similar to the
stochastic one described above but in this case, all the parameters

except P1 (the position of the insertion in the first group of
sequences) are chosen randomly and all possible values of P1 are
tested. The value of P1 that gives the best scoring alignment is
chosen.

In general, it is dangerous to assume that the topology of the
underlying tree is correct. In the current usage, the main effect of
an incorrect tree topology will be to slow the program down. The
ability to find the globally optimal alignment should not be
changed, just the speed at which the solution will be found. When
two groups are chosen, using the tree, one of the groups can
consist of a single sequence. This means that, eventually, all
possible arrangements of gaps can be found, even if the tree
topology is completely wrong. Ideally one would use fuzzy
groupings based on the tree but which allows alternative
groupings.

Block shuffling. Generating an optimal arrangement after a gap
insertion can often be a matter of shifting a gap to the left or to the
right. Therefore we designed an operator that moves blocks of
gaps or residues (but not both together) inside an alignment. Here,
we depart from the usual definition of a block as a section of
alignment containing no gaps, with all of the sub-sequences
having the same length (27). For the purposes of this operator, we
define a block of residues to be a set of overlapping stretches of
residues from one or more sequences, each stretch being
delimited by a gap or an end of a sequence. Each sub-sequence
can be a different length but all sub-sequences must overlap.
Similarly, a block of gaps is a set of overlapping gaps. An example
of each is given in Figure 5a. A block is chosen by first selecting
one residue or gap position from the alignment and then deriving
the block to which it belongs. These can be moved inside the
alignment, to generate new configurations. Figure 5b, c and d
show some types of move that can be made inside an alignment.
These moves are an extension of those proposed for a simulated
annealing approach described by (12). The limits of this move are
contained in the alignment itself. A gap can only be shifted until
it merges with another gap. Similarly, a stretch of residues can
only be shifted until it merges with another stretch of residues. We
can enumerate the different ways these operations may be used as
follows:
� Move a full block of gaps or a full block of residues.

(Fig. 5b).

� Split the block horizontally and move one of the sub blocks
to the left or to the right. The subdivision of a block is made
according to the tree (cf. gap insertion operator) (Fig. 5c).

� Split the block vertically and move one half to the left or to
the right (Fig. 5d).

� The move can be made in a semi-hill climbing way, looking
for the best position, or in a stochastic manner.

These different combinations lead to a total of 16 possible
operators, designed to shuffle gaps, in all possible directions. All
sixteen operators are implemented in SAGA.

Block searching. A set of operators including crossovers, gap
insertion and block shuffling, is theoretically able to create any
arrangement needed for the correct alignment, but it is also bound
to lose a lot of time, trying to generate some configurations that
a simple heuristic would easily find.

Therefore, we designed a crude method that, given a substring
in one of the sequences, tries to find in the alignment, the block

Nucleic Acids Research, 1996, Vol. 24, No. 81520

Figure 5. Block shuffling. (a) An irregular block of gaps (left example) or
residues (right example) is chosen in the alignment. The block is constructed,
starting with a randomly chosen position in a randomly chosen sequence
(arrow). (b) An example of moving a full block of gaps, one position to the
left. (c) An example of splitting a block of gaps horizontally (according to the
tree). One of the sub-blocks is then moved in some direction (e.g. one position
to the left). (d) An example of splitting a block of gaps vertically. One of the
sub-blocks (e.g. the right one) is then moved to the right.

to which it may belong. Here we define a block as a short section
of alignment without any gaps (27). First, we select a substring
of random length at a random position in one of the sequences.
Then, all substrings of the same length in all of the other
sequences are compared with the initial substring and the best
matching one is selected. This new substring is added to the first
one, in order to form a small profile (31). Then, in the remaining
sequences, the best match is located and added to the profile. The
process goes on iteratively until a match has been identified in all
the sequences. The sequences are then moved to reconstruct the
block inside the alignment. This method does not depend on the
underlying phylogenetic tree or on the order of the sequences.

The initial substring is randomly chosen (typical length 5–15
residues). The block searching is not performed on the whole
alignment, but only in a section tailored randomly around the
position of the initial substring (typical size between 50 and 150
alignment positions). The ultimate rearrangement occurs inside
that section only. This precaution is taken in order to minimise the
side effect that could be caused by the existence of repeated
motifs inside some of the sequences. This block searching
mutation generates more dramatic changes than any of the other
operators.

Local optimal or sub-optimal rearrangement. Some situations
remain where the presence of a very stable local minimum makes
it quite difficult for the other operators to generate the optimal
configuration. In order to overcome this problem, we designed
our last operator. It attempts to optimise the pattern of gaps inside
a given block. This is done in two ways: (i) by exhaustive
examination of all gap arrangements inside the block or (ii) by a
local alignment GA (LAGA).

The exhaustive examination is carried out if it requires less than
a specified number of combinations to examine (typically 2000).
Otherwise, LAGA is used. LAGA is a crude version of the simple
genetic algorithm described by Golberg (21). It uses only one

point crossovers and the bloc shuffling operator. LAGA is
typically run for a number of generations equal to 10-fold the
number of sequences and with a population size of 20.

Dynamic scheduling of the operators

The 16 block shuffling operators, the two types of crossover, the
block searching, the gap insertion and the local rearrangement
operator, make a total of 22 operators (uniform crossovers and
gap insertion may be used in a stochastic or semi hill climbing
way). During initialisation of the program, all the operators have
the same probability of being used, equal to 1/22. There is no
guarantee that these probabilities are optimal. Even if they were
for the first stages of the run, they could become inadequate in
later stages. They could also be test case specific. How to
schedule the different operators in a general way that will be
efficient in many situations is a difficult problem. In fact, the more
operators one has, the more difficult it becomes. We implemented
an automatic procedure that deals with this problem and allows
us to easily add or remove operators without any need for
retuning.

Dynamic schedules, optimised on the run, are an elegant
solution to this problem, that was proposed by Davis (28). In this
model, an operator has a probability of being used that is a
function of the efficiency it has recently (e.g. 10 last generations)
displayed at improving alignments. The credit an operator gets
when performing an improvement is also shared with the
operators that came before and may have played a role in this
improvement. Thus, each time a new individual is generated, if
it yields some improvement on its parents, the operator that is
directly responsible for its creation gets the largest part of the
credit (e.g. 50%). Then the operator(s) responsible for the
creation of the parents also get their share of the remaining credit
(50% of the remaining credit, i.e. 25% of the original credit), and
so on. This report of the credit goes on for some specified number
of generations (e.g. 4).

After a given number of generations (e.g. 10) these results are
summarised for each of the operators. The credit of an operator
is equal to its total credit divided by the number of children it
generated. This value is taken as usage probability and will
remain unchanged until the next assessment, 10 generations later.
To avoid the early loss of some operators that may become useful
later on, all the operators are assigned a minimum probability of
being used (the same for all them, typically equal to half their
original probability i.e. 1/44).

Choice of the mutation sites

Experience shows that, while monitoring the search, areas
containing gaps are those that are most likely to change during a
run. For this reason we found it useful to bias the choice of the
mutation site by some probability related to the concentration of
gaps in an area. This bias is moderated in order to avoid local
minimum problems but it greatly helps the algorithm. Typically,
in the middle of a run, the probability of hitting a position
containing a gap is twice the probability of hitting a position
without gaps.

Test cases

We used a set of 13 test cases based mainly on alignments of
sequences of known tertiary structure. Twelve were chosen from

1521

Nucleic Acids Research, 1994, Vol. 22, No. 1Nucleic Acids Research, 1996, Vol. 24, No. 81521

the Pascarella structural alignment data base (29) and one of
chymotrypsin sequences from (6,12). We chose test cases of
varying length (60–280 residues) and various numbers of
sequences (4–32).

The test cases were divided into two groups. The first group
(nine test cases) is made of small alignments (4–8 sequences, and
60–280 residues long) that can be handled by MSA. Because they
can be computed by MSA, they allow us to asses SAGAs ability
to minimise the MSA OF. The second group (four test cases) is
made of larger alignments (9, 12, 15 and 32 sequences). Three of
them are only extended versions of some of the small test cases,
the fourth contains 32 sequences of immunoglobulins (for details
see Tables 1 and 2). These test cases cannot be handled by MSA,
and are designed to show the ability of SAGA to perform multiple
sequence alignments of realistic size. We analysed the results by
comparing the scores obtained by MSA and SAGA using OF1
and CLUSTAL W and SAGA using OF2.

To analyse the similarity between the structural alignments and
those obtained by one of these three programs, we use a measure
of consistency between two alignments. This measure gives the
percentage of residues that are aligned in a similar manner in the
two alignments. It allows us to measure the level of sequential
consistency between computed alignments generated by SAGA,
MSA and CLUSTAL W and the reference structural alignments.

Implementation

SAGA was written in ANSI C and was implemented on an open
VMS system. Memory requirements are low, the main usage
being to store the separate alignments in the population. For 10
sequences with an average alignment length of 200 and a
population size of 100, ∼1 Mb of memory is sufficient. The source
code is available free of charge from the authors; please send an
e-mail message to Cedric.Notredame@EBI.ac.uk .

RESULTS

We analysed three aspects of SAGA in detail. As the robustness
of our optimisation strategy depends on the dynamic operator
setting, we checked its behaviour on various test cases. In order
to show that SAGA was able to perform a rigorous optimisation,
we used the first group of nine test cases, for which, thanks to
MSA, a mathematically optimal, or sub-optimal solution is
known for OF1. We verified that SAGA was able to find a
solution at least as good. Then, using the second set of four test
cases, we analysed the ability of SAGA to perform a multiple
alignment on sequences that could not be aligned by MSA. We
compared these results with those given by CLUSTAL W on the
same test cases. With these two sets of experiments, we also tried
to assess the biological relevance of the alignments produced by
SAGA by reference to the structural alignments.

Table 1. The performance of MSA and SAGA on nine test cases

Test case Nseq Length MSA MSA versus CPU-time SAGA SAGA versus CPU-time
score structure (%) score structure (%)

Cyt c 6 129 1 051 257 74.26 7 1 051 257 74.26 960

Gcr 8 60 371 875 75.05 3 371 650 82.00 75

Ac protease 5 183 379 997 80.10 13 379 997 80.10 331

S protease 6 280 574 884 91.00 184 574 884 91.00 3500

Chtp 6 247 111 924 * 4525 111 579 * 3542

Dfr secstr 4 189 171 979 82.03 5 171 975 82.50 411

Sbt 4 296 271 747 80.10 7 271 747 80.10 210

Globin 7 167 659 036 94.40 7 659 036 94.40 330

Plasto 5 132 236 343 54.03 22 236 195 54.05 510

Nseq, number of sequences; Length, the length of the final SAGA alignment; Score, the alignment score using OF1. The columns marked ‘versus structure’ give
the percentage of the alignment that matches the structural alignment. CPU time is given in seconds and is taken from the best of three runs for SAGA. The PDB
structure identifiers for each test case are as follows: Cyt c: 451c, 1ccr, 1cyc, 5cyt, 3c2c, 155c; Gcr: 2gcr, 2gcr-2, 2gcr-3, 2gcr-4, 1gcr, 1gcr-2, 1gcr-3, 1gcr-4; Ac
protease: 1cms, 4ape, 3app, 2apr, 4pep; S.protease: 1ton, 2pka, 2ptn, 4cha, 3est, 3rp2; Dfr secstr: 1dhf, 3dfr, 4dfr, 8dfr; Chtp: 3rp2, M13143 (EMBL accession
number), 1gmh, 2tga, 1est, 1sgt; Sbt: 1cse, 1sbt, 1tec, 2prk; Globin: 4hhb-2, 2mhb-2, 4hhb, 2mhb, 1mbd, 2lhb, 2lh1; Plasto: 7pcy, 2paz, 1pcy, 1azu, 2aza.

Table 2. The performance of CLUSTAL W and SAGA on four test cases

Test case Nseq Length CLUSTAL W CLUSTAL W CPU-time SAGA SAGA versus CPU-time
score versus structure (%) score structure (%)

Igb 32 144 31 812 824 55.86 60 31 417 736 55.97 41 135

Ac Protease2 10 186 10 514 101 41.02 16 10 393 145 43.50 12 236

S Protease2 12 281 16 354 800 64.37 21 16 282 179 66.18 20 537

Globin2 12 171 5 249 682 94.90 18 5 233 058 94.01 2538

The columns are as for Table 1 but score refers to the optimisation of OF2. The PDB identifiers for the structures in each test case are as follows: Igb: 2fb4, 2fb4-2,
2fb4-3,2fb4-4, 2fbj, 2fbj-2, 2fbj-3, 2fbj-4, 1fc2, 1fc2-2, 1mcp, 1mcp-2, 1pcf, 1rei, 2rhe, 3fab, 3fab-2, 3fab-3, 3fab-4, 2hfl, 2hfl-2, 2hfl-3, 1fl9, 1fl9-2, 1fl9–3, 1fl9-4,
1cd4, 3hla, 3hla-2, 4fab, 3hfm, 1mcw; Ac protease2: 1cms, 4ape, 3app, 2apr, 4pep, 1cms-2, 4ape-2, 3app-2, 2apr-2, 4pep-2; S protease2: 1ton, 2pka, 2ptn, 2trm,
4cha, 3est, 1hne, 3rp2, 1sgt, 2sga, 3sgb, 2alp; Globin2: 4hhb, 4hhb-2, 2mhb, 2mhb-2, 1fdh, 1mbd, 1mbs, 2lhb, 1eca, 2lh1, 1pmb, 1mba.

Nucleic Acids Research, 1996, Vol. 24, No. 81522

Figure 6. Automatic scheduling of the operators. (a) One point crossover and
uniform crossover. The analysis was performed on the globin test case with
standard settings. The figure shows the probabilities of each of these operators
of being used at any time during the run. (b) Stochastic mutations, semi-hill
climbing mutations and crossovers (uniform and one point) for the globin test
case. The stochastic mutation data were obtained by summing the usage
probability of all the stochastic mutations. Crossovers and semi-hill climbing
were obtained in a similar way.

Self tuning ability

SAGA was run on all the test cases, and the schedules for all the
operators were plotted. Figure 6a and b present some of these
results. Figure 6a shows that the probabilities of being used of the
two types of crossover (one point and uniform) evolve according
to different schedules. In the early stages, the young population
is very heterogeneous and lacks consistency. Thus the uniform
crossover can hardly be used. Later in the run, when some order
has been created, the uniform crossover can be applied more
easily. It then gradually replaces the one point crossover. This
graph clearly shows that the two types of crossover are competing
with each other, although no extra information regarding the type
of the operator is given to the algorithm. All the operators were
analysed in the same way, in order to verify that they were needed
(data not shown).

Some operators are stochastic and some work in a semi-hill
climbing way. We verified that these semi-hill climbing operators
were not over-weighted with respect to the other operators. The
results are shown in Figure 6b. This figure clearly reveals that the
semi-hill climbing and stochastic operators behave in a comple-
mentary way during the run. During the early stages, semi-hill
climbing operators that easily generate improvements are fa-
voured. Once all the possible easy improvements have been
made, however, stochastic operators gradually replace the
semi-hill climbing ones, opening the way for new configurations.
This alternate use of both types of mutation is repeated through
a series of cycles, until the evolution stops. When this point is
reached, operators find it difficult or impossible to generate new
improvements and they stabilise at their original, default level of
1/22 (when no improvement has been made for some specified
number of generations). Although these schedules vary from one
test case to another, the main patterns, described above, occur
consistently. Closely related operators compete with each other
and may display cycles of oscillation. Each possible modification
may be viewed as a niche for which the various operators compete
during the run. It must be emphasised here that these schedules
are natural in the sense that no coding is responsible for the
observed phenomenon of oscillation that we described. These
results suggest that SAGA through the dynamic operator setting
is able to optimise the use of each operator according to its real
behaviour.

Optimisation of OF1

SAGA and MSA were compared with regard to their ability to
optimise OF1. This is the OF that MSA attempts to optimise. For
nine of the test cases, we compared the alignments produced by
MSA and those generated by SAGA. SAGA was run with default
parameter settings. The results shown in Table 1 are the best from
three trials. On a larger number of runs it was verified that SAGA
reaches this solution in at least one third of the runs. In all the
cases, SAGA was able to produce a score at least as good as that
produced by MSA (note that the lowest scores are the better ones).
In four cases, this score was better. We tried to derive a correlation
between the mathematical optimisation of OF1 and its biological
relevance. To do so, these four alignments were compared with
the structural reference alignments for consistency. This analysis
reveals that an improvement of the optimisation consistently
correlates with an improvement of the accuracy: the alignments
for which SAGA outperforms MSA are more similar to their
structural references. Recently, MSA has been upgraded by a
newer, faster version but the results are identical (7).

In principle, MSA can be used to find the guaranteed optimal
alignment for a set of sequences. In practice, however, the
parameter settings required to do so will often be prohibitively
expensive in terms of time and memory. By default, MSA uses
heuristic bounds which do not guarantee optimality. In cases
where SAGA achieves a better score than MSA, one can calculate
new bounds from the SAGA alignment and use these to run MSA.
In this case, MSA achieves the same score as SAGA (data not
shown). In practice, if you do not have a higher scoring reference
alignment (e.g. from SAGA), adjusting the bounds is not trivial.
If they are set incorrectly, you either do not get the optimal
alignment or MSA runs out of memory. Attempts at finding better
solutions than those found by SAGA by increasing the bounds
used by MSA, failed to find better scoring solutions. Starting with

1523

Nucleic Acids Research, 1994, Vol. 22, No. 1Nucleic Acids Research, 1996, Vol. 24, No. 81523

the bounds calculated from the SAGA alignment, the bounds
were increased as much as possible up to the point where the
problem became uncomputable with available computer time and
memory. This suggests that the solutions presented in Table 1
could indeed be optimal.

Optimisation of OF2

MSA uses quasi-natural gap penalties because of the computa-
tional cost of using natural ones. It can be argued that natural gap
penalties are more biologically realistic (18) and we therefore use
them for the remaining four test cases. MSA is also severely
limited regarding the number and the length of the sequences it
can align. In these four test cases, there were too many sequences
for MSA to perform its task. Without the MSA reference, it
becomes difficult to assess the efficiency of the optimisation.
Therefore, we replaced the MSA reference with an alignment
produced by CLUSTAL W. It must be stressed here that
CLUSTAL W does not explicitly try to optimise any OF. Despite
these limitations, by choosing an appropriate set of parameters,
we used CLUSTAL W in conditions where it would produce a
result as close as possible to the optimisation of OF2. These
alignments were compared with those obtained from SAGA
while optimising OF2.

Both sets of alignments were then compared to the structural
reference alignments of Pascarella (29). These results are
presented in Table 2 and show that in all four test cases SAGA
builds an alignment with a better score than CLUSTAL W,
regarding OF2. This Table also shows that in three out of four test
cases, the alignment generated by CLUSTAL W is less similar to
the structural alignment than is that produced by SAGA. These
results suggest that with similar types of weights, similar types of
substitution cost (Pam 250) and similar range of gap penalties,
SAGA performs more accurately than CLUSTAL W on data sets
of realistic size.

Figure 7 presents the N-terminus portion of the S protease2 test
case obtained with SAGA. The reference structural alignment
contains 12 completely conserved positions. SAGA is able to
reconstitute 11 of these positions while CLUSTAL W only finds
10 of them. Overall, the comparison of the SAGA alignment with
the structural reference shows that the main features are
accurately found by our algorithm.

DISCUSSION

We believe SAGA to be a powerful and flexible tool for sequence
alignment. This can be seen by the ability of SAGA to achieve
what appear to be optimal alignment scores and by the
consistency of our alignments with test cases of known tertiary
structure. The consistency of the SAGA alignments with
structural reference alignments is mainly a measure of the
usefulness of the particular OFs we have tested. Nonetheless,
even with the very limited range of OFs that we have tried, SAGA
performs extremely well. SAGA is still fairly slow for large test
cases (e.g. with >20 or so sequences) but we have made little
effort at optimising the program for sheer speed. In the future, it
may be desirable to use a hybrid progressive/genetic algorithm
approach in order to combine the speed of the former with the
accuracy of the latter.

Currently, we seed the starting population of alignments
completely randomly. We could use heuristic alignments gener-
ated by CLUSTAL W, for example, perhaps with different

Figure 7. Example of an alignment obtained with SAGA.This is the N-terminus
of the S protease2 alignment, used in Table 2. Completly conserved positions are
marked (stars). The boxed column of glycine was not found with CLUSTAL W.
Residues in upper case are correctly aligned with respect to the structural
reference, those in lower case are misaligned.

parameter settings and refine these. We prefer not to, however, as
the starting alignments could be trapped in local minima. If the
starting alignment is close to the optimal solution, SAGA could
be used very easily as an alignment improver. This would provide
an easy method for generating hybrid alignments for very large
test cases but we have not evaluated SAGA in detail in this
respect.

Genetic algorithms have been used successfully as a practical
way to solve many computationally difficult problems. They are
intellectually satisfying in their simplicity and the way they
attempt to mimic biological evolution. From the point of view of
multiple sequence alignment, the use of stochastic optimisation
methods has proved to be difficult with just a few exceptions
(9,32). We found that a simple GA, applied in a straightforward
fashion to the alignment problem was not very successful. The
main device which allowed us to efficiently reach very high
quality solutions was to use a large number of mutational and
crossover operators and to automatically schedule them. At first
glance, this is not very satisfactory in that it makes the method
seem very complicated and cumbersome. Multiple alignment,
however, is not a simple problem. The most useful of our
operators are the ones which appear most based in biological
reality e.g. moving blocks using the tree as a guide. In reality,
during the course of the evolution of a sequence family, many
different evolutionary events may take place. The automatic
scheduling has a further advantage. Should it turn out, in the
future, that SAGA is not very efficient at handling certain types
of situation, it is a simple matter to invent some new operators
designed specifically for the problem and to slot them into the
existing scheme. The automatically assigned probabilities of
usage at different stages in the alignment give a direct measure of
usefulness or redundancy for a new operator.

The second major reason for using GAs in the context of
multiple alignment is the complete freedom to use any OF one can

Nucleic Acids Research, 1996, Vol. 24, No. 81524

think of. This is perhaps the most important single feature of the
approach. One key to successfully tackling the multiple align-
ment problem is to have a good measure of multiple alignment
quality. The GA used in SAGA offers the opportunity to
implement and test new OFs.

After sequence alignment, there are two related questions
which one might wish to ask. First one might like to know if the
alignment is significant with respect to some statistical model e.g.
one might like to know the probability of observing any particular
alignment by chance alone. This is a very difficult problem which
has solutions for two sequences under certain conditions (30).
The second question is how stable is the alignment or which
pieces of the alignment are stable i.e. are there alternative
alignments with similar alignment scores? This is important if
one is to usefully interpret new alignments and there are some
solutions, again, for just two sequences (33). A by product of the
GA strategy in SAGA is a measure of consistency for each
column in the final alignment. This shows which columns are
stable and which ones have high scoring alternative arrange-
ments. The consistency is derived by counting how often a
particular column occurs in the 100 alignments of a SAGA
population during or after optimisation. We have no statistical
interpretation of this consistency measure but it is an extremely
useful by product of the SAGA alignment process at no extra
computational cost.

ACKNOWLEDGEMENT

We wish to thank Stephen Altschul for advice on using MSA.

REFERENCES

1 Feng,D.-F. and Dolittle,R.F. (1987) J. Mol. Evol., 25, 351–360 .
2 Taylor,W.R. (1988) J. Mol. Evol., 28, 161–169.
3 Thompson,J.D., Higgins,D.G. and Gibson,T.J. (1994) Nucleic. Acids. Res.,

22, 4673–4680.
4 Barton,G.J. and Sternberg,M.J.E. (1987) J. Mol. Biol., 198, 327–337.
5 Krogh,A., Brown,M., Mian,S., Sjolander,K. and Haussler,D. (1994) J.Mol.

Biol., 235, 1501–1531.
6 Lipman,D.J., Altschul,S.F. and Kececioglu,J.D. (1989) Proc. Natl. Acad.

Sci. USA, 86, 4412–4415.
7 Gupta,S.K., Kececioglu,J. and Schaffer,A.A. (1996) J. Comput. Biol., 2,

459–472.
8 Aart,E.H.L. and van Laarhoven,P.J.M. (eds) (1987) Simulated Annealing:

a Review of Theory and Applications, Kluwer Academic Publishers,
Amsterdam.

9 Lawrence,C.E., Altschul,S.F., Boguski,M.S., Liu,J.S., Neuwald,A.F. and
Wootton,J.C. (1993) Science, 262, 2–10.

10 Holland,J.H. (ed.) (1975) Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, Michigan, USA.

11 Ishikawa,M., Toya,T., Hoshida,M., Nitta,K., Ogiwara,A. and Kanehisa,M.
(1993) Comp. Applic. Biosci., 9, 419–426.

12 Kim,J., Paramanik,S. and Chung,M.J. (1994) Comp. Applic. Biosci., 10,
419–426.

13 Hirosawa,M., Hoshida,M., Ishikawa,M. and Toya,T. (1993) Comp. Applic.
Biosci., 9, 161–167.

14 Ishikawa,M., Toya,T. and Totoki,Y. (1993) Artificial Intelligence and
Genome Workshop, 13th International Joint Conference on Artificial
Intelligence, Chambery, France.

15 Altschul,S.F. and Erickson,B.W. (1986) Bull. Math. Biol., 48, 603–609.
16 Dayhoff,M.O., Schwartz,R.M. and Orcutt,B.C. (1978) In Dayhoff,M.O.

(ed.), Atlas of Protein Sequence and Structure, NBRF Washington, vol 5,
supplement 3.

17 Henikoff,S. and Henikoff,J.G. (1992) Proc. Natl. Acad. Sci. USA, 89,
10915–10919.

18 Altschul,S.F. (1989) J. Theor. Biol., 138, 297–309.
19 Altschul,S.F., Carrol,R.J. and Lipman,D.J. (1989) J. Mol. Biol., 207,

647–653.
20 Thompson,J.D., Higgins,D.G. and Gibson,T.J. (1994) Comp. Applic.

Biosci., 10, 19–29.
21 Golberg,D.E. (ed.) (1989) Genetic Algorithms in Search, Optimisation and

Machine Learning, Addison-Wesley, New York.
22 Brindle,A. (1979) Analysis of Frequency Errors in Three Sampling

Algorithms (unpublished manuscript) University of Albert, Department of
Computer Science Edmonton, Canada.

23 De Jong,K.A. (1975) Dissertation Abstract Int., 36, 5140B.
24 Goldberg,D.E. and Richardson,J. (1987) In Gresfensette,J.J.(ed.),

Proceedings of the Second International Conference on Genetic
Algorithms, 81–87.

25 Davis,T.E. and Principe,J.C. (1991) In Belew,R.K. and Booker,L.B. (eds),
Prcoceedings of the Fourth International Conference on Genetic
Algorithms, 174–181.

26 Davis,L. (ed.) (1991) Handbook of Genetic Algorithms, Van Nostrand
Reynolds, New York.

27 Henikoff, S. (1991) New Biol., 3, 1148–1150.
28 Davis,L. (1989) In Schaffer,J.D. (ed.) Proceedings of the Third

International Conference on Genetic Algorithms, 61–69.
29 Pascarella,S. and Argos,P. (1992) Protein Eng., 5, 121–137.
30 Waterman,M.S. and Vingron,M. (1994) Proc. Natl. Acad. Sci. USA, 91,

4625–4628.
31 Gribskov,M., McLachlan,A.D. and Eisenberg,D. (1987) Proc. Natl. Acad.

Sci. USA, 84, 4355–4358.
32 Eddy,S.R. (1994) In Rawlings,C., Clark,D., Altman,R., Hunter,L.,

Lengauer,T. and Wodak,S.(eds), Proceedings of the Third Conference on
Inteligent Systems for Molecular Biology, AAAI Press, Menlo Park,
California, USA.

33 Vingron,M. and Argos,P. (1990) Protein Eng., 3, 565–569.

