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Abstract: Pooling designs are used in DNA library screening to ef-
ficiently distinguish positive clones from negative clones, which is of
fundamental importance in studying gene functions and many other ap-
plications in biology. One of the challenges of pooling designs is to design
decoding algorithms for determining whether a clone is positive based
on the test outcomes and a binary matrix representing the pools. This
problem becomes more difficult in practice due to errors in biological ex-
periments. More challenging, in some applications, besides positive and
negative clones, there is a third category of clones called ”inhibitors”
whose effect is to neutralize positives. In this paper, we present a novel
decoding algorithm identifying all positive clones with the presence of
inhibitors and experimental errors.
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1 Introduction

Recent advances in biology and technology, especially the success of the Human
Genome Project, have made the study of gene functions more popular. The study of
gene functions requires a high quality DNA library, which is a collection of the copies
of DNA fragments, called clones. Unfortunately, the high quality DNA library
is usually obtained through a large amount of testing and screening. Therefore,
it requires techniques to reduce the number of testing and screening. One such
technique is a pooling design.

The pooling design is also called non-adaptive group testing, which is a math-
ematical tool to significantly reduce the number of tests in DNA library screening
[1, 2, 8] and it also has many other biological applications [3, 4, 5, 6, 9, 10, 11, 12].
In DNA library screening, the basic problem of pooling designs is to identify the
set of all positive clones in a large population of clones with the minimum number
of tests. A clone is positive if it contains a given probe; otherwise, it is nega-
tive. In pooling designs, each test is performed on a subset of clones, called pools,
rather than on an individual clone. For example, the Life Science Division of Los
Alamos National Laboratories in 1998 [7] faced 220,000 clones for testing. Testing
those clones individually would require 220,000 tests whereas with pooling designs,
they used only 376 tests. Each pool contains approximately 5,000 clones. Clearly,
pooling designs can help tremendously in reducing the number of tests.

Research on pooling designs usually contains two parts: 1) Designing an efficient
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decoding algorithm and 2) Designing the pools to meet the requirements of decoding
algorithms and to have fewer number of tests.

In this paper, we study the decoding algorithm problem, which is to determine
all positive clones based on the test outcomes and the constructed pools. In the
classical model, the test outcome of a pool is positive if it contains at least one
positive clone; otherwise, it is negative.

However, in practice, the decoding problem becomes even more difficult due to
the experimental errors in biology. With the experimental errors, the test outcomes
may consist of false negatives or false positives. In the former, a test yields a
negative outcome when a pool consists of at least one positive clone. Likewise,
in the latter, a test yields a positive outcome when a pool does not contain any
positive clone.

More challenging, in some applications, besides positive and negative clones,
there is a third category of clones called ”inhibitors” whose effect is to neutralize
positives [2]. In other words, the presence of a single inhibitor in a pool dictates
the test outcome to be negative. One example of inhibitors is an enzyme inhibitor,
which is a molecule that binds to the active site of an enzyme during the reaction
process, thus preventing the success of this process. Similarly, in the pooling testing,
the inhibitors will spoil the clones in the pools which make the test outcomes of the
pools become negative.

In this paper, we study the decoding algorithms in the Inhibitors and Error-
Tolerance (IET) model, in which there are n clones with at most d positive clones
and at most s inhibitors, subject to at most e experimental errors. There exists
several decoding algorithms in the IET model [2, 13, 14]. However, most of them
used a sequential k-round approach for some constant k > 2. In this approach, the
pools are constructed based on the test outcomes of the previous tests. Hence, the
pools may be re-constructed k times. For example, in the first round, the pools of
n clones are constructed and tested to identify all s inhibitors. Then in the second
round, the pools of n — s clones are constructed and tested to identify all positive
clones. This approach is expensive since testing and conducting the pools are time-
consuming. In [14], the authors introduced the 1-round decoding algorithm. In this
paper, we present a novel 1-round decoding algorithm with fewer number of tests
(pools) than that of [14] for the inhibitors and error-tolerance model.

2 Preliminaries and Trade-Offs

A pooling design consisting of ¢ pools and dealing with n clones can be repre-
sented by a t X n binary matrix M with rows representing the pools and columns
representing the clones. A cell MJi,j] = 1 if and only if the i*” pool contains
the j'* clone; otherwise, MJi,j] = 0. Given S as a set of columns in M, then
Union(S) is defined as the boolean sum of all the columns in S. For example, let
S ={(1,0,0)7,(0,1,0)T,(1,1,0)T}, then Union(S) = (1,1,0)7.

Consider a binary matrix M, we have the following definitions:

Definition 1 d-separable: M is said to be d-separable if for any two subsets S and
S’ of columns in M with max{|S|,|S'|} < d and S # S’, Union(S) # Union(S’).
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Definition 2 d-disjunct: M is said to be d-disjunct if for any column C; and any
set S of d columns in M such that C; ¢ S, C; is not contained in Union(S).

Definition 3 (d, z)-disjunct: M is said to be (d, z)-disjunct if for any column C;
and any set S of d columns in M such that C; ¢ S, C; has at least z+ 1 1-entries
not contained in Union(S).

Definition 4 (d; z)-separable: M is said to be (d;z)-separable if for any sets S
and S" of at most d columns in M with S # S’, the Hamming distance H(Union(S),
Union(S")) > .

Here, the Hamming distance of two columns C; and C}, i.e. H(C;, C}), is defined
at the number of different components between these two columns.

Given a binary matrix M;x,,, the test outcomes of these ¢ pools can be repre-
sented by a t-dimensional column vector V, called the test outcome vector. Note
that V is a binary vector, in which 1 represents a positive outcome whereas 0 rep-
resents a negative outcome. In the classical model, where there is no inhibitors and
no errors, V is the union of columns corresponding to positive clones in M. Hence,
one possible solution for the decoding algorithms in the classical model is that for
each set S of at most d columns in matrix M, check whether the test outcome
vector V' matches the Union(S). In order for this algorithm to work, matrix M
must be d-separable. Note that the time complexity of this algorithm is O(n?).

Now let us consider another decoding algorithm in the classical model. When
M is a d-disjunct matrix, we have this following lemma:

Lemma 1 [4] For testing based on a d-disjunct matriz, the number of clones not
appearing in any negative pool is always no more than d.

Based on Lemma 1, the authors in [4] presented an O(n) decoding algorithm. In
this algorithm, all clones appearing in negative pools are removed and the remaining
clones must be positive. For this algorithm to work, matrix M must be d-disjunct.

Note that d-disjunct implies d-separable. This means that d-disjunct is stronger
property; therefore, the number of tests in a d-disjunct matrix is more than that
of a d—separable matrix. Thus there is a trade-off between the time complexity of
decoding algorithms and the number of tests.

3 Main Results

In this section, we study the decoding problem in the IET model and present a
1-round decoding algorithm.

Definition 5 Problem Definition: Given a binary matrix M and a test outcome
vector V' from a sample of n clones with at most d positive ones and at most s
inhibitors, subject to at most e experimental errors, design an efficient decoding
algorithm to determine all positive clones.

Let us first consider a special case of the IET model, in which there is n clones
with at most d positive ones and at most s inhibitors and no errors, i.e, e = 0.
Define R as a set containing all clones not appearing in a positive pool. Thus set R
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contains all inhibitors and no positive clones. Let S be a subset of R where |S| < s.
For any clone A, define:

"] # of negative tests containing A otherwise

Note that when A ¢ S, the number of negative pools containing clone A is
computed after changing a negative test outcome of a pool to a positive outcome if
this pool contains a clone in S. In other words, we assume that the set S contains
exactly all inhibitors. The details of how to compute the value t°(A) are shown in
procedure NEGATIVE-POOLS (see Algorithm 1).

Now define t*(A) = mingc rt®(A), we have:

Lemma 2 If M is (d + s)-disjunct then:

(a) t*(P) =0

(b) Q) > 1

(c) t*(I) > d

where P represents a positive clone, Q) represents a negative clone, and I rep-
resents an inhibitor.

Proof:

(a) Note that for any S C R, +¥(P) > 0. There exists an S C R which contains
exactly all the inhibitors. For that S, +°(P) = 0 since there is no reason for P to
be in a negative pool.

(b) Since M is (d+s)-disjunct, the union of d+s columns in M must not contain
any other column. Thus a negative clone ) has at least one element not covered
by the up-to-d positive clones and all the clones in S. It results in t*(Q) > 1

(¢) Assume that M does not have any isolated column. A column is isolated
if there is a row containing only one l-entry at the intersection with that column.
This assumption is valid since in the pooling designs, each pool should contain
more than one clone. Since M is (d+ s)-disjunct and M does not have any isolated
column, M is also (s,d)-disjunct. Consider an inhibitor I and a subset S C R.
If I € S, then t°(I) = oo. Otherwise, an inhibitor I has at least d 1-entries not
covered by all the clones in S. Thus t*(I) > d.

0

Algorithm 1 NEGATIVE-POOLS(M,V, S, A)

change V' to V" by changing every negative pool containing a clone in S to a
positive pool

if A€ S then

t5(A) = oo
else

t9(A) = # of negative pools in V' containing A
end if

return t9(A)

Based on the above lemma, we can identify all positive clones P by finding those
that have t*(P) = 0 in the case where it is error-free.

Now let us consider the IET model. In this model, a pooling design must have an
error correcting property. A d-separable matrix M is said to be e-error-correcting
if the Hamming distance between two union of at most d columns is at least 2e 4 1.
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Algorithm 2 DECODING-ALGORITHM(M, V,n,d, s, ¢)

1: for every set E of at most e pools do
change V' to V' by changing the test outcomes of pools in F
compute set R = { clones not appearing in a positive pool }
for every clone A do

t*(A) = mingck NEGATIVE-POOLS (M, V', R, A)
end for
set D={A|t*(4) =0}
set B={A|t*(A) >d}NR
if (1) Union(D) C V' &&

(2) there exists O C B with |O| < s such that Union(D UO) 2 V' then
10: return D
11:  end if
12: end for

Without the presence of inhibitors, we can choose the d columns whose union is
within Hamming distance e from the test outcome vector be the set of all positive
clones. Thus we can propose a decoding algorithm for the IET model as described
in Algorithm 2.

The proposed algorithm consists of two for loops. The outer for loop is to
identify the errors whereas the inner loop is to identify the inhibitors. In particular,
at line 2, we assume that experimental errors occur on pools in set £/. The procedure
NEGATIVE-POOLS is called at line 5 to identify the set of clones with ¢+ (A) = 0.
Note that at this procedure, we assume that the set S is a set of inhibitors. The
details of this algorithm can be seen in Algorithm 2.

Theorem 1 The proposed algorithm outputs a set of all positive clones if matriz
M is (d + s)-disjunct and (d + s;2e + 1)-separable.

Proof: To prove this theorem, we prove these following three claims:

(1) The output D satisfies the following property:

(*) After deleting at most s columns and rows covered by these s columns, the
Hamming distance H(Union(D),V) <e.

(2) If E is exactly the set of errors tests, then D must be reached

(3) There exists exactly one D satisfying property (*)

Claim (1) follows from the conditions (1) and (2) at the if statement (line 9).

Note that we compare the Hamming distance between Union(D) and the original
test outcome vector V.

Claim (2) follows from Lemma 2. Also note that by Lemma 2, output D consists
of all the positive clones.

Claim (3) follows from the properties of the (d + s;2e + 1)-separable matrix
M, which implies that deleting at most s columns and rows covered by them, the
Hamming distance between two unions of at most d columns is at least 2e + 1.

O
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4 Discussions

In this paper, we study the decoding algorithms in pooling designs with the
presence of inhibitors and error-tolerance. We believe that there does not exist a
decoding algorithm for (d+ s)-disjunct and (d + s; 2e+ 1)-separable matrix running
in a polynomial time with respect to n, d, t, e and s unless NP = P. If we
strengthen the requirements of such a matrix to the (d+ s, 2e + 1)-disjunct matrix,
we may reduce the time complexity. However, the number of tests would increase
as discussed in Section 2. The study also showed that the time complexity in this
model is still expensive, i.e, O(n®) [4].
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