CAP5515: Computational Molecular Biology-Homework 2 Due at the beginning of the lecture on 04-07-2009. No late assignment will be accepted.

Consider the modularity function Q which is defined as follows:

First definition: The undirected network G = (V, E), with *n* nodes and *m* edges, is given by the symmetric matrix $A = (a_{uv})$: $a_{uv} = 1$ if $(u, v) \in E$ and $a_{uv} = 0$ otherwise. Let deg(u) denote the degree of the node *u*. Assume that the network is partitioned into disjoint communities. Define $\delta(u, v) = 1$ if u, v in a same community. Otherwise, $\delta(u, v) = 0$. The modularity Q is defined as

$$Q_1 = \frac{1}{2m} \left(a_{uv} - \frac{\deg(u) \, \deg(v)}{2m} \right) \delta(u, v) \tag{1}$$

Second definition: Assume that the network G = (V, E) is partitioned into communities $\mathcal{C} = \{C_1, C_2, \ldots, C_k\}$. Denote E(X, Y) the number of edges that have one end node in X and other end node in Y with the notice that if $u, v \in X \cap Y$ the edge (u, v) will be counted twice. The modularity is defined as

$$Q_2 = \sum_{C_i \in \mathcal{C}} \left(\frac{E(C_i, C_i)}{2m} - \left(\frac{E(C_i, V)}{2m} \right)^2 \right)$$
(2)

Do the following questions:

- 1. (10 pts) Is Q_1 equivalent to Q_2 , i.e. $Q_1(\mathcal{C}) = Q_2(\mathcal{C})$. Justify your answer.
- 2. (10 pts) We have learnt that Q_2 has a resolution limit. How about Q_1 ? Justify your answer.