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Modularity Maximization

Modularity Maximization

Given undirected graph G = (V, E), find a clustering {Cy, ..., Cx}
which is a disjoint partition of V such that the modularity of the

clustering C[1]:

is maximized. Here,
@ a,, =ay,=1if (u,v) € E, otherwise 0;
@ d, denotes the degree of any vertex u;
@ m is the number of edges in G;
@ ~(v) denotes the (unique) index of the cluster to which v belongs;
@ 0(x,y) is the Kronecker Delta, which equals to 1 if x = y, otherwise 0.
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Recent Efforts

Recent Efforts

@ This maximization problem is NP-complete[2];

o Correlation Clustering[3] interprets “partial membership of the same

cluster” as a distance metric, group nearby ones together;

@ Spectral Clustering[4] repeatedly divides clusters based on the largest

eigenvalue and corresponding eigenvector of the modularity matrix.
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Main Contributions

Main Contributions

Two heuristics:
9 LP relaxation and Distance-based Rounding Algorithm;
@ Quadratic Programming and Randomized Rounding Algorithm.

One potential method ratio analysis:

@ Similarity with Min-Disagree problem (4-approx) in LP formulation.

B o P e




Main Contributions

Pitfalls

@ No ratio analysis over the LP rounding or randomized rounding for
SDP;

@ Significant huge resource requirement due to ©(n®) constraints in LP
and ©(n?) variables in the vector programming; <= Huge time

complexity and computation overhead;

@ Performance of LP rounding relies on the selection of center vertex.
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Algorithms and Analysis Linear Programming Algorithm

Linear Programming Algorithm

@ |P Formulation and LP relaxation;

@ Distance-based Rounding;
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Algorithms and Analysis Linear Programming Algorithm

IP formulation

Integer Program

Maximize
1 d,d
5 O (auy = 50) - (1= )
u,v
Subject to
Fon S S A S Yu,v,w eV
Sy € 10,11 Yu,v eV
Let
m _ du,v . dudv
YV om 4Am?
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Algorithms and Analysis Linear Programming Algorithm

LP formulation

Maximize
> muy (1= xu)
u,v

Subject to

Fon S S A S Yu,v,w eV

Xy >0 Yu,veVv

Use CPlex to solve it = ©(n®)constraints
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Algorithms and Analysis Linear Programming Algorithm

Distance-based rounding

Algorithm 1
dist(u, v) < x,, for LP solution X;
S —V;
while S # () do
Select u € S; > randomly select
T, — {v|dist(u,v) < 1/2}
if average dist(u,v) <1/4 for all v € {T,\ {u}} then
Make C = T, a cluster;

else

Make C = {u} a singleton cluster
S—S5S\¢C

Refine the result using local-search algorithm.

How good can this heuristic be?
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Algorithms and Analysis Linear Programming Algorithm

Analysis

Min-Disagree problem formulated by [3]:
@ Given a complete graph where all edges are labeled as respectively
‘+’ or -' to indicate the similarity or dis-similarity of vertex pair;

@ partition the graph into clusters such that the number of errors (*-’

edges within clusters and ‘+' edges between clusters) are minimized.

-
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Linear Programming Algorithm
- )
Analysis(Cont’)

Min-Disagree LP

Minimize Z(u,v)GEJr Xuv + Z(U,V)EE_(l - XU7V)
= |Ex| = 2 (uvyeE Pun(l = Xuy)
Subject to

Fon S S A S Yu,v,w eV

Xy >0 Yu,veVv

where 1, , = 1if (u,v) is '+ edge, otherwise 0.
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Linear Programming Algorithm
- )
Analysis(Cont")

Further results:

o if define
du,v dudv

T 2m  4m?

Mis-Degree formulation on complete graph is similar to the IP

Hu,y = My v
9 9

formulation of modularity maximization.
9@ Mis-Degree problem has a 4-approximation rounding algorithm;

@ Due to existence of |EL|, it is hard to get a same approximation

algorithm for modularity maximization.
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LIS« WAGEI VS Vector Programming Algorithm

Vector Programming Algorithm

Kernel:
@ Formulate the problem as Quadratic Program;
@ Relax to vector program (Semi-definite programming);

@ Use randomized cutting hyperplane to round the SDP solution.
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LIS« WAGEI VS Vector Programming Algorithm

Quadratic Programming Formulation

Considering partitioning the graph into two communities (S, S)
of maximum modularity, let y, = £1 indicate that vertex v belongs (or

not) to S. Therefore, the formulation is:

Quadratic Program

Maximize
1
A Z mu,v(]- +_Vva)

4dm
u,veV

Subject to

y2=1forall v
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LIS« WAGEI VS Vector Programming Algorithm

Semi-definite Relaxation

Key idea: relax y = £1 to n-dimensional vector " with || y ||= 1.

The product of y,y, is corresponding to inner product of y, e y, = cos @
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LIS« WAGEI VS Vector Programming Algorithm

Randomized Rounding

@ randomly select a n-dimension vector s°, where each component is

following independent N(0,1) Gaussian.
°oS={vljwes >0}

e S={vly, e <0}
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LIS« WAGEI VS Vector Programming Algorithm

Algorithm

Algorithm 2

Hierarchical Clustering:

@ use Semi-definite programming find a near-optimal division of a larger

cluster <= locally optimal;

@ repeat the division until no further partition will increase the

modularity;

@ do local search post-processing to refine the solution.
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LIS« WAGEI VS Vector Programming Algorithm

Bibliography

B M. Newman and M. Girvan. “Finding and evaluating community structure in networks”.
Physical Review E, 69, 2004.

@ U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D. Wagner.
“On modularity clustering”. |IEEE Transactions on Knowledge and Data Engineering,
20(2):172 - 188, 2008.

@ M. Charikar, V. Guruswami, and A. Wirth. “Clustering with qualitative information”.
Journal of Computer and System Sciences, pages 360 - 383, 2005.

@ M. Newman. “Modularity and community structure in networks.” Proc. Natl. Acad. Sci.
USA, 103:8577 - 8582, 2006.

T TR TR 1 o Commnia February 20, 2000 10 /10




	Problem Definition and Preliminaries
	Modularity Maximization
	Recent Efforts
	Main Contributions

	Algorithms and Analysis
	Linear Programming Algorithm
	Vector Programming Algorithm


