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Modularity
A quality index for clustering a graph G=(VE)A quality index for clustering a graph G=(V,E)
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Contribution of the Paper
Integer Linear Program FormulationInteger Linear Program Formulation

Fundamental Observations & Counterintuitive Behavior
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Maximizing Modularity via Integer 
Linear programming

Given a graph G=(VE)  n=|V|nodes  n2 decision variables XGiven a graph G=(V,E), n=|V|nodes, n decision variables Xuv

={0,1} 
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Fundamental Observations
If G is an undirected and un-weighted graph and C is a clustering then:f g g p g

1
2 ( ) 1q c− ≤ ≤

When all the edges are inter-cluster q(C)=-1/2, eg: Bipartite graph 
G=(X:Y,E)with cluster X and YG (X:Y,E)with cluster X and Y

When  all the  clusters  cliques with no inter-cluster edges q(C)=1, 
hen number of clusters are infinite when number of clusters are infinite 



Fundamental Observations(Contd)
Clustering with maximum modularity has no cluster with Clustering with maximum modularity has no cluster with 
single node having degree 1.



Fundamental Observations(Contd)
In clustering with maximum modularity each cluster consist In clustering with maximum modularity each cluster consist 
of a connected sub-graph 



Counterintuitive Behavior
Non-localityNon-locality

S iti it  t  S t llitSensitivity to Satellite

Scaling Behavior



NP-Completeness
Problem 1(Modularity):Problem 1(Modularity):

Given a graph G and a number K is there a clustering C of G, for 
which q(C)>=Kwhich q(C)>=K

P bl  2(3 P )Problem 2(3-Partition):

Given 3k positive integers numbers a1, a2, …, a3k such that the sum 

and  b/4<ai <b/2 for an integer b and for all 
i=1,2,…3k is there a partition of these numbers into k sets, such 
h  h  b   h    b      
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that the numbers in each set sums upto b?     



NP-Completeness (contd)
An instance A={a  a   a } of 3-Partition can be An instance A={a1, a2, …, a3k } of 3-Partition can be 
transformed in to an instance (G(A), K(A)) of Modularity

G(A) has a clustering with modularity at least K(A)  if and G(A) has a clustering with modularity at least K(A), if and 
only if a1, a2, …, a3k can be partitioned into k set of sum 3
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NP-Completeness (contd)
Construct a graph G(A) with k cliques H H H of Construct a graph G(A) with k cliques H1,H2 ,…Hk of 
size              each. 

For each element          introduce a single element node  And 
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a A∈For each element          introduce a single element node. And 
connect it to ai nodes in each of the k cliques. 

Each member of clique is connected to exactly one element 

ia A∈

Each member of clique is connected to exactly one element 
node.  

Each clique node has degree a  each element node           has a A∈Each clique node has degree a, each element node           has 
a degree kai .

The number of edges in G(A) is m=(k/2)a(a+1)

ia A∈

The number of edges in G(A) is m=(k/2)a(a+1)



NP-Completeness (contd)



NP-Completeness (contd)
Lemma 4 1:In maximum modularity clustering of G(A)Lemma 4.1:In maximum modularity clustering of G(A)
none of the cliques H1,H2 ,…Hk split.
Clustering C splits a clique                         .{ }1 2, ,... kH H H H∈g p q

are clusters that contains the nodes of H.
ni is the number of nodes of H contained in cluster Ci

{ }1 2 k

{ }1 2, ,... rC C C C∈

i i

mi=|E(Ci)| is the number of edges between nodes in Ci.
fi is the number of edges between the nodes of H and Ci.fi g i

di is the sum of degree of all nodes in Ci.



NP-Completeness (contd)
The contribution of                         to q(C) is: { }C C C C∈The contribution of                         to q(C) is: { }1 2, ,... rC C C C∈

Rearranging nodes in                         into clusters 
C’,C1’,C2’,…Cr’  such that:

{ }1 2, ,... rC C C C∈

C’ contains the nodes of H

And each Ci’ contains the remaining nodes of Ci



NP-Completeness (contd)
The contribution of C’ C ’ C ’ C ’  to q(C’) is given asThe contribution of C ,C1 ,C2 ,…Cr   to q(C ) is given as



NP-Completeness (contd)
Substituting                                          and2 r r rn n n n=∑ ∑ ∑ ∑ ( 1)km a a= +Substituting                                          and

1 1 1
2 i j i ji j i i j i

n n n n
= = + = ≠

=∑ ∑ ∑ ∑ 2 ( 1)m a a= +

The fact that                        is usedi i in a kf d+ ≤



NP-Completeness (contd)
Combining     and one of the   n n∑Combining     and one of the   

in jj i
n

≠∑

Here, ni<=a-1, so ni-a-1<0,
Hence   fi increases Hence,  fi increases 
modularity difference 
decreases and fi<=ni



NP-Completeness (contd)
Rearranging and using a>=3kRearranging and using a 3k

,As i jj i
n n a

≠
+ =∑

kAssuming k>2, we see 0Δ >



NP-Completeness (contd)
Lemma 4 2: In a maximum modularity clustering of G(A)  Lemma 4.2: In a maximum modularity clustering of G(A), 
every cluster contains at most one of the cliques 

H H HH1,H2 ,…Hk

Cluster C contains l>1 cliques completely and some element 
nodes a with                           { }1 2 3j J k∈ ⊆nodes aj with                           .

Inside l cliques la(a-1)/2 edges are covered and degree sum is 
l a2

{ }1,2,...3j J k∈ ⊆

l a2.

For each element node aj, l aj edges are covered and degree 
sum is          k∑sum is          .j

j J
k a

∈
∑



NP-Completeness (contd)
The contribution of C to q(C) is:The contribution of C to q(C) is:

Clustering C’ in which C is split into C1’ and C2’.

C1’ completely contains a single clique H.

The contribution of C1’ and C2’ to q(C’) is:



NP-Completeness (contd)
Considering the difference :Considering the difference :

As k>0 for all instance of 3-Partition  



NP-Completeness (contd)
Lemma 4 3: In maximum modularity clustering of G(A)  Lemma 4.3: In maximum modularity clustering of G(A), 
there is no cluster composed of element nodes only.

Element node v  corresponds to the element a  which is not Element node vi, corresponds to the element ai, which is not 
a part of any clique cluster. The node vi   forms a singleton 
cluster C={vi}.cluster C {vi}.

Cmin is the clique cluster, for which the sum of degrees is 
minimal.minimal.

Cmin contains all nodes from clique H, and some other 
element node ajelement node aj.



NP-Completeness (contd)
The contribution of C and C to q(C) is:The contribution of C and Cmin to q(C) is:

Joining C and Cmin to form a new cluster C’, now the 
contribution of C’ to q(C’) is:



NP-Completeness (contd)
Now,

As for Cmin,

1 1( )a a a a≤ − <∑
Hence,  q(C’)-q(C)>0

( )j ik k
j J

a a a a
∈

≤ <∑



NP-Completeness (contd)
Theorem 4 4: Modularity is strongly NP-completeTheorem 4.4: Modularity is strongly NP-complete

Polynomial time check 

T f ti  f  i t  f 3 P titi  bl  A {  
Modularity NP∈

Transformation of an instance of 3-Partition problem A={a1, 
a2, …, a3k } to an instance of Modularity (G(A),K(A)).

Cl i  G(A) f ll  h  i  d i d i  i  Clustering G(A) follows the properties derived in previous 
lemmas.

A  l i  i ld  (k 1) i l  d   h  d  Any clustering yields (k-1)a inter-cluster edges, so the edge 
coverage is:



NP-Completeness (contd)
The clustering with maximum modularity must minimizeThe clustering with maximum modularity must minimize

Thi  d d   th  di t ib ti  f l t d  f  th  

2 2 2
1 1deg( ) deg( ) ... deg( )kC C C+ + +

This depends upon the distribution of element nodes, for the 
optimum case  the distribution should be as even as possible.

I  h  i    h l  i  l  d  In the optimum case to each cluster assign element nodes 
that sums to 

I  hi   h   f d  f l  d  i  h 

1
kb a=

In this case the sum of degrees of element nodes in each 
cluster is equal to                .

Th  ld

1
kk a a=

This yields:



NP-Completeness (contd)
This yields:This yields:
Equality holds only if an assignment of b is possible to every 
cluster.
If the clustering C with q(C) of at least: 

The clustering must split the element nodes perfectly to k clique 
clusters.
Th  i t f l t d  i  k li  l t  i  l  th  The assignment of element nodes in k clique clusters is also the 
solution to the 3-Partition problem.
Hence, this choice of K(A) the instance (G(A),K(A)) of Hence, this choice of K(A) the instance (G(A),K(A)) of 
Modularity is satisfied only if the instance A of 3-Partition is 
satisfied, and vice-versa.
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NP-completeness of 2-Modularity Problem
Greedy Algorithm for Maximizing Modularity

Optimality Results

k-Modularity
Reduction from MB3

Two Intrinsic Characteristics For Community Structure

Detection:

No knowledge over the size of each community structure;

No knowledge over the number of community structures of

the input graph.

Ying Xuan On Modularity Clustering (part 2)



NP-completeness of 2-Modularity Problem
Greedy Algorithm for Maximizing Modularity

Optimality Results

k-Modularity
Reduction from MB3

Definition

k-Modularity

Given a graph G and a number K , is there a clustering C of G into

exactly/at most k clusters, for which q(C) ≥ K?

Reduce from Minimum Bisection for Cubic Graphs.

Ying Xuan On Modularity Clustering (part 2)



NP-completeness of 2-Modularity Problem
Greedy Algorithm for Maximizing Modularity

Optimality Results

k-Modularity
Reduction from MB3

Reduction

Minimum Bisection for Cubic Graphs(MB3)

Given a 3-regular graph G with n nodes and an integer c , is there

a clustering into two clusters of n/2 nodes each such that it cuts

at most c edges?

This problem is strongly NP-complete.

Ying Xuan On Modularity Clustering (part 2)



NP-completeness of 2-Modularity Problem
Greedy Algorithm for Maximizing Modularity

Optimality Results

k-Modularity
Reduction from MB3

MB3 Instance

Construct a 2-Modularity instance from a MB3 Instance

Ying Xuan On Modularity Clustering (part 2)



NP-completeness of 2-Modularity Problem
Greedy Algorithm for Maximizing Modularity

Optimality Results

k-Modularity
Reduction from MB3

2-Modularity Instance

Construct a 2-Modularity instance from a MB3 Instance

The following is to prove:

Give a bound K such that MB3 instance has a bisection cut of size

at most c iff the corresponding graph has 2-modularity at least K .

Ying Xuan On Modularity Clustering (part 2)



NP-completeness of 2-Modularity Problem
Greedy Algorithm for Maximizing Modularity

Optimality Results

k-Modularity
Reduction from MB3

Existence of such a clustering of two clusters?

Lemma 1

For every graph constructed from a MB3 instance, there exists a

clustering C = {C1,C2} such that q(C) > 0.

Proof:

C1 = cliq(v) for some v ∈ V ;

C2 = V \ C1

q(C) = 1− 3
m
− (n(n−1)+3)2+((n−1)(n(n−1)+3))2

4m2 > 0

(n ≥ 4)

Ying Xuan On Modularity Clustering (part 2)



NP-completeness of 2-Modularity Problem
Greedy Algorithm for Maximizing Modularity

Optimality Results

k-Modularity
Reduction from MB3

cliq(v) are all in one cluster?

Lemma 2

For every node v ∈ V there exists a cluster C ∈ C∗ such that

cliq(v) ⊆ C .

Proof:

By contradiction, assume a clique cliq(v) is split into two clusters:

C′ = {C1 \ cliq(v),C2 \ cliq(v)};
∆ = q(C′)− q(C)

v ∈ C2 =⇒ ∆ ≥ 0

v ∈ C1 =⇒ ∆ ≥ 0

Clique moved into one cluster makes modularity larger.

Ying Xuan On Modularity Clustering (part 2)



NP-completeness of 2-Modularity Problem
Greedy Algorithm for Maximizing Modularity

Optimality Results

k-Modularity
Reduction from MB3

Same size for each clusters in 2-Modularity Optimum?

Lemma 3

In C∗, each cluster contains exactly n/2 complete node cliques.

Proof:

By contradiction, assume a cluster C1 has l1 ≤ n/2− 1 cliques.

q(C ∗) = m′

m
− l21 (n(n−1)+3)2

4m2 − (n−l1)2(n(n−1)+3)2

4m2 ;

C′ := move one complete clique from C2 to C1;(lose at most 3

edges covered by inner-modularity)

q(C ∗) = m′−3
m
− (l1+1)2(n(n−1)+3)2

4m2 − (n−l1−1)2(n(n−1)+3)2

4m2 ;

q(C′) ≥ q(C)
(assume n to be even and l1 ≤ n

2 − 1);

Ying Xuan On Modularity Clustering (part 2)



NP-completeness of 2-Modularity Problem
Greedy Algorithm for Maximizing Modularity

Optimality Results

k-Modularity
Reduction from MB3

Strongly NP-complete

Strongly NP-completeness

A problem is said to be NP-hard in the strong sense (strongly

NP-hard), if it remains so even when all of its numerical

parameters are bounded by a polynomial in the length of the input.

Example: Bin Packing VS 0-1 Knapsack Problem

Bin Packing: find a minimum integer B, such that n given items with relatively

size a1, a2, · · · , an can be packed into B bins, where each bin has a given size V .

0-1 Knapsack Problem: given n items, each with value pi and weight wj for

i ∈ [1, n], maximize the total value of items that can be packed into a bag, on

condition that the maximum weight carried in the bag is W . ⇐⇒ can be solved

by dynamic programming in O(nW ) time, note that, W is not polynomial of n.

Otherwise, this is not NP-hard problem.

Ying Xuan On Modularity Clustering (part 2)



NP-completeness of 2-Modularity Problem
Greedy Algorithm for Maximizing Modularity
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k-Modularity
Reduction from MB3

Strongly NP-complete

Theorem 1

2-Modularity is strongly NP-complete.

Proof:

K = 1
2 − c

m
;

∑

v∈Ci
deg(v) = m;

if q(C∗) ≥ K = 1
2 − c

m
= m−c

m
− m2

4m2 − m2

4m2 ;

# of inter-cluster edges can be at most c ;

Optimum C∗ ⇐⇒ balanced partition cutting at most c edges.

Ying Xuan On Modularity Clustering (part 2)



NP-completeness of 2-Modularity Problem
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k-Modularity
Reduction from MB3

Discussion

2-Modularity ≤p k-Modularity?

Corresponding algorithms?

at least k clusters?? wired?

Ying Xuan On Modularity Clustering (part 2)
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Greedy Algorithm
Ratio Analysis

Contributions

Algorithm by greedily merging clusters;

Approximation ratio is at least 2.

Ying Xuan On Modularity Clustering (part 2)



NP-completeness of 2-Modularity Problem
Greedy Algorithm for Maximizing Modularity
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Greedy Algorithm
Ratio Analysis

Greedy Algorithm

Algorithm 1

Input: graph G = (V ,E )

Output: clustering C of G

C ← singletons;

symmetric matrix ∆ with ∆i ,j = q(Ci ,j)− q(C);
⊲ Ci ,j is by merging clusters i , j ;

while |C| > 1 and there exists ∆i ,j > 0 do
merge clusters i and j where ∆i ,j is maximum;

⊲ arbitrarily select one if multiple maximum exist;

update matrix ∆;

return clustering with the highest modularity

Ying Xuan On Modularity Clustering (part 2)



NP-completeness of 2-Modularity Problem
Greedy Algorithm for Maximizing Modularity

Optimality Results

Greedy Algorithm
Ratio Analysis

Worst Case

Theorem 2.1

No finite approximation factor for the greedy algorithm for finding

clusterings with maximum modularity.

worst case clustering: q(Ca) = 2
n
− n

2
· 4n2

n4 = 0

one better clustering: q(Cb) =
n(n−2)

n2 − 2 4n2

16n2 = 1
2
− 2

n
≤ opt

Ying Xuan On Modularity Clustering (part 2)



NP-completeness of 2-Modularity Problem
Greedy Algorithm for Maximizing Modularity

Optimality Results

Greedy Algorithm
Ratio Analysis

Lower Bound

If re-mapping modularity interval from [12 , 1] to [0, 1], the greedy

algorithm in this instance can get an approximation ratio 2, but

not for general case.

(q(Ca) = 1
3 ; q(Cb) = 2

3)

Theorem 2.2

The approximation factor of the greedy algorithm is at least 2.

Ying Xuan On Modularity Clustering (part 2)
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Clique
Cycle

Optimality Results

Deal with two specific structures:

Complete graph with n nodes – clique;

Simple cycle with n nodes;

Both these two structures can be abstracted to d-regular graph

with |E | = d|V |
2

→ q(C) =
|E (C )|
dn/2

− 1

n2

k
∑

i=1

|Ci |2

where C = {C1, · · · ,Ck}

Ying Xuan On Modularity Clustering (part 2)
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Clique
Cycle

n-Clique

Theorem 3

Let k and n be integers, Kkn be the complete graph on k · n nodes

and C a clustering such that each cluster contains exactly n

elements.

q(C) = (−1 +
1

k
) · 1

kn − 1

Observations:

k > 1, n→∞, q(C)→ 0−;

k = 1, q(C) = 0 is the global maximum;

No further things??

Ying Xuan On Modularity Clustering (part 2)
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Clique
Cycle

n-Cycle (Simple 2-regular cycle with n nodes)

Define F (x) = 1− q(C) where x ∈ D(k) is the vector of size

for k clusters; Minimize F (x);

F (x) = k
n

+ 1
n2

∑k
i=1 x2

i has global minimum at x∗ = ⌊n
k
⌋ or

x∗ = ⌈n
k
⌉, i.e. evening cluster size decreases F .

Ying Xuan On Modularity Clustering (part 2)
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Clique
Cycle

n-Cycle (Simple 2-regular cycle with n nodes)

Based on these conclusions, we can have:

Lemma 2

Let Cn be a simple cycle with n nodes, h : [1, · · · , n]→ R a

function defined as

h(x) := x · n + n + ⌊n
x
⌋(2n − x · (1 + ⌊n

x
⌋))

and k∗ be the argument of the global minimum of h. Then every

clustering of Cn with maximum modularity has k∗ clusters.

Key:

h(k) = F (x∗)

Ying Xuan On Modularity Clustering (part 2)
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Clique
Cycle

n-Cycle

Theorem 4

Let n be an integer and Cn a simple cycle with n nodes. Then

every clustering C with maximum modularity has k cluster of

almost equal size, where

k ∈ [
n

√

n +
√

n
− 1,

1

2
+

√

1

4
+ n]

Proof:
k is fixed by the distribution of cluster sizes with maximum modularity (even

cluster size);

with k outside this interval, function h is either monotonically increasing or

decreasing;

at most 3 possible values for large n ⇐= k ∈ ( n√
n
− 1,

1
2

+
√

1
4

+ n]

Ying Xuan On Modularity Clustering (part 2)
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Clique
Cycle

Any Questions

*http://www.hardcore-stress-

management.com/images/ManHoldingQuestionMarkSmallCropped.jpg

Ying Xuan On Modularity Clustering (part 2)
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