
Approximation Algorithms:
LP Relaxation, Rounding, and Randomized Rounding

Techniques

My T. Thai

1

Overview

An overview of LP relaxation and rounding method is as follows:

1. Formulate an optimization problem as an integer program (IP)

2. Relax the integral constraints to turn the IP to an LP

3. Solve LP to obtain an optimal solution x∗.

4. Construct a feasible solution xI to IP by rounding x∗ to integers.

Rounding can be done deterministically or probabilistically (called ran-
domized rounding.

Let us define some notations:

• Let cost(xI) and cost(x∗) be the objective values of xI and x∗ respectively

• Let OPT (IP) and OPT (LP) be the optimal values of the IP and LP
respectively. Note that OPT (IP) is also a cost of an optimal solution
for the optimization problem whereas the OPT (LP) = cost(x∗).

Hence the approximation ratio using the rounding techniques can be done
as follows (suppose the optimization is a minimization problem):

cost(xI) =
cost(xI)

OPT (LP)
×OPT (LP) ≤ cost(xI)

cost(x∗)
×OPT (IP)

Therefore, any upper bound of cost(xI)
cost(x∗) is an approximation ratio of the

construction algorithm (which is to round x∗ to xI).
If we follows this method as mentioned about, the best approximation ratio

is cost(xI)
cost(x∗) ≤ OPT (IP)

OPT (LP)

Note that the supremum of OPT (IP)
OPT (LP) is called integrality gap.

Question: Is there any better way to achieve a better ratio than the
integrality gap?

2

Linear Integer Program and Examples

Roughly speaking, linear integer program is similar to an LP with an ad-
ditional constraint, that is, variables are integer. The integer program is the
problem of determining if a given integer program has a feasible solution.

Let’s see how we can use IP to formulate many discrete optimization prob-
lems.

VERTEX COVER (VC)
Recall that the vertex cover is defined as follows:

Definition 1 Given a graph G = (V, E) where |V | = n and |E| = m, find a
subset C ⊆ V such that every edge e ∈ E has at least one endpoint in C and
C has a minimum size.

How to formulate VC as an IP?
For each vertex i ∈ V (V = {1, 2, ..., n}, let xi ∈ {0, 1} be variables such

that xi = 1 if i ∈ C; otherwise, xi = 0. We have:

min
∑n

i=1 xi

st xi + xj ≥ 1 ∀(i, j) ∈ E

xi ∈ {0, 1} ∀i ∈ V

(1)

Hence, solving the VC problem is equivalent to solving the above IP.

Exercise 1 Formulate the weighted vertex cover problem as an IP.

WEIGHTED SET COVER

Definition 2 Given a universe U = {1, ..., m}, a collection S of subsets of
U , S = {S1, ..., Sn}, and a weight function w : S → Q+, find a minimum
weight sub-collection C = {Sj | 1 ≤ j ≤ n} such that C covers all elements of
U .

Let wj be the weight of subset Sj. Let xj be a binary variables such that
xj = 1 if Sj ∈ C; otherwise, xj = 0. We have the corresponding IP:

min
∑n

j=1 wjxj

st
∑

i∈Sj
xj ≥ 1 ∀i ∈ {1, ..., m}

xj ∈ {0, 1} ∀j ∈ {1, ..., n}
(2)

3

LP Relaxation and Rounding

VERTEX COVER
The corresponding LP of IP (1) is as follows:

min
∑n

i=1 xi

st xi + xj ≥ 1 ∀(i, j) ∈ E

0 ≤ xi ≤ 1 ∀i ∈ V

(3)

Note that we can relax the last constraint 0 ≤ xi ≤ 1 to 0 ≤ xi without
changing the solutions of LP (3).

A main observation of this LP is that:

Theorem 1 Given any graph G, any vertex x of the polyhedron defined by
(3) has coordinates xi being either 0, 1/2, or 1.

This property is called half integrality. Based on this theorem, we can
construct a feasible solution xI to the IP as follows:

Let xI
i = 1 if x∗i ≥ 1/2; otherwise, xI

i = 0.
This technique of constructing a feasible to IP from LP is called round-

ing. Note that after the relaxation and rounding techniques, xI is a feasible
solution to IP.

What is the approximation ratio? Recall that the approximation ratio is
equal to cost(xI)/cost(x∗). We have:

cost(x∗) ≥ 1
2(x

I
1 + ... + xI

n) = 1
2cost(x

I).
Hence, this algorithm has an approximation ratio of 2. Recall that by using

the matching approach, we also obtained a 2-approximation algorithm.
Question: Can we use this technique to obtain a 2-approximation for

weighted vertex cover problem?

4

LP Relaxation and Rounding

WEIGHTED SET COVER
First, let obtain an LP from IP (2) as follows:

min
∑n

j=1 wjxj

st
∑

i∈Sj
xj ≥ 1 ∀i ∈ {1, ..., m}

0 ≤ xj ≤ 1 ∀j ∈ {1, ..., n}
(4)

How do we obtain xI from x∗?
Note that when we round x∗ to xI , we must make sure that xI is a feasible

solution to IP. In addition, we must also not ”over round” it, i.e, round all
fraction solutions x∗ to 1. Of course, the over rounding still yield a feasible
solution to IP, however, we will obtain too many subsets in C.

Let rewrite (4) as min cTx subject to Ax ≤ b. Now, consider matrix A.
What can we say about each entry aij. aij is equal to either 0 or 1. aij = 1
if element i ∈ Sj; otherwise, aij = 0. Denote f = maxisumA[i, :]. So f

represent the frequency of the most frequent element. In other words, f

denotes the maximum number of subset Sj that cover an element.
Why we want to define f? Notice that during the rounding process, we

round some x∗j to 1 and the rest to 0. The rounding must satisfy the in-
equalities and consistencies. That is, for example, if in the first inequality,
we round x∗1 to 1 and the rest to 0. Then in the second inequality, we must
also round x∗1 to 1.

Let consider this example. We have the first inequality as follows: x∗1 +
0x∗2 + x∗3 + 0x∗4 + x∗5 ≥ 1. The sum of all coefficients of the x∗j is 3. If all x∗j
were at most 1/3, then the left hand side is at most 1. Thus there must be
some x∗j which are at least 1/3. If x∗3 ≥ 1/3, we round x∗3 to 1 then we’d be
fine. Now, you might ask what if only x∗2, x

∗
4 ≥ 1/3. The answer is that: this

cannot be happened. Why?
Therefore, we have the following rounding algorithm:
Let xI

j = 1 if x∗j ≥ 1/f ; otherwise, xI
j = 0.

Note that when xI
j = 1, then Sj ∈ C.

5

Theorem 2 This algorithm achieves an approximation factor of f for the
weighted set cover problem

Proof. First, we need to solve that xI is a feasible solution to weighted set
cover, that is, C covers all elements.

Assume that there exists one element i that is not covered by C. Then
there exists a row i such that:

∑

j:x∗j≥1/f

aij = 0

However,

n∑
j=1

aijx
∗
j =

∑

j:x∗j≥1/f

aijx
∗
j +

∑

j:x∗j<1/f

aijx
∗
j <

∑

j:x∗j≥1/f

aijx
∗
j + 1 ≤ 1

Contradicting to the fact that
∑n

j=1 aijx
∗
j ≥ 1

As for the approximation ratio, it’s easy to see that:

cost(xI) =
n∑

j=1

wjx
I
j ≤

n∑
j=1

wj(fx∗j) = f ·OPT (LP)

2

GENERAL COVER

Definition 3 Given a collection of multisets of U (rather than a collection of
sets). A multiset contains a specified number of copies of each element. Let
aij denote the multiplicity of element i in multiset Sj. Find a sub-collection
C such that the weight of C is minimum and C covers each element i bi times.
(rather than just one time)

The corresponding IP:

min
∑n

j=1 wjxj

st ai1x1 + · · ·+ ainxn ≥ bi ∀i ∈ {1, ..., m}
xj ∈ {0, 1} ∀j ∈ {1, ..., n}

(5)

The corresponding LP:

6

min
∑n

j=1 wjxj

st ai1x1 + · · ·+ ainxn ≥ bi ∀i ∈ {1, ..., m}
0 ≤ xj ≤ 1 ∀j ∈ {1, ..., n}

(6)

Question: Can we use the same approached as in the weighted set cover
problem to obtain an f -approximation algorithm where f = maxi

∑n
j=1 aij?

Answer: Yes

SCHEDULING ON UNRELATED PARALLEL MACHINES

Definition 4 : Given a set J of n jobs, a set M of m machines, and for each
j ∈ J and i ∈ M , pij ∈ Z+ be the time taken to process job j on machine
i. Find a schedule (for these jobs on these machines) so that the maximum
completion time of any machine is minimized.

Let xij be a variable indicating whether job j is to be processed on machine
i, that is, xij = 1 if j is to be processed on i; otherwise, xij = 0.

Let t be the makespan, i.e., the maximum processing time of any machine.
Clearly, the objective is to minimize t. The following IP is equivalent to our
problem:

min t

st
∑m

i=1 xij = 1 ∀j ∈ J∑n
j=1 xijpij ≤ t ∀i ∈ M

xij ∈ {0, 1} ∀i ∈ M, ∀j ∈ J

(7)

Remarks:

• The first constraint ensures that all jobs are scheduled

• The second constraint ensures that the maximum completion time of any
machine is at most t

The corresponding LP:

min t

st
∑m

i=1 xij = 1 ∀j ∈ J∑n
j=1 xijpij ≤ t ∀i ∈ M

xij ≥ 0 ∀i ∈ M, ∀j ∈ J

(8)

7

Exercise 2 Give an example showing that the integrality gap of (7) is at least
m

An Example: Suppose |J | = 1, i.e, we have only one job, and pij = m for
all i ∈ M . Then the minimum makespan is m, i.e, OPT (IP) = m. However,
the optimal solution to (8) is to schedule the job to extent of 1/m on each
machine, thus OPT (LP) = 1. Hence, the integrality gap is m.

Questions: What do we ”learn” from the above example?

• In (7), if pij > t, then the IP automatically sets xij = 0

• In (8), if pij > t, the relaxation allows us to set xij to nonzero ”fractional”
values, thereby raising this question: Is there anyway that we can set
xij = 0 if pij > t in the LP?

Recall that an extreme point solution of a set of linear inequalities is a
feasible solution that cannot be expressed as convex combination of two other
feasible solutions. Let polyhedron P be a feasible region defined by a set of
linear inequalities. Then an extreme point solution is a vertex of P .

Suppose that we can find a schedule in which the integral schedule’s makespan
is at most T ∈ Z+, and the fractional variables xij all correspond to pij ≤ T .
For all these jobs (corresponding to fractional variables xij, we can match to
machines in a one-to-one manner. If such a T exists, we have the following
system, called polyhedron P (T).

∑
i:(i,j)∈ST

xij = 1 j ∈ J∑
j:(i,j)∈ST

xijpij ≤ T i ∈ M

xij ≥ 0 (i, j) ∈ ST

(9)

where ST = {(i, j) | pij ≤ T}
Lemma 1 Any extreme point solution x∗ to P (T) has at most n+m positives
(non-zero) variables

Lemma 2 For any extreme point solution x∗ to P (T), the number of frac-
tionally assigned jobs (according to x∗) is at most m.

Proof. Let a and b be the number of jobs that ar integrally and fractionally
set by x∗. Each fractional job is assigned to at least 2 machines, therefore,
results in at least 2 positive (non-zero) entries in x∗. Thus we have:

8

a + b = n and a + 2b ≤ n + m. The second inequality dues to Lemma 1.
It follows that b ≤ m and a ≥ n−m.

2

Corresponding to x∗, define a bipartite graph G = (A,B; E) as follows:

• A is the set of fractionally assigned jobs

• B is the set of machines to which some fractional jobs were assigned

• Edge (i, j) ∈ E iff x∗ij is fractional

Lemma 3 Given such a G, there exists a perfect matching from A into B

Proof. We will prove this lemma using Hall’s Theorem. (Given a bipartite
graph G = (A,B; E), G has a perfect matching that matches all vertices of
A iff for every set S ⊆ A, the neighborhood of S, i.e, N(S) = {y ∈ B | ∃x ∈
S, (x, y) ∈ E}, is at least as large as S.)

Consider any subset S ⊆ A (note that S is a subset of fractionally assigned
jobs), we only need to check that |N(S)| ≥ |S|.

Let H = (S, N(S); E(H)) be the subgraph of G induced by S and N(S).
Now, we will prove that |E(H)| ≤ |S|+ |N(S)|. Consider the polyhedron P

which is defined in the same way as P (T ∗) restricting to variables correspond-
ing to edges in E(H). Let y∗ be x∗ restricted to H. Then y∗ is an extreme
solution (vertex) in P . Based on Lemma 1, y∗ has at most |S|+ |N(S)| pos-
itive variables. Since the number of positive variables is exactly the number
of edges in H. Thus |E(H)| ≤ |S|+ |N(S)|.

Additionally, each fractionally assigned job must be assigned to at least 2
machines. Consequently, 2|S| ≤ |E(H)| ≤ |S|+ |N(S)|. Hence |S| ≤ |N(S)|.

2

A matching in G is called a perfect matching if it matches every job j ∈ A.
Now, we see that if P (T) has a feasible solution, we are able to find a

schedule in which the integral schedule’s makespan is at most T , and for the
fractional jobs, we can find an one-to-one matching between these jobs and
machines. Hence, we can find the schedule with a factor of 2T .

How do we find a range of T?
Let α = maxjminipij and β be the makespan of the greedy schedule which

assigns each job to a machines with minimum processing time. Then we have
the following algorithm:

9

Algorithm 1 Scheduling on unrelated parallel machine
1: Use binary search to find the least value T ∗ ∈ [α, β] for which P (T ∗) is feasible
2: Find an extreme solution x∗ of P (T ∗)
3: Assign all integrally set jobs to machines as in x∗

4: Construct the bipartite graph G = (A,B;E) as described above and find a perfect matching M
5: Assign fractionally set jobs to machines according to M

Theorem 3 The above algorithm achieves an approximation guarantee of
factor 2

Proof. Let OPT be the optimal solution of our problem. Note that the jobs
are assigned in two steps. In the first step, all integrally set jobs are assigned
based on x∗. Hence the makespan in this step is at most T ∗ ≤ OPT .

In the second step, we assign all fractional set jobs. Note that each edge
(i, j) of G satisfies pij ≤ T ∗. The perfect matching M found in G schedules
at most one extra job on each machine. Thus their makespan is at most T ∗.

Therefore, both both steps, the total makespan is ≤ 2OPT .
2

10

Filtering and Rounding

Overview of Filtering and Rounding techniques:

• Formulate the optimization problem as an IP

• Formulate the corresponding LP

• Use an optimal solution to the LP to construct a ”filtered” version of
the optimization problem (creating a restricted version of the IP.) This
step often involve with fixing a parameter ε and try to define a new set
of feasible solution to LP with a cost within (1 + ε) of the LP

• Using rounding technique to produce a good integral solution to the
filtered problem, which is also a solution for an original IP

Let’s see how to use this technique to solve the metric uncapacitated facil-
ity location problem.

METRIC UNCAPACITATED FACILITY LOCATION

Definition 5 Given a set F of facilities and a set C of cities. Let fi be the
cost of opening facility i ∈ F , and cij be the cost of connecting city j to
(opened) facility i where cij satisfies the triangle inequality. The problem is
to find a subset O ⊆ F of facilities that should be opened, and an assignment
function θ : C → O assigning every city j to open facilities θ(j) in such a way
that the total cost of opening facilities and connecting cities to open facilities
is minimized, that is, to minimize the objective function:

∑

i∈O

fi +
∑

j∈C

cθ(j)j

Let xi be an indicator variable denoting whether facility i is opened and
yij be an indicator variable denoting whether city j is assigned to facility i.
We have the following IP:

11

min
∑

i∈F fixi +
∑

i∈F,j∈C cijyij

st
∑

i∈F yij = 1 j ∈ C

xi − yij ≥ 0 i ∈ F, j ∈ C

xi, yij ∈ {0, 1} i ∈ F, j ∈ C

(10)

Remarks:

• The first constraint ensures that each city is connected to a facility

• The second constraint ensures this facility must be opened

We have the corresponding LP as follows:

min
∑

i∈F fixi +
∑

i∈F,j∈C cijyij

st
∑

i∈F yij = 1 j ∈ C

xi − yij ≥ 0 i ∈ F, j ∈ C

xi ≥ 0 i ∈ F

yij ≥ 0 i ∈ F, j ∈ C

(11)

Let (x∗, y∗) be an optimal solution to the LP. Note that we interpret a
fractional x∗i as a partially open facility and a fractional y∗ij as a partial as-
signment of city j to facility i.

Let F (x) =
∑

i∈F fixi and Θ(y) =
∑

i∈F,j∈C cijyij.

The Filtering Step

Consider LP (11). Note that when yij > 0, the city j can be assigned to
candidate facility i. However, the cost cij might be too large.

Question: How do we control it? How do we filter out these facilities?

Fix a parameter ε > 0 (we will determine ε later). For each city j, we will
filter out all facilities i such that cij is greater than (1 + ε) of the optimal
assignment cost (in an LP).

Let the current optimal assignment cost for city j be

12

Θ∗
j =

∑

i∈F

cijy
∗
ij

Note that y∗ij is an optimal solution to LP (11).
Define Fj as a set of possible (candidate) facilities such that we can assign

j to as follows:

Fj = {i | y∗ij > 0, cij ≤ (1 + ε)Θ∗
j}

Using the filtering, we construct a feasible (x′, y′) to LP (11) so that the
following two conditions must be held:

• The cost of (x′, y′) is not too far from the cost of (x∗, y∗)

• y′ij > 0 implies that cij ≤ (1 + ε)Θ∗
j

Note that the second condition also implies that when cij > (1 + ε)Θ∗
j , set

y′ij = 0.

Now, how do we define y′ij based on y∗ij? Note that we set
∑

i∈F y′ij = 1.
Therefore, define:

y′ij =
y∗ij∑

i∈Fj
y∗ij

if i ∈ Fj

Otherwise, y′ij = 0
Now, how do we define x′ij. Recall that x′ must satisfy the second con-

strain, which is x′i − y′ij ≥ 0. So first, let us compare the cost of y′ and y∗.

Θ∗
j =

∑

i∈F

cijy
∗
ij >

∑

i/∈Fj

cijy
∗
ij > (1 + ε)Θ∗

j

∑

i/∈Fj

y∗ij = (1 + ε)Θ∗
j


1−

∑

i∈Fj

y∗ij




Therefore,

1∑
i∈Fj

y∗ij
<

1 + ε

ε

13

Which means y′ij ≤ (1+ε
ε)y∗ij.

Thus, define

x′i = min{1, (1 + ε

ε
)x∗i}

Hence, we have a filter solution (x′, y′) for LP (11).

The Rounding Step

We will round (x′, y′) to the feasible integer solutions to IP (10) as follows:

1. Pick an unassigned city j with the smallest assignment cost Θ∗
j .

2. For this city j, we open the facility θ(j) ∈ Fj with the smallest opening
cost fθ(j), that is, round x′θ(j) to 1 and y′θ(j)j to 1.

3. For all other cities j′ such that F ′
j ∩ Fj 6= ∅, round y′θ(j)j′ = 1, that is

assign cities j′ to open facility θ(j)

4. Repeat this process until all cities are assigned

Theorem 4 The above algorithm has an approximation ratio of max{3(1 +
ε), (1 + 1/ε)}. Set ε = 1/3, we obtain an approximation algorithm within the
ratio of 4.

Proof. Let (x̂, ŷ) be a solution obtained from our algorithm. Let Z(x̂, ŷ) be
the cost of the objective function. Recall that F (x) = sumi∈Ffixi and Θ(y) =∑

i∈F,j∈C cijyij. Hence Z(x̂, ŷ) = F (x̂) + Θ(ŷ). Likewise, let Z(x′, y′) =
F (x′) + Θ(y′) and Z(x∗, y∗) = F (x∗) + Θ(y∗). So, Z(x∗, y∗) is the optimal
cost of LP (11). Let OPT be the optimal cost of our optimization problem.

First, let compare Z(x′, y′) with Z(x∗, y∗). We have:

F (x′) =
∑

i

fix
′
i ≤

∑
i

fi(1 + 1/ε)x∗i = (1 + 1/ε)F (x∗)

Θ(y′) =
∑

j

∑
i

cijy
′
ij ≤

∑
j

(1 + ε)Θ∗
j

∑
i

y′ij ≤ (1 + ε)Θ(y∗)

14

Note that in the rounding procedure, for the least cost unassigned city j,
we open only one facility θ(j) with the least opening cost fθ(j) in Fj. We
have:

fθ(j) = fθ(j)

∑

i∈Fj

y′ij ≤ fθ(j)

∑

i∈Fj

x′i ≤
∑

i∈Fj

fix
′
i

So the cost of opening facility θ(j) is at most the fractional cost of all
facilities that can ”cover” j. Additionally, for any other j′, the facility opening
cost is not increased (since we don’t open any facility). Therefore,

F (x̂) ≤ F (x′) ≤ (1 + 1/ε)F (x∗)

However, for each j′, we have increased the assignment cost to θ(j). Note
that the cost cij satisfies the triangle inequality, we have:

cθ(j)j′ ≤ cij′ + cij + cθ(j)j ≤ (1 + ε)Θ∗
j′ + (1 + ε)Θ∗

j + (1 + ε)Θ∗
j ≤ 3(1 + ε)Θ∗

j′

Thus,

Θ(ŷ) =
∑

j

cθ(j)j ≤ 3(1 + ε)
∑

j

Θ∗
j = 3(1 + ε)Θ(y∗)

In total, we have:

Z(x̂, ŷ) = F (x̂) + Θ(ŷ)

≤ (1 + 1/ε)F (x∗) + 3(1 + ε)Θ(y∗) ≤ max{3(1 + ε), (1 + 1/ε)}OPT

Hence the approximation ratio is max{3(1 + ε), (1 + 1/ε)}. When ε = 1/3
(we choose such ε to minimize this maximum), we have the ratio of 4.

2

15

Randomized Rounding

Overview of randomized rounding techniques:

• Similar to the rounding techniques, except that at the rounding step,
we round an optimal fractional solution x∗ randomly according to some
probability distribution

• Goal of the rounding: Obtain a good approximation ratio with high
probability (some positive constant, e.g., > 1/2)

• Independently run the algorithm many times to increase this probability

WEIGHTED SET COVER (WSC)

As above, we have the LP (after using the relaxation techniques) of the
WSC as follows:

min
∑n

j=1 wjxj

st
∑

j:i∈Sj
xj ≥ 1 ∀i = 1 . . .m

xj ≥ 0 ∀j = 1 . . . n

(12)

Recall that xj = 1 iff Sj ∈ C; otherwise, xj = 0.
Suppose we have an optimal solution x∗ of LP (12). To obtain xI , we use

the randomized rounding as follows:

Round x∗j to 1 with probability x∗j , that is Pr[xI
j = 1] = x∗j . (Also round

x∗j to 0 with probability 1− x∗j)

Note that Pr[xI
j = 1] represents the probability that the set Sj is selected

in the sub-collection C.

Then the expected cost of our solutions is:

E[cost(xI)] =
n∑

j=1

Pr[xI
j = 1] · wj =

n∑
j=1

wjx
∗
j = OPT (LP)

16

Note that xI should be feasible and cost(xI) ≤ ρ · OPT where OPT is
the cost of the optimal solutions to IP and ρ is some approximation ratio.
Therefore, what we really want is to find the probability that xI satisfies the
above requirements. If this probability is at least some positive constant,
then we say that ρ is an approximation ratio of this algorithm.

We have:

Pr[xI is feasible and cost(xI) ≤ ρ ·OPT]
= 1−Pr[xI is not feasible or cost(xI) > ρ ·OPT]
≥ 1−Pr[xI is not feasible]−Pr[cost(xI) > ρ ·OPT]

Now, we need to find Pr[xI is not feasible] and Pr[cost(xI) > ρ ·OPT].

Let’s find the Pr[xI is not feasible] first.

Consider an element i ∈ U . Suppose that i occurs in k sets of S, we have:

xj1 + xj2 + · · ·+ xjk ≥ 1

(Note that the above inequality is the inequality in the matrix A corre-
sponding to element i (ith rows)).

The probability that this element is not covered is:

Pr[i is not covered] = (1− x∗j1) · · · (1− x∗jk)

≤
(

k − (x∗j1 + · · ·+ x∗jk)

k

)k

≤ (1− 1

k
)k ≤ 1

e

Therefore,

Pr[xI is not feasible] =
m∑

i=1

Pr[i is not covered] ≤ m

e

17

This bound is very bad since m is large. We can obtain a better one by
independently running the above strategy t > 0 (to be determined) times
and round x∗j to 0 with the probability (1 − x∗j)

t (instead of (1 − x∗j)), that
is, round x∗j to 0 when x∗j = 0 in all t rounds. Then we have:

Pr[i is not covered] ≤ (
1

e
)t

Thus, Pr[xI is not feasible] ≤ m(1
e)

t. When t is logarithmically large, i.e.,
t = θ(log m), then m(1

e)
t ≤ 1.

Now, we consider the Pr[cost(xI) > ρ ·OPT].

We have already proved that E[cost(xI)] = OPT (LP) ≤ OPT in one time.
So when we run this strategy in t times, we have E[cost(xI)] ≤ t·OPT . Based
on the Markov’s Inequality, we have:

Pr[cost(xI) > ρ ·OPT] ≤ E[cost(xI)]

ρ ·OPT
≤ t ·OPT

ρ ·OPT
=

t

ρ

Therefore,

Pr[xI is feasible and cost(xI) ≤ ρ ·OPT] ≥ 1−m(
1

e
)t − t

ρ

Now, set t = θ(log m) and ρ = 4t so that 1−m(1
e)

t− t
ρ ≥ 1/2. We conclude

that this algorithm has an approximation ratio within a factor of O(log m)
with probability at least 1/2.

Remark: Let X be a nonnegative random variable with a known expec-
tation and a positive number p ∈ R+, Markov’s Inequality says that

Pr[X ≥ p] ≤ E[X]

p

18

MAXIMUM SATISFIABILITY (MAX-SAT)

Definition 6 Given a conjunctive normal form formula f on Boolean vari-
ables X = {x1, . . . , xn}, consisting of m clauses C1, . . . , Cm weighted w1, . . . ,
wm ∈ Z+. Find a truth assignment to the Boolean variables that maximizes
the total weight of satisfied clauses.

Remarks:

• Literals: Boolean variables or their negations. For example, if x ∈ X,
then x and x̄ are literals over U .

• Clause: a disjunction of literals

• Conjunctive normal form: a conjunction of clauses

• Truth assignment: A truth assignment for X is a function t : X →
{T, F}. If t(x) = T , we say x is true under t, otherwise, x is false. The
literal x is true under t iff the variable x is true under t.

• Satisfied clause: A clause is satisfied by a truth assignment iff at least
one of its members is true under that assignment. For example, we have
a clause C1 = {x1, x̄2, x3}. We say C1 is satisfied by t unless t(x1) = F ,
t(x2) = T , and t(x3) = F .

• Satisfied collection: A collection C of clauses over X is satisfiable iff there
exists some truth assignment for X that simultaneously satisfies all the
clauses Cj ∈ C.

An Example: Let X = {x1, x2} and C = {C1, C2} where C1 = {x1, x̄2}
and C2 = {x̄1, x2}. Define t as t(x1) = T and t(x2) = T , then C is satisfiable
under t.

If C = {{x1, x2}, {x1, x̄2}, {x̄1}}, then C is not satisfiable (under any truth
assignment t).

19

1. A Simple Randomized Algorithm for MAX-SAT

1: For each variable xi ∈ X

2: set t(xi) = T with probability 1/2

Theorem 5 Let W be the cost (weight) of a random assignment t and OPT

be the cost of an optimal assignment, then E[W] ≥ 1
2OPT

Proof. Let lj denote the length of clause Cj and Wj denote the random
variable indicating the event {Cj is satisfied}, that is: Wj = 1 if Cj is satis-
fied; otherwise, Wj = 0. We have:

E[W] =
m∑

j=1

wjPr[Wj = 1] =
m∑

j=1

wj[1− (1/2)lj] ≥ 1

2

m∑
j=1

wj ≥ 1

2
OPT

2

Hence, we conclude that the above algorithm can obtain an (expected) ap-
proximation ratio 2. We can derandomize this algorithm by a method known
as conditional expectation.

2. A Randomized Rounding (LP Rounding) Algorithm for MAX-
SAT

Notations:

• yi = 1 iff xi = True; otherwise, yi = 0

• zj = 1 iff Cj is satisfied; otherwise, zj = 0

We can formulate the MAX-SAT as the following IP:

max
∑m

j=1 wjzj

st
∑

i:xi∈Cj
yi +

∑
i:x̄i∈Cj

(1− yi) ≥ zj ∀j = 1 · · ·m
yi, zj ∈ {0, 1} ∀i = 1 · · ·n, ∀j = 1 · · ·m

(13)

20

Its equivalent LP (after the relaxation technique) is:

max
∑m

j=1 wjzj

st
∑

i:xi∈Cj
yi +

∑
i:x̄i∈Cj

(1− yi) ≥ zj ∀j = 1 · · ·m
0 ≤ yi ≤ 1 ∀ = 1 · · ·n
0 ≤ zj ≤ 1∀j = 1 · · ·m

(14)

Let (y∗, z∗) be the optimal solution to the LP (14). Similar to the rounding
strategy for SET COVER, round xi to True with probability y∗i . We have:

Theorem 6 The above algorithm has an e/(e− 1) approximation ratio.

Proof. Again, let W be the cost (weight) of the obtained solution, we have:

E[W] =
m∑

j=1

wjPr[Wj = 1]

=
m∑

j=1

wj


1−

∏

i:xi∈Cj

(1− y∗i)
∏

i:x̄i∈Cj

y∗i




≥
m∑

j=1

wj


1−

[∑
i:xi∈Cj

(1− y∗i) +
∑

i:x̄i∈Cj
y∗i

lj

]lj



=
m∑

j=1

wj


1−


lj −

(∑
i:xi∈Cj

y∗i +
∑

i:x̄i∈Cj
(1− y∗i)

)

lj




lj



≥
m∑

j=1

wj

(
1−

[
1− z∗j

lj

]lj
)

≥
m∑

j=1

wj

(
1−

[
1− 1

lj

]lj
)

z∗j (∗)

≥ minj

(
1−

[
1− 1

lj

]lj
)

m∑
j=1

wjz
∗
j

≥
(

1− 1

e

)
OPT

(15)

21

Note that at the step (∗), the function g(z) = 1 −
(
1− z

lj

)lj
is a con-

cave function with g(0) = 0 and g(1) = 1 −
(
1− 1

lj

)lj
. Therefore, for

z ∈ [0, 1], g(z) ≥
(

1−
(
1− 1

lj

)lj
)

z.

Hence the above algorithm has an (expected) approximation ratio e/(e−1).
Again, we can derandomize this algorithm and obtain a deterministic e/(e−1)
ratio.

2

22

A Combination of the Above Two Algorithms

Note that for the randomized algorithm, called A1, we have:

E[W] =
m∑

j=1

wjPr[Wj = 1] =
m∑

j=1

wj[1− (1/2)lj] ≥ [1− (1/2)l]OPT

where l = maxjlj.

For the LP randomized rounding algorithm, called A2, we have:

E[W]≥
(

1−
[
1− 1

l

]l
)

OPT

So, when the length of each clause ≤ 2, A2 works well whereas A1 works
better when the length of each clause ≥ 2. Therefore, it is natural to combine
these two algorithms as follows: Run both algorithms A1, A2 and report the
better assignment. Call this algorithm A.

Theorem 7 The algorithm A has an approximation ratio 4/3.

Proof. Let W 1andW 2 represent the cost obtained from algorithms A1 and
A2 respectively. We have:

E[max{W 1,W 2}] ≥ E

[
E[W 1] + E[W 2]

2

]

≥
m∑

j=1

wj

(
1

2

(
1− 1

2lj

)
+

1

2

(
1−

[
1− 1

lj

]lj
)

z∗j

)

≥ αl + βl

2

m∑
j=1

wjz
∗
j

≥ αl + βl

2
OPT

where αl =

(
1− 1

2l

)
and βl =

(
1−

[
1− 1

l

]l
)

23

Note that when l = 1 or l = 2, we have αl + βl = 3/2 and when l ≥ 3,
αl + βl ≥ 7/8 + (1− 1/e) ≥ 3/2. Therefore:

E[max{W 1,W 2}] ≥ 3

4
OPT

2

24

