
ADVANCED DATABASES
CIS 6930
Dr. Markus Schneider

Group 21

Prarabdh Joshi

Himanshu Vyas

Mark Steele

Jiangjiang Zhu

What is Solr ?

• Solr is an Open Source Search Platform, built on top of Lucene Java Search

Library.

• It exposes the Lucene Java API as REST-Full Services

• Indexing in Solr can be done via XML, JSON, CSV or Binary over HTTP

protocol.

• Solr provides essential configurations to make data extraction simple even

from Rich Documents like pdfs, presentations, Doc files and spreadsheets.

• Queries are made using HTTP GET Method and the results are retrieved in

XML, JSON, CSV or Binary Format.

History

• Solr was created by “Yonik Seeley” at CNET Networks in 2004.

• Basically Developed as a In-House project, aimed at adding Search

Capabilities to the Company’s Website.

• It Initially had just a Master-Slave architecture, limiting it to small data sets

with Scalability Issues.

• In 2006, CNET released it’s source code to Apache Software Foundation

under the Lucene Top Level Project.

• In 2008, Solr 1.3 was released with added features including Distributed

Search Capabilities.

• The latest version 6 of Solr was released in April 2016, adding support for

executing parallel SQL queries and SolrCloud Collections.

Features in a Nutshell

• Advanced Full Text Search Capability

• Faceted Navigation through the Retrieved Data

• Optimization for High Value Web Traffic

• HTML administration interface

• Distributed Search through Sharding

• Auto Suggest and Auto Completion

More Features

• Automated Indexing of Distributed Documents

• JSON, XML, PHP, Ruby, Python and custom Java binary output formats over

the HTTP protocol.

• Built-in security: Authentication, Authorization, SSL

• Near Real Time Search

• High Availability for Writes

• Auto Index Replication

• Extensive Plug In Architecture

Solr Architecture

Solr Schema Hierarchy

Why Indexing?

• Indexing Collects, parses and stores Data for Information Retrieval

• It helps in optimizing Speed and Performance for relevant data search

• Without Indexing, Search Engines would scan every Document in the staple,

requiring considerable time and computing

Index : Flow

Analysis TokensDocument Indexing
Inverted

Index

“Group 21” Tokenization

“21”

Pos: 1

Offset: 6

Len: 2

“Group”

Pos: 0

Offset: 0

Len: 5

An Example for Tokenization:

Term Vector 1 Term vector 2

Writing to Index : The Lucene Way

Document

Field 1

Field 2

Field 3

Field 4

.

.

Analyzer IndexWriter Directory

Searching In Lucene

Expression

Analyzer

IndexSearcherQueryParser

Query

Object

Solr Admin UI

So Why Solr?

Solr Data Model

Fields

• Can be compared to a RDBMS column
• Fields can contain different kinds of data.
• Field types tell Solr how to interpret data

<fields>

<field name="id" type="string" indexed="true"

stored="true" required="true" />

<field name="name" type="text" indexed="true"

stored="true"/>

…

</fields>

FieldType

• Determines type of a field e.g. string, text etc.
•Associated with Lucene class
•Indexing rules are defined for FieldType

The Document

•Represents basic and atomic unit of information in Solr

•Composed of fields

Similarities with RDBMS record

•A document can have primary key

•A document has a structure consisting of one or more fields

Differences with RDBMS record

•Fields can be multivalued whereas a column in a database table can have only one value

• Fields either have a value or don't exist at all. There's no notion of NULL value in Solr.

•Field names can be static or dynamic, but table columns in a database must be explicitly
declared in advance

The Inverted Index

•designed and optimized to allow fast searches at retrieval time

•consists of an ordered list of all the terms that appear in a set of documents

Inverted Index example

Let’s consider 3 documents
{
{ "id": 1, "title":"The Birthday Concert" },
{ "id": 2, "title":"Live in Italy" },
{ "id": 3, "title":"Live in Paderborn" }

}

Inverted Index example(contd.)

The Solr Core

•is a container for a specific inverted index

•The index configuration of a given Solr instance resides in a Solr core

•On the disk, Solr cores are directories, each of them with some configuration files that define
features and characteristics of the core.

•A Solr application can have 0 or more cores

Text Analysis

•Three main concepts in analysis
-Analyzers
-Tokenizers
-Filters

Analyzers

•Are used both during, when a document is indexed and at query time

•Same analysis process need not be used for both operations

•An analyzer examines the text of fields and generates a token stream

•May be a single class or may be composed of a series of tokenizer and filter class

Tokenizer

•The job of a tokenizer is to break up a stream of text into tokens/terms (TokenStream
objects)

•Characters in the input stream may be discarded, such as whitespace or other
delimiters.

Filters

•Examine a stream of tokens and decides whether to pass it along, replace it or discard it.
•Filters consume one TokenStream and produce a new TokenStream, they can be
chained one after another indefinitely

Solr Query

.

Search Document

• q

• fq

• start

• row

• sort

• fl

• wt

Solr Query Syntax

• Keyword Matching
title: foo
title: “foo bar”
title: foo -title: bar

• Wildcard Matching

title: foo*

title: foo*bar

• Range Search

Mod_data:[20150101 TO 20160101]

• Boosts

(title:foo OR title:bar)^1.5 (body:foo OR body:bar)

Fuzzy & Proximity Search

• Fuzzy Search
title: “computer”~0.5

• Proximity Search

title: “foo bar”~2

foo abc def bar

Faceting

• facet.query

• facet.field

• facet.mincount -> f.<field.name>.facet.mincount

• facet.limit -> f.<field.name>.facet.limit

• facet.offset -> f.<field.name>.facet.offset

• facet.sort count, facet.sort index

• tagging & excluding filter

• facet.range

• facet.range.start

• facet.range.finish

• facet.range.gap

Faceting

Highlighting

hl = true
simple.pre
simple.post
“highlighting” {

“37477”: {
“Name”: [“Apple iPhone 6s”]
}

}

Highlighting

Other Query Features

• spelling check

spellcheck.q=Keyword&spellcheck=on

• grouping

group=true&group.field=year

Application & API

• post command -c coreName -p port

• Rest API

• SolrJ, Spring Data Solr, or other libraries

• DataImportHandler

Application & API

Scalability

• Designed to work under heavy search traffic

• Able to quickly find results with indexed searches

• Is very flexible depending on how many indexes you have

• Can be easily scaled to the user’s needs

• Can use a variety of scaling techniques (horizontal, vertical, replication,
sharding, and cloud)

• Able to handle high query volume, and large index size

Single Server

• Best to maximize a single server before expanding horizontally or
vertically

• Manage index through stop words and term frequencies

• Make use of cache and optimize it

Replication

• Used to handle high query volume

• Uses slaves to help search for indexes

• Used to scale horizontally

• Master takes snapshots and distributes new
images

Sharding

• Used to handle a large amount of indexes

• Each system performing a search

• Suffers from excessive chatter

• Not ideal large scale scaling

• Ideal to balance requests per shard

Replication+Sharding

• Used when the index is too large for a machine, as
a high query volume.

• Master shards do not communicate with each other

• Allows for fault tolerance using load balancing
software

Solr Cloud

• Contains high fault tolerance

• High availability

• Central configuration for the entire cluster

• Automatic load balancing and fail-over for queries

• ZooKeeper integration for cluster coordination and configuration

• Flexible distributed search and indexing

Solr Cloud ZooKeeper

• Used to manage nodes for SolrCloud

• Keeps track of changes made

• Needs 2xF+1 machines, to ensure
requests can be served even on failure

Shards and Indexing Data in SolrCloud

• Automatic document distribution and indexing

• Can use the router to hash documents to shards, such as
“q=solr&_route_=IBM!”

• Able to split shards even after the initial declaration of shards using
CollectionAPI

Collection API Shard Splitting

Fault Tolerance

Write Tolerance
• Node uses leader to update shards

• Nodes keep track of updates with Transaction Log

Read Tolerance
• Only needs one available replica

• Can read partial results

Read Fault Tolerance

Fault Tolerance Partial Results

References

• https://wiki.apache.org/solr/
• https://www.packtpub.com/mapt/book/Big-Data-and-Business-Intelligence/
• https://lucidworks.com/blog/2009/09/02/scaling-lucene-and-solr/
• http://zookeeper.apache.org/
• https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guid

e
• http://www.solrtutorial.com/solrj-tutorial.html
• http://www.slideshare.net/erikhatcher/solr-application-development-tutorial
• http://www.edureka.co/apache-solr-self-paced

https://wiki.apache.org/solr/
https://www.packtpub.com/mapt/book/Big-Data-and-Business-Intelligence/
https://lucidworks.com/blog/2009/09/02/scaling-lucene-and-solr/
http://zookeeper.apache.org/
https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guide
http://www.solrtutorial.com/solrj-tutorial.html
http://www.slideshare.net/erikhatcher/solr-application-development-tutorial
http://www.edureka.co/apache-solr-self-paced

Thank You

