
Sedna:

Advanced

Databases

Group 20

Ankita B. | Ankit S. | Terry P. | Siddharth G.

History

Examples Of XML Documents

Why Sedna?

• Non native strategies - mapping an XML
data model onto relational or object-
oriented model

Before

• Native XML – XML files are
fundamental unit of storageAfter

Native XML Database

Native XML
Database

XML
Store XML
document

as XML

Describes
data

Documents

Easy to
understand

Self
Describing

Human
readable

Native XML Databases

XML Model vs. Relational Model

Challenges Sedna Addresses

Improved schema-based clustering
storage strategy

Novel memory management
technique

Not having to evaluate the special join
operation

Sedna Features

 Open Source

 Native XML Database

 Based on the XQuery language and the XQuery/XPath data model

 XUpdate language

 SQL connection from XQuery

 Full-text search indices

 Support for ACID transactions

 Support for fine-grained XML triggers

Sedna Features

 Built-in Database Connection Pooling manager.

 Persistent storage

 Incremental hot backup

 Supports Unicode

 Zero dependencies

 Supports Binary BLOBS as well as Java Object storage.

 Database security

Why Move From Relational to Sedna

 Flexibility

 Scalability and Interoperability

 Performance increase

 No capacity limits for data type

 Searches: Structural and Semantical

Sedna Architecture

Sedna Architecture

Sedna Native XML Database

Client/Server Protocol

Message-based protocol for communication with clients
through the TCP/IP sockets.

Message Structure – First 4 – Instruction; Next 4 –Length;
‘Length ‘ Bytes -Body

To begin a session – start up message

3 types of queries – query , update , bulk

Termination initiated by the client

Descriptive Schema (Data Guide)
<library>

<book>

<title>Foundation on databases</title>

<author>Abiteboul</author>

<author>Hull</author>

<author>Vianu</author>

</book>

. . .

<book>

<title>An Introduction to Database

Systems</title>

<author>Date</author>

<issue>

<publisher>Addison-Wesley</publisher>

<year>2004</year>

</issue>

</book>

<paper>

<title>A Relational Model for Large Shared

Data Banks</title>

<author>Codd</author>

<paper>

. . .

<paper>

<title>The Complexity of Relational Query

Languages</title>

<author>Codd</author>

<paper>

</library>

book paper

author issuetitle title book

publisher year

library

Data Structure – Node Descriptor

node handle

label

. . .

title

prev-in-block

left-sibling

next-in-block

right-sibling

Indirection

tableparent

children

Memory Management

Database pointers need conversion from DAS(Database
Address Space) to VAS(Virtual Address Space)

Pointer swizzling creates and overhead cost

SEDNA eliminates the need of swizzling

DATABASE ADDRESS SPACE: (layer, addr) addressing

LAYER n

LAYER 2

LAYER 1

..

.

ADDRESS RANGE (Ex: 0..4GB)

PROCESS VM

MAPPING REGION

...

BUFFERS

HDD

read, write

memory mapping

Memory Management

Sedna Memory Management

Database Address Space (DAS)

Virtual Address Space (VAS)

Client

session

Buffer

Manager

Secondary

Memory

(Disk)

addr

MapViewOfFile(Windows)

mmap (Linux)

Buffer Memory

VirtualLock (Windows)

mlock (Linux)

Advantages of Sedna Memory

Management

 64-bit virtual address space

 Pointer dereferencing is comparable to conventional pointers

 Avoids costly pointer swizzling

Supported API Packages

JAVA API

Session

Transaction

Statement

Result

Connection Drivers

JAVA

C++

DB GUI Interface
Support for Sedna 3.x.x

Validation XML (DTD, XSD)

Manage all aspects of databases

Show metadata (DataGuide)

Execute XQuery and update extensions

Platform Independent (Java)

Easy to install and configure

XQuery

Standard
expression
language

Modeled
after and

syntax similar
to SQL

Not only for
XML files

Incorporates
XPath

Expression

FLWOR
Expression

XQuery

XQuery Functions

 Built-in functions

 Xpath/XQuery function library, e.g., document()

 Aggregation functions, e.g., avg, sum, count, max, min

 User-defined functions

 Ex.: xq. Functions.xq

declare function prefix:function_name($parameter as datatype?...)
as returnDatatype?
{

function body...
};

XQuery FLWOR Expression

for var in expr

let var := expr

where expr

order by expr return expr

XPath?

XPath

Language
using path

expressions

Addresses
select parts

of
documents

Sequence
of stepsSimilar to

Operating
System file

path schema

FLWOR
Expression

/ = the root directory

/users/dave/foo = the
(one) file named foo in
dave in users

/library/book/chapter/section =

every section element in a chapter in
every book in the library

. = the current directory . = the current element

.. = the parent directory .. = parent of the current element

/users/dave/* = all the files
in /users/dave

/library/book/chapter/* = all the
elements in /library/book/chapter

foo = the (one) file named foo

in the current directory
section = every section element
that is a child of the current element

/library = the root element (if named
library)

Operating Systems XPath

XQuery Triggers

Specific to XML data

Native based

XML data hierarchy dependent

Similar purposes as relational database triggers: integrity
constraints, event-based applications, statistics
gathering, monitoring specific data changes…

XQuery Triggers

CREATE TRIGGER “trigger-name”

(BEFORE | AFTER) (INSERT | DELETE | REPLACE)

ON <XPath-expression> (,<XPath-expression>)*

(FOR EACH NODE | FOR EACH STATEMENT)

DO

{

(<XUpdate-expression($NEW, $OLD, $WHERE)>;)*

<XQuery-expression($NEW, $OLD, $WHERE)>

}

DROP TRIGGER “trigger_name”

XQuery Trigger Example
CREATE TRIGGER "tr1"

BEFORE INSERT

ON doc("auction")/site//person

FOR EACH NODE

DO

{ if($NEW/age < 14)

then

<person>{attribute id {$NEW/@id}}

{$NEW/*}

<age-group>young</age-group>

</person>

else

<person>{attribute id {$NEW/@id}}

{$NEW/*}

<age-group>adult</age-group>

</person>; }

Node-level before-trigger

Transactions & Recovery

ACID Transactions
Atomicity – rollback procedure
Consistency – by design
 Isolation – S2PL and snapshots
Durability - two level recovery scheme

Multiversioning – Concurrency Control
Logging and Recovery

Multi-versioning Scheme

Page-Level Versioning
 Snapshot-based schema with data elements as pages.
 Transaction transparent solution
 All the logic is encapsulated in the storage manager.
 No worry of garbage collection.

Read-Only Transactions
 Support faster execution for Read Only transactions (Queries)
 Isolation not needed: Non-Blocking processing or non-S2PL

Logging & Recovery Mechanisms

Normal Processing
 Logging of all main operations such as insert node, create index, etc.
 Transaction-consistent snapshot at checkpoints – Persistent snapshot

Rollback Processing
 Undo the operations using the data from the already created log.

Two-Level Recovery Process
 Restoring transaction-consistent state of DB using the persistent snapshot.
 Redo the necessary operations using the log generated

User-Based
Authorization

System

DBA user and
ordinary user

DB creator and
DBA grant &

revoke
privileges

Role: named
group of
related

privileges

Password
Client

Authentication

Privileges

CREATE-
USER

CREATE
DOCUMENT

CREATE
COLLECTION

CREATE
INDEX

CREATE FT
INDEX

CREATE
TRIGGER

LOAD
MODULE

LOAD
DROP

QUERY

INSERT

DELETE

RENAME
RETRIEVE-
METADATA

Sedna vs. X-Hive

► 100 MB XMark Benchmark

► AMD Athlon 64 2.00 GHz, 1 GB of RAM.

► Timeout: 2000

X-Hive Sedna

XPath 1.2 0.8

XPath, pos, trans 4.0 1.7

Complex XPath 6.8 2.2

Id comparison 3.7 2.3

XPath, count 3.0 0.4

FLWR 4.6 0.5

FLWR, count 16.1 0.8

Join(1,2) * 1046

Join(1,2,3) * 1350

Group by 34.8 81

Semijoin * 1664

Complex semijoin * 373

Struct. XPath + trans 3.3 1.3

Contains substring 10.4 8.4

Long XPath 1.8 0.1

Nested Long XPath 2.3 0.7

Empty 3.1 2.1

Function Calls 2.6 1.0

Sorting 24.3 3.5

Trans(nested XPaths) 3.3 2.5

Sedna and its
competitors

Sedna vs.

Berkeley XML DB

BDB node Sedna

XPath 0.172 0.109

XPath, pos, trans 0.421 0.188

Complex XPath 0.625 0.141

Id comparison 0.969 0.250

XPath, count 0.188 0.094

FLWR 1.297 0.109

FLWR, count 7.016 0.172

Join(1,2) 263.219 11.109

Join(1,2,3) 428.453 14.125

Group by 42.250 2.219

Semijoin 281.781 34.625

Complex semijoin 81.453 10.969

Struct. XPath, trans 0.109 0.454

Contains substring 3.797 2.485

Long XPath 0.219 0.047

Nested Long XPath 0.234 0.156

Empty 0.312 0.125

Function Calls * 0.062

Sorting * 0.43

Trans(nested XPathes) 1.016 0.156

► 12MB XMark benchmark

► AMD Athlon 64 2.00 GHz, 1 GB of RAM.

► Timeout: 2000

Sedna and its

competitors

XML Databases - Comparison

Where To Use Sedna?

WikiXMLDB

Sedna Users

How big is it today?

Why Sedna Failed to Compete?

Why Sedna Failed to Compete?

 General weakness of XML

 Switching from RDBMS is expensive

 Frozen further development

 Lack of support of Xquery 3.0

 Doesn’t support XML 1.1

 Scalability is supported but decreases the performance

Competitors

References

http://elib.mi.sanu.ac.rs/files/journals/kjm/30/kjom3013.pdf
https://cs.brown.edu/~akalinin/papers/sedna-sigmod.pdf
https://www.sedna.org

http://elib.mi.sanu.ac.rs/files/journals/kjm/30/kjom3013.pdf
https://cs.brown.edu/~akalinin/papers/sedna-sigmod.pdf
https://www.sedna.org/

