
Titan Graph Database

CIS 4930/6930 Advanced Databases

Group 18

Thomas Baldwin
Jiayong Li
Zhaohe Xu

Jaswinder Sodhi

Outline

● Introductions to graph database

● Characteristic features

● Important implementation concepts

● Data model

● Queries and operations

Graph Concept

● In mathematics, the representation of graph is G = (V, E).

● In computer science, Graph is an abstract data type that

implements the math concepts.

● Graph have different attributes(weight, numeric attribute)

● Comes with different operations.

Operations

● adjacent(G, x, y)

● neighbors(G, x)

● add_vertex(G, x)

● remove_vertex(G, x)

● add_edge(G, x, y)

● remove_edge(G, x, y)

What is Graph Databases

● As name suggests, it is a database.

● Uses graph structures for semantic queries with nodes, edges

and properties to represent and store data

● The relationships allow data in the store to be linked together

directly

● contrasts with conventional relational databases

Relational Data Model

● Relational tables, SQL and joins.

● Works pretty well at beginning.

● Join processing is expensive

● Inflexible data model.

Graph Data Model

But In Reality...

● Hybrid relations.

● Easy to change the current data model

● Flexible data model

● Handy in finding connections between

entities

● Titan itself is a graph database engine / database server /

database management system.

● Titan itself is focused on compact graph serialization, rich graph

data modeling, and query execution.

● Titan utilizes Hadoop for graph analytics and batch graph

processing.

● Have multiple options for the backend storage system.

Overview of Architecture

Introduction of Titan

● A powerful graph database

● Design for giant graph computing beyond what a

single machine can provide

● Support real time traversals and analytical queries

and other amazing features.

● Good choice for large scale Social Network

applications(More examples later)

Overview of Architecture

Ecosystem

● Introductions to graph database

● Characteristic features

● Important implementation concepts

● Data model

● Queries and operations

What titan offers

Build for transactions

High number concurrent

Threads

Incremental transactional capacity

Answers complex queries

Consistency

Eventual consistency

Support for ACID

Dynamic Scalability

In size of graph

In number of vertices

Infinite size graphs

Unlimited users

Multi data center replication.

Backend Support

Hbase , BerkeleyDB

Supports cassandra tables

Decentralized

Linear scalability

Fault tolerance

very high data volumes

Deployed in horizontal scale out fashion

Support for gremlin

Path oriented

Gremlin Console

Gremlin language

Gremlin server:Rexster

OLTP

Real time local traversals

Transactional systems

Multi threaded transactions

Data Analytics

Global graph analytics

Batch graph processing (Hadoop)

Discover trends

Apache Spark

Integration with tinkerpop stack

Graph computing framework

Allows gremlin

In memory vs distributed processing

The market titan aims at..

Do you value the connections ?

Ready to scale ?

Innovative queries ?

Intuitive modeling

Inference

Ranking

Recommendation

Social networks

Sample use case

Movie graph with movies and

actors.

See how old school RDBMS

cannot run cool queries

Data Model

● Schema and Data Modeling

● BigTable Data Model

● Titan Data Model

Schema and Data Modeling

BigTable Data Model

• Key -> vertex id

• Order in Titan

Query Language:

Operation Query

Single vertex g.V(4160)

Matching a property g.V().has(“name”, “Jupiter”)

Range filtering g.V().has(“age”, between(2000, 5000))

To other vertices g.V().has(“name”, “Jupiter”).out()

To edges g.V().has(“name”, “Jupiter”).outE()

Filtering with traversals g.V().has(“name”, “Jupiter”).out().

has(“age”, between(2000, 5000))

Java API

● Common Architecture

● Package Overview

● Create and Retrieve

Common Architecture

Elastic Search
(10.234.31.163)

Cassandra
(10.234.31.163)
(Port: 9042)Gremlin

Server
(10.234.31.163)
(Port: 8182)

Java
Applic
ation

Cluster cluster = Cluster.build(“10.234.31.163”).create();
Client client = cluster.connect();
…
Client.submit(“g.V()”);

API Packages

Create and Retrieve Example

BaseConfiguration baseConfiguration = new BaseConfiguration();

baseConfiguration.setProperty(“storage.backend”, Cassandra”);

baseConfiguration.setProperty(“storage.hostname”, “192.168.1.10”);

TitanGraph titanGraph = TitanFactory.open(baseConfiguration);

Vertex rash = titanGraph.addVertex(null);

Vertex honey = titanGraph.addVertex(null);

rash.setProperty(“userId”, 1);

rash.setProperty(“username”, “rash”);

rash.setProperty(“birthday”, 1990);

honey.setProperty(“userId”, 2);

honey.setProperty(“username”, “honey);

honey.setProperty(“birthday”, 1991);

Edge frnd = titanGraph.addEdge(null, rash, honey, “FRIEND”);

frnd.setProperty(“since”, 2016);

titanGraph.commit();

Configuration

Build the graph

Graph

Building Applications With Titan

AJAX Request

Keylines

Rexster

Titan:DB

Handling the Frontend...

AJAX Request

Java API (HTTP Client)

Keylines

Visually format the graph

data returned

The best way to understand

it is to visualize it.

Rexster on the Backend...

Rexster is a graph server that exposes graph through REST and a binary

protocol called RexPro.

Provides standard low-level GET, POST, PUT, and DELETE methods

“The Dog House”

The Dog House

What does it look like all together?

Implementation Concepts

Gremlin Query Language

The Titan Server

Bulk Loading

Graph Partitioning

Gremlin Query Language

Titan’s query language used to retrieve data from and modify data in the

graph

Path-oriented language which succinctly expresses complex graph traversals

and mutation operations

Functional language whereby traversal operators are chained together to

form path-like expressions

The Titan Server

Titan uses the Gremlin Server engine as the server component to process

and answer client queries

The Gremlin Server provides a way to remotely execute Gremlin scripts

against one or more Titan instances hosted within it

Client applications can connect to it via WebSockets with a custom

subprotocol

Can also be configured to serve as a REST-style endpoint

http://tinkerpop.incubator.apache.org/docs/3.0.1-incubating/#gremlin-server

Why the need for Bulk Loading?

Introducing Titan into an existing environment with existing data and

migrating or duplicating this data into a new Titan cluster

Adding an existing or external graph datasets to a running Titan cluster.

Updating a Titan graph with results from a graph analytics job

What is Graph Partitioning?

When the Titan cluster consists of multiple storage backend instances, the

graph must be partitioned across those machines

Different ways to partition a graph

Random Graph Partitioning

Explicit Graph Partitioning

Random Graph Partitioning

Pros

Very efficient

Requires no configuration

Results in balanced partitions

Cons

Less efficient query processing as the Titan cluster grows

Requires more cross-instance communication to retrieve the desired

Explicit Graph Partitioning

Pros

Ensures strongly connected subgraphs are stored on the same instance

Reduces the communication overhead significantly

Easy to setup

Cons

Only enabled against storage backends that support ordered key storage

HBase

Future of Titan

Byte order partitioner (partition graphs effectively so that data is available
locally)

Ability to write hadoop jobs through gremlin)

Loading subgraphs to run in-memory and running algorithms

DataStax (the firm behind the Cassandra DBMS for enterprise) acquired
Aurelius (the team behind the Titan project) earlier this year. Work has
started on a commercial, scalable graph database called DSE graph

90% of current data was created in past two years.

