
Open source in-memory data structure store

Features – At a glance

• Atomicity

• Transactions

• Publish/Subscribe Messaging Paradigm

Atomic Operations

Atomicity stipulates that it should be possible to place
every operation at a singular point (linearization
point) between its invocation and response1.

Atomic Operations – Explained

Atomicity gives us a guarantee that only one of two things can happen
before anything else happens:

1.The operation succeeds and we are left with the expected result

2.The operation fails and no changes are made to the underlying

data

Every command in Redis is performed atomically!

Redis Transactions

The execution of a group of commands in a single step, with two
important guarantees:

1.All the commands are serialized and executed sequentially.

2.Either all of the commands or none are processed.

Does this look familiar? Redis Transactions are atomic!

Redis Transactions – Specifics

MULTI: Enters “transaction mode” where we can now list operations

EXEC: Executes the transaction, which now contains multiple
operations

DISCARD: Flushes the transaction queue and exits the transaction

PubSub – Redis

Redis allows you to easily implement the Publish/Subscribe Messaging
Paradigm.

• SUBSCRIBE

• UNSUBSCRIBE

• PUBLISH

PubSub – Redis

In Redis, messages are organized into channels.

Very robust channel subscribing features:

SUBSCRIBE news.*

SUBSCRIBE news.art.figurative SUBSCRIBE news.music.jazz

Data Model

Key-Value Store

Vs

In-Memory Data Structure Store

Data Model - Basics

• Key-Value pairs

• Value usually string (other datatypes possible)

Key

CIS4930_171F

CIS4301

CEN3031

Value

Advanced Database

Info and Database Sys 1

Intro Software Engr

Data Model – RDBMS vs Key-Value

ID Title Cred

CIS4930_171F Advanced Database 3

CIS4301 Info and Database Sys 1 3

CEN3031 Intro Software Engr 3

Key

Course:CIS4930_171F:Title

Course:CIS4301:Title

Course:CEN3031:Title

Value

Advanced Database

Info and Database
Sys 1
Intro Software Engr

Key

Course:CIS4930_171F:Cred

Course:CIS4301:Cred

Course:CEN3031:Cred

Value

3

3

3

Data Model – Reverse Index

• Easy way to model relationships

• Reverse index acts as foreign key
Key

Course:CIS4930_171F:Students

Course:CEN3031:Students

Value

[Student:0, Student:10, …]

[Student:10, Student:13, …]

Key

Student:0:Courses

Student:10:Courses

Value

[Course:CIS4930_171F, …]

[Course:CIS4930_171F,
Course:CEN3031, …]

Data Structures - Overview

• Strings

• Lists

• Sets

• Sorted Sets

• Hashes

• HyperLogLogs

Data structures - Strings

• Base type

• Maximum length is 512 MB

• Implemented using C-Strings (Append O(n) operation)

• Binary safe

• Can be used as:
• Number (Increment, etc.)

• Vector

• Binary Data (Bitwise operations)

Data Structures - Lists

• Implemented as a doubly linked list

• O(1) push and pop operations

• O(n) accessing other nodes
• Can be used to build Queues or Stacks
• Maximum elements = 2^32-1= 4,294,967,295
• Can block retrieval until value is available (BLPOP)

Data Structures - Sets

• Unordered collection of Strings

• Implemented using a hash table
• O(1) checking for existence

• Set Operations
• Union, Intersection and Difference

• No duplicates allowed

• Maximum Number of Elements = 4,294,967,295

• Useful to represent relationships

• Randomized retrieval of members possible

Data Structures – Sorted Sets

• Ordered collection of Strings

• Implemented using a skip list
• O(log(n)) operations

• No duplicates allowed

• Each member has a rank

• Retrieval by range possible

• Can be used to index key-value pairs for range retrieval

Data Structures - Hashes

• Maps between String fields

• Implemented using a hash table
• O(1) retrieval/existence operations

• Used to represent objects

• Maximum Number of Elements = 4,294,967,295

Data Structures - HyperLogLogs

• Probabilistic data structure
• HyperLogLog is a well known algorithm

• Used to estimate cardinality

• Trades memory for precision

Data Store Comparisons

Persistence

Two kinds of persistence:

• Append only files

• Redis database files

Append Only Files (AOF)

Pros:

Readability

No seeks or corruption problems if there’s an outage

Cons:

Larger than RDB files

Slower than RDB files

Redis Database File (RDB)

Pros:

Great for disaster recovery

Small and compact

Cons:

Poor if you need to minimize the change of data loss in case Redis
stops working

Needs to fork() often to persist on disk using child process

Replication

Scaling

Partitioning

Advantages

• Can handle larger data sets

• Can scale to multiple cores and
computers

• Not limited to single CPU’s
RAM

Disadvantages

• Can’t partition if operations
involve multiple keys

• Increased data handling
complexity

• Altering capacity becomes
difficult

How to Partition

3 Methods:

1. Client Side Partitioning

2. Proxy Assisted Partitioning

3. Query Routing

Partitioning Implementations

• Redis Cluster

• Twemproxy

• Clients supporting
consistent hashing

Partitioning Implementations

• Redis Cluster

• Twemproxy

• Clients supporting
consistent hashing

Automatically splits dataset
among multiple nodes

Will still operating when
some of the nodes are
failing

Partitioning Implementations

• Redis Cluster

• Twemproxy

• Clients supporting
consistent hashing

Is a proxy between the
clients and Redis instances

Can automatically shard
data among instances

Supports consistent hashing

Partitioning Implementations

• Redis Cluster

• Twemproxy

• Clients supporting
consistent hashing

Simply use a client that
implements client side
partitioning (via consistent
hashing)

Examples: Redis-rb, Predis

Redis

Common Operations and Query Language

Popular Storage Commands

• SET

• APPEND

• PUSH

<SET> <Key> <Value>

Sets the value to the
corresponding key. If key
already exists, it is
overwritten.

Returns String “OK” if
successful, NULL otherwise.

Popular Storage Commands

• SET

• APPEND

• PUSH

<APPEND> <Key> <Value>

Appends the value to the
corresponding key. If key
doesn’t exist, it is created.

Returns Integer
corresponding to new size
of Value.

Popular Storage Commands

• SET

• APPEND

• PUSH

<PUSH> <Key> <Value>

Appends the value to the
corresponding key. If key
doesn’t exist, it is created.
Key must be a list.

Returns Integer
corresponding to new size
of Value.

Popular Retrieval Commands

• GET

• MGET

<GET> <Key>

Returns the value for the
corresponding key.

Returns value of key or
NULL if key does not exist.

Popular Retrieval Commands

• GET

• MGET

<MGET> <Key> [Keys…]

Returns all values for all the
corresponding keys.

Returns values of keys in an
array. Cell in array is NULL if
corresponding key doesn’t
exist.

Other Popular Commands

• DEL

• RENAME

• EXISTS

• DBSIZE

 <Key> [Keys…]

Deletes all keys and
associated values.

Returns the number of keys
deleted.

Other Popular Commands

• DEL

• RENAME

• EXISTS

• DBSIZE

<RENAME> <Key> [newKey]

Renames key to newKey.

Returns error if key does not
exist. If newKey already
exists it is overwritten.

Other Popular Commands

• DEL

• RENAME

• EXISTS

• DBSIZE

<EXISTS> <Key>

Determines whether or not
key exists in database.

Returns True if key exists,
False otherwise.

Other Popular Commands

• DEL

• RENAME

• EXISTS

• DBSIZE

<DBSIZE>

Returns number of keys in
the database.

Redis supports different languages

Java-specific initialization

• Client to access Redis is called “Jedis”

• Jedis jedis = new Jedis(String host, int port)

Java-specific commands

• jedis.set(“key1”, “abc”)

• jedis.get(“key2”)

String “abc” is now
associated with String
“key1”.

Java-specific commands

• jedis.set(“key1”, “abc”)

• jedis.get(“key2”)

Returns value associated
with key2 if it exists.

Companies that use Redis

• Github

• Craigslist

• Digg

• Amazon (AWS)

Uses Redis to find a user’s
route, defined to be “the
hostname of the file server
on which that user’s
repositories are kept.”

Companies that use Redis

• Github

• Craigslist

• Digg

• Amazon (AWS)

Uses Redis to map
hostname to port numbers
of different users.

Companies that use Redis

• Github

• Craigslist

• Digg

• Amazon (AWS)

Uses Redis to keep track of
page views and clicks.

“Redis rocks”

-Digg

Companies that use Redis

• Github

• Craigslist

• Digg

• Amazon (AWS)

Amazon Web Services
(AWS) ElastiCache uses
Redis.

My experience.

Other Companies that use Redis

• Twitter

• Snapchat

• Uber

• Instagram

• Slack

• Imgur

• Grooveshark

• Airbnb

• Tumblr

Sources
1:https://www.cs.cornell.edu/~ie53/publications/icDSN12.pdf

2:http://redis.io/topics/data-types

3:http://stackoverflow.com/questions/9625246/what-are-the-
underlying-data-structures-used-for-redis

http://blog.avangardo.com/2013/12/comparison-of-most-popular-
nosql-dbmses/

https://www.cl.cam.ac.uk/research/srg/opera/publications/papers/v
argasbaconmoody_integrating.pdf

https://www.cs.cornell.edu/~ie53/publications/icDSN12.pdf
http://redis.io/topics/data-types
http://stackoverflow.com/questions/9625246/what-are-the-underlying-data-structures-used-for-redis
http://blog.avangardo.com/2013/12/comparison-of-most-popular-nosql-dbmses/
https://www.cl.cam.ac.uk/research/srg/opera/publications/papers/vargasbaconmoody_integrating.pdf

