
Group 15

Hamza Karachiwala
Himanshu Pandey

Jayesh Yadav
Nidhi Makhijani

Shortcomings in relational databases

▶ Schema - Lacks flexibility
▶ Set based - Relationships need extracting
▶ Physical Storage - Hard to partition
▶ For large data volumes, shortcomings are magnified
▶ All comes down to performance

NoSQL models
▶ Graph models - Relationships - Neo4j
▶ Document models - Flexibility - MongoDB
▶ Key-Value models - Simplistic retrieval - Memcached
▶ Object Oriented Models - Inheritance/Polymorphism -

Ontos

OrientDB and the Multi-model
approach
▶ One-stop-shop
▶ Graph model for faster relationship extraction
▶ Document model for flexibility
▶ Aimed to solve all problems

Features

▶ Relationships instead of Joins for speed
▶ Less need for multiple products

◦Multi-model
◦SQL

▶ Easier scalability
▶ Schemaless, schema full and schema-mixed
▶ ACID compliance
▶ HTTP REST for easy integration
▶ Object Oriented Concepts

OrientDB Success Stories
▶ Investigation Unit to uncover hidden assets
▶ Process clustered IoT data in the cloud
▶ Provide business insights for targeted sales
▶ Fraud transaction detection
▶ Traffic modelling

Why Graph Database?

Why Graph Database?

Why Graph Database?

Graph Model Components

▶ Vertex
◦ Unique identifier
◦ Incoming Edges
◦ Outgoing Edges
◦ Basic unit modelled as a Class

▶ Edge
◦ Unique identifier
◦ Incoming Vertex (head)and Outgoing Vertex (tail)
◦ Connect vertices
◦ Regular edges vs lightweight edge

OrientDB Components

▶ Record - Smallest unit of database
◦ Identified by RecordID (clusterID:clusterPosition)

▶ Classes - Like a table, schemaless, for grouping records
◦ Inheritance and Polymorphism
◦ Logical grouping

▶ Clusters - Physical grouping
◦ Classes belong to a cluster
◦ Parallelism
◦ Efficient querying

Graph Model

Cluster
Class

Nodes

Nodes

Nodes

NodesNodes

Nodes

DOCUMENT MODEL
● A form of data storage

● Commonly Schema-less

● Has a class type

● Can contain Links to

other documents

● Can contain other

documents

● Has a unique ID called

record ID in format :

#<clusterID>:<position>

Person
{

@rid: #1:20,
First: “John”,
Last: “Doe”,
children: [

#2:123, #2:124
]

}

Person
{

@rid: #1:20,
First: “Jane”,
Last: “Doe”,
Birthdate: 06/06/1986,
children: [],
Pet: {

name:”Tom”,
type:”Cat”,
color:”grey”

}
}

Schema-Full and Mixed Mode Schema

● All classes of documents

can be set into Mixed-

Mode Schema by setting

Strict Mode: False.

● If strict mode is set to

True, the class is

Schema-Full.

Person
Birthdate : <Date>
First: <No Type>
Last: <No Type>
.
.
Additional fields can
be inserted

Person
First: <String>
Last: <String>
Birthdate:<Date>

If insert tries to use a field
other than these, the query
fails

Strict Mode: False
Strict Mode: True

RELATIONSHIPS IN DOCUMENT
MODEL

Relationships in a

document model can

be of two types:

● Referenced

● Embedded

Person
{

@rid: #1:20,
First: “John”,
Last: “Doe”,
children: [

#2:123, #2:124
]

}

Person
{

@rid: #1:20,
First: “Jane”,
Last: “Doe”,
Birthdate: 06/06/1986,
children: [],
Pet: {

name:”Tom”,
type:”Cat”,
color:”grey”

}
}

RELATIONSHIP : EMBEDDED

● Embedded document is

dependent on parent for

existence.

● Does not have unique ID.

● Uses embeddedlist,

embeddedset,

embeddedmap.

Person
{
@rid: #1:20,
First: “Jane”,
Last: “Doe”,
Birthdate: 06/06/1986,
children: [],
Pet: {
name:”Tom”,
type:”Cat”,
color:”grey”

}
}

RELATIONSHIP : REFERENCED

● One-Many, Many-One and

Many-Many relationships

handled using containers like

linklist, linkmap, linkset.

● Stores RID of linked records.

● Speeds up traversing.

Person
{

@rid: #1:20,
First: “John”,
Last: “Doe”,
children: [

#2:123, #2:124
]

}

Person
{

@rid: #2:123,
First: “James”,
Last: “Doe”,
children: []

}

Person
{

@rid: #2:123,
First: “Martha”,
Last: “Doe”,
children: []

}

EXTENDED SQL

● Easy to learn for existing

developers.

● Additional extensions for

traversing graph.

CREATE
INSERT
SELECT
ALTER
DELETE

TRUNCATE
DROP

EXTENDED SQL - CREATE
create database <database-url> <user> <password>

<storage-type> [<db-type>]

create class <class-name>

create property <class>.<property> <type> [linktype]

create vertex

create edge from <vertex id using select> to <vertex

id using select>

EXTENDED SQL - ALTER

alter class - Ex. alter class Person STRICTMODE true

alter property <class>.<property> <attributeName>

<attributeValue>

EXTENDED SQL - SELECT

select [<projections>] from <target> [where

<conditions>] [group by <field>] [order by <fields>

[asc|desc]] [skip <numRecords>] [limit <MaxRecords>]

EXTENDED SQL - INSERT/UPDATE

insert into <target> [(<fields>) values (<values>) |

set <field>=<expression>]

update <target> [SET|REMOVE|INCREMENT|ADD

<field>=<value>[,]*] [where <conditions>]

[limit <MAX-RECORDS>]

EXTENDED SQL - DELETE

Delete works same as SQL. To delete all records of a

class or cluster, we can use the Truncate Statement.

EXTENDED SQL - TRAVERSE

● TRAVERSE * FROM #1:12

● TRAVERSE * FROM #1:12 $depth <= 2

● SELECT FROM PERSON any() traverse(0,3) (firstname=”JOHN”)

● SELECT out(‘friends’).out(‘friends).out(‘friends’) FROM #1:!2

● SELECT DIJKSTRA($current,#1:12,’weight’) from V

● TRAVERSE friends from #1:12 while $depth <= 3 STRATEGY

BREADTH_FIRST

● SELECT $path FROM (TRAVERSE any() FROM #1.12 while

depth<=2)

EXTENDED SQL - TRAVERSE EXAMPLE

SCRIPTS
● OrientDB also provides a way to write Server Side

Scripts.

● Currently SQL and Javascript are supported.

● More languages to be added in the future.

OrientDB Teleporter

ORIENTDB TELEPORTER
● Compatible with most of the RDBMS accessible with JDBC.

● As per OrientDB, Teleporter has been tested successfully with

Oracle, SQLServer, MySQL, PostgreSQL and HyperSQL.

● The user can choose between two approaches to convert

Relational Database to Graph Database,

○ Naive Strategy

○ Naive-Aggregate Strategy

Naive Strategy

Source: www.orientdb.com

Naive-Aggregate Strategy

Source: www.orientdb.com

Driver API’s
▶ Native Binary

▶ HTTP REST/JSON

▶ Java Wrapped

Native Binary

▶ Directly against the TCP/IP socket using the binary
protocol

▶ Fastest way to interface a client application to an
OrientDb server instance

Binary Protocol
▶ Intended to be read by a machine rather than humans
▶ Better performance as compared to text protocols such

as HTTP or IRC
▶ Terse which translates into speed of transmission and

interpretation

HTTP REST/JSON
▶ Talk with a OrientDB Server instance using the HTTP

protocol and JSON
▶ Authentication and Security
▶ Keep-Alive for better performance.

HTTP Methods
▶ GET, to retrieve values from the database.

▶ POST, to insert values into the database.

▶ PUT, to change values into the database.

▶ DELETE, to delete values from the database.

Java Wrapped API
▶ OrientDB is written in Java
▶ This means that you can use its Java API's without

needing to install any additional drivers or adapters
▶ Layer that links directly to the native Java driver.

Graph API
▶ If you work with graphs and want portable code across

other Graph databases and OLAP systems.

▶ Easiest to switch to this when migrating from other
Graph Databases, such as Neo4J or Titan.

▶ You can use OrientDB as a Graph Database, allowing you
to work with Vertices and Edges.

Document API
▶ If your domain fits Document Database use case.

▶ Easiest to switch to this when migrating from other
Document Databases, such as MongoDB and CouchDB.

▶ Handle records and documents.

Object API
▶ Full Object Oriented abstraction that binds all database

entities to POJO (Plain Old Java Objects).

▶ Easiest to switch to this when migrating from JPA
applications.

Scaling

▶ Capability to support large volume of data
▶ OrientDB can be distributed across different servers and

used in different ways to achieve the maximum of
performance

▶ Multi master strategy over master – slave

Distributed Architecture Lifecycle

▶ Discover if an existing
cluster is available to join
▶ If available join the
cluster otherwise
▶ Create a new cluster

Distributed Architecture Lifecycle
▶ Join to an existing cluster
▶ Unique cluster name

Distributed Architecture Lifecycle

Distributed Architecture Lifecycle
▶ Configuration broadcasted
for each join and release

Distributed Architecture Lifecycle

▶ If node is unreachable
treat as if node has left the
cluster

Distributed Architecture Lifecycle

▶ If node is unreachable
treat as if node has left the
cluster

Distributed Architecture Replication
▶ List of databases
Shared between nodes

Distributed Architecture Replication

Distributed Architecture Replication

Distributed Architecture Replication

Distributed Architecture Replication

Distributed Architecture Sharding

Distributed Architecture Sharding
▶ Cluster Locality
▶ Multiple servers
per cluster
▶ Create records
▶ Update & delete
▶ Read records

Distributed Architecture Sharding

Distributed Architecture Sharding

Concluding Remarks
▶ OrientDB is a multi-model solution
▶ Looks to cater across the breadth of industry
▶ Slowly gaining market share
▶ Some maintenance controversies
▶ Trails Neo4j and MongoDB in terms of popularity

THANK YOU!!

