

First look at MarkLogic

• EASY TO GET DATA IN

• EASY TO GET DATA OUT

• ENTERPRISE READY

• FLEXIBLE
DEPLOYMENT

Brief history
• FOUNDED IN THE YEAR 2001.

• FOUNDERS : CHRISTOPHER LINDBLAD, PAUL PEDERSEN AND FRANK R. CAUFIELD

• INITIALLY BAPTIZED AS CERISENT.

• INITIALLY FOCUSED TO ADDRESS SHORTCOMINGS WITH EXISTING SEARCH AND
DATA PRODUCTS BY USING XML DOCUMENT MARKUP.

• USED XQUERY AS THE QUERY STANDARD FOR ACCESSING COLLECTIONS OF
DOCUMENTS.

RDBMS v MarkLogic

System architecture

Key features
• STRUCTURE AWARE

• SCHEMA AGNOSTIC

• DOCUMENT CENTRIC

• MULTI MODEL

• SEARCH ORIENTED

• TRANSACTIONAL (ACID)

• HIGH PERFORMANCE AND SCALABILITY

• HIGH AVAILABILITY

Document centric

• SUPPORTED DOCUMENT TYPES :-
• XML

• JSON

• TEXT DOCUMENTS

• RDF TRIPLES

• BINARY DOCUMENTS

Multi-model
• TYPES OF DATA MODEL:-

• Document Store

• Native XML

• Resource Description
Framework(RDF)

• Search Engine

Search oriented
• SIMPLE QUERIES (URI/KEY-VALUE LOOK UP)

curl -X GET --anyauth --user username:password \
'http://myhost:port/v1/documents?uri=/my-document’

• COMPLEX QUERIES (BASED ON WORDS/PHRASES/DOCUMENT STRUCTURE)
for $result in cts:search(
/article[@year = 2010],
cts:and-query((
cts:element-word-query(
xs:QName("description"),
cts:word-query("pet grooming")
), cts:near-query(
(cts:word-query("cat"), cts:word-query("puppy dog")), 10
), cts:not-query(
cts:element-word-query(
xs:QName("keyword"), cts:word-query("fish")
)
)
)))[1 to 10]
return

Data management

Merger
Process

In Memory to
On-Disk Stand

Transactional (ACID)

High availability

High availability (cont.)

Scalability

Pricing & licensing

• FREE DEVELOPERS LICENSE.

• ESSENTIAL ENTERPRISE AT $18K/YEAR.

• ESSENTIAL ENTERPRISE ON AMAZON WEB SERVICES AT $0.99/HR.

Basics
• QUERY

 Standard text search
 Element-level XML search
 Native XQuery interface

• MANIPULATE
 Navigate within content
 Modify content programmatically
 Combine content from multiple sources

• RENDER
 Transform XML schema or DTDs
 Output to various formats

Advanced
• SECURITY

• SEMANTIC INFERENCE OF FACTS
• USING RULE SETS, AND SPARQL

• GEOSPATIAL

• DATABASE REPLICATION

• TIERED STORAGE

• BITEMPORAL

Security
• ROLE-BASED ACCESS CONTROL

• SECURITY DATABASE, ADMINISTRATION

• AUTHENTICATION
• INTERNAL OR EXTERNAL USING LDAP AND KERBEROS SECURITY

• CONFIGURATION MANAGEMENT

• ATOMIC FORESTS

Semantics
• DATA IS STORED AS TRIPLES

• SUBJECT, PREDICATE, OBJECT

• TRIPLE INDEX USED FOR EFFICIENT QUERY

• GENERATE NEW FACTS AND META DATA

• WORK AS A GRAPH MODEL

• COMBINATION QUERY

e.g. John livesin London
London isin England

LOOKS FOR DOCUMENTS THAT MENTION
“HOSPITAL” NARROWS THE LIST DOWN
IN ORDER TO RETURN ONLY THOSE
HOSPITALS LOCATED WITHIN THE
SPECIFIED POLYGON

Geospatial
• POINTS AND REGIONS OF INTEREST,

INTERSECTING PATHS.

• GEOSPATIAL QUERIES, INDEXES AND SHAPES
• POINTS, (COMPLEX) POLYGONS, CIRCLES, BOXES

• TEXT (WKT) AND WELL-KNOWN BINARY (WKB)
• POINT, LINESTRING, TRIANGLE, MULTIPOINT,

MULTILINESTRING, MULTIPOLYGON,
GEOMETRYCOLLECTION

• INTEGRATION WITH LEADING GEOSPATIAL
VENDORS

• ROBUST VISUALIZATION

“SHOW ME A LIST OF HOSPITALS THAT
FALL WITHIN THE BOUNDARIES OF
THIS CERTAIN SET OF COORDINATES”

Database replication
• FLEXIBLE REPLICATION

• FILTERED AND MANIPULATED BEFORE REPLICATION
• QUERY-BASED: UPDATES OF QUERY DYNAMICALLY

UPDATE REPLICATED DATA.

• GEOGRAPHICALLY DISPERSED CLUSTERS
AND MOBILE USERS

• MASTER-SLAVE ARCHITECTURE

• TRANSITIVE REPLICATION

• SAFE UPDATES

Tiered storage

• DATA IN DIFFERENT TIERS BASED ON

COST AND PERFORMANCE

• REDUCE THE COST OF STORAGE

• SAVE TIME MANAGING STORAGE

Update

• USING TEMPORAL DATABASE
 No update! No delete!
 Only insert and read-at-a-time
 Every document has two timestamps

 “created”, “expired”

• HIGH THROUGHPUT

• BITEMPORAL
 Rewind the information
 Capture evolving data and business through time

Va
lid

 T
im

e

System Time

Valid Time – Real-world
time, information “as it
actually was”

EVENT 1

EVENT 3

EVENT 2

EVENT 2

System Time – Time it
was recorded to the
database

Query/ answer processing

Developer tools

JSON
Unified indexing
and query for
today’s web and
SOA data

Server-Side
JavaScript
JavaScript
runtime inside
MarkLogic using
Google’s V8

Node.js
Client API
Enterprise NoSQL
database for
Node.js
applications

Java Client
API
NoSQL agility in
a pure Java
interface

Xquery API
Query XML
documents
using XPath
expressions

e.g. Delete from the database every
document in a collection
xdmp:collection-delete("collection-uri")

e.g. Construct a JSON object node
object-node { "p1" : "v1", "p2" : array-node {1,2,3}
, "p3" : fn:true(), "p4" : null-node {} } => { "p1" :
"v1", "p2" : [1, 2, 3] , "p3" : true, "p4" : null }.

e.g. Iterate through the results (the raw documents)
DocumentPage page
=client.newDocumentManager().search(query,1);
for (DocumentRecord doc : page) {

System.out.println(doc.getContent(new
JacksonParserHandle())); }

SampleStack
• END-TO-END THREE-TIERED APPLICATION IN JAVA AND

NODE.JS
• QUESTION AND ANSWER SITE

• ENCAPSULATES BEST PRACTICES AND INTRODUCES KEY
MARKLOGIC CONCEPTS

• USE SAMPLE CODE AS A MODEL FOR BUILDING APPLICATIONS
• UI , FULL TEXT SEARCH, SEARCH RESULT FILTERING, USERS AND

ROLES, FACETS
• DOCUMENT MODEL, DOCUMENT INSERTION AND UPDATE
• TRANSACTIONS AND DATA INTEGRITY

• MODERN TECHNOLOGY STACK SHOWS WHERE MARKLOGIC
FITS IN YOUR ENVIRONMENT

Word indexing
INVERTED INDEX

• WORD -> DOCUMENT RELATION
• EVERY ENTRY IS CALLED A TERM LIST

HOW DOES IT SEARCH TWO DIFFERENT
WORDS ??

• USE THE SAME DATA STRUCTURE
AND GET THE INTERSECTING
DOCUMENTS

Phrase indexing
• USE THE SAME WORD-

INDEXING DATA STRUCTURE

• USE WORD POSITIONING
INFORMATION

• ENHANCE THE INVERTED INDEX
WITH ADDITIONAL INFORMATION
SUCH AS MULTIPLE WORDS

Which indexing is used in MarkLogic??...

• ANYONE OF THESE SETTINGS IS USED AT RUNTIME

• EACH APPROACH HAS ITS OWN ADVANTAGE AND DISADVANTAGE

Indexing structure
• PARENT-CHILD INDEX FOR MAINTAINING HIERARCHICAL STRUCTURE OF

XML AND JSON DOCUMENTS

• IT’S SIMILAR TO FAST PHRASE SEARCH BUT USES CONSECUTIVE TAGS

• SEARCHING AN ADVANCE DATABASE BOOK TITLED “INSIDE MARKLOGIC
SERVER” USES THE FOLLOWING PARENT-CHILD HIERARCHY

<BOOK><METADATA>ADVANCE DATABASE</METADATA>

<TITLE>INSIDE MARKLOGIC SERVER</TITLE>…………</BOOK>

Indexing structure (cont.)

Range index
• SUPPORT FAST RANGE QUERIES, - DOCUMENTS WITHIN PARTICULAR SET OF DATES

• DATA TYPE AWARE EQUALITY QUERIES – COMPARE DATES BASED ON SEMANTIC VALUE RATHER THAN
ITS LEXICALLY CORRECT INITIALIZED VALUE

• GET ORDER BY RESULTS – SEARCH RESULTS SORTED BY ITEM PRICE

• CROSS DOCUMENT JOINS – MERGING TWO DOCUMENTS, ONE CONTAINING THE NAME OF THE PEOPLE
AND THE OTHER CONTAINING THE DATE OF BIRTH OF THE PEOPLE

Metadata indexing and relevance
• PARENT-CHILD INDEX FOR MAINTAINING HIERARCHICAL STRUCTURE OF

XML AND JSON DOCUMENTS

• SHORT DOCUMENTS WITH EQUAL NUMBER OF HITS OR DOCUMENTS
CONTAINING RARE HIT WORDS ARE PRIORITIZED

• TERM LISTS ARE USED TO INDEX DIRECTORIES, COLLECTIONS AND
SECURITY RULES -> UNIVERSAL INDEX

RELEVANCE = LOG(TERM FREQUENCY) * (INVERSE DOCUMENT FREQUENCY)

Geospatial index
• QUERY TERMS BASED ON GEOSPATIAL INDEXES PRESENT IN THE DOCUMENT

• MATCH BY EXACT LATITUDE LONGITUDE OR AGAINST AN AD HOC POLYGON OF VERTICES, WHICH CAN BE
USED TO DRAW CITY BOUNDARIES

• SUPPORTS POLAR REGION CO-ORDINATES, AND ANTI-MERIDIAN LONGITUDE BOUNDARY NEAR THE
INTERNATIONAL DATE LINE AND CONSIDERS THE ELLIPSOID SHAPE OF EARTH

• POINT QUERIES ARE RESOLVED BY RANGE INDEXES AND POLYGON QUERIES ARE RESOLVED BY USING
HIGH SPEED COMPARATORS TO DETERMINE POINT POSITION

• SPECIAL TRIGONOMETRY OPERATIONS TO RESOLVE SEARCHES RELATED TO POLAR CO-ORDINATES

Point in time query

• IN DATABASE EACH QUERY IS REGISTERED WITH A
TIME STAMP WHEN THE QUERY STARTS

• AT PRESENT TIME, WE CAN QUERY THE DATABASE AS IT
WAS AT AN ARBITRARY TIME IN THE PAST

• USEFUL FOR LOCALLY TESTING A FEATURE (DATABASE
ROLL BACK)

xdmp:eval("doc('/json/sample_doc.js
on')",
<options xmlns="xdmp:eval">
<timestamp>96825</timestamp>
</options>)

Advance text handling

• TEXT SENSITIVITY – SUCH AS CASE-SENSITIVE, E.G.- ‘POLISH’ AND ‘POLISH’

• STEMMED INDEXED SEARCH -> SEARCH FOR ‘RUN’, MARKLOGIC RETURNS RESULTS WITH
KEYWORD ‘RUNNING’, ‘RUN’, ‘RUNS’, ‘RAN’

• FROM MARKLOGIC 8.0 STEMMED INDEXING IS BY DEFAULT ENABLED

• WILDCARDED SEARCH QUERIES, SUCH AS MARK*, MAR*LOG*

Optimistic lock
• DOES NOT HOLD LOCK ON THE DOCUMENT IN BETWEEN READ AND UPDATE OPERATION

• CONDITIONAL UPDATE USING VERSION ID

• IT’S CONTENT VERSIONING NOT DOCUMENT VERSIONING

$ curl --anyauth --user user:password -i -X HEAD -H
"Accept: application/xml"
http://localhost:8000/LATEST/documents?uri=/xml_d
ocs/sample_lock.xml

HTTP/1.1 200 Document Retrieved
Content-type: application/xml
ETag: “254768939037681240"
Connection: close

$ curl --anyauth --user user:password -i -X
PUT -d"<modified-data/>"
-H "Content-type: application/xml"
-H "If-Match: 254768939037681240"
http://localhost:8000/LATEST/documents?
uri=/docs/sample_lock.xml

REST API Insert (PUT / POST) request
sample_xmlfile.xml sample_jsonfile.json

<ROOT>HELLO WORLD </ROOT> <TITLE> HELLO JSON </TITLE>

curl --anyauth --user user:password -x post -d@'./sample_xmlfile.xml' -h "content-type:
application/xml" 'http://localhost:8000/latest/documents?uri=/xml/first_file.xml‘

curl --anyauth --user user:password -x post -d@'./sample_jsonfile.json' -h "content-type:
application/json" 'http://localhost:8000/latest/documents?uri=/json/first_file.json‘

REST API Insert/Update content and
metadata

curl -x put -t ./marklogic_architecture.jpg --anyauth --user user:password -h "content-type:
image/jpeg" 'http://localhost:8000/latest/documents?uri=/images/marklogic_architecture.jpg&c
ollection=nosql_db_architecture&prop:species=“marklogic"'

REST API Data retrieval (GET Request)

DOCUMENT

http://host:port/version/documents?uri=sample_document_uri

METADATA

http://host:port/version/documents?uri=sample_document_uri&category=category_of_metadata

CONTENT AND METADATA

http://host:port/version/documents?uri=doc_uri&category=metadat_content_desc

REST API Searching

SEARCHING

curl --anyauth --user user:password -X
GET -H "Accept: application/json"
http://localhost:8000/LATEST/search?q=
hamlet

...
"matches":
[{ "path":
"fn:doc("/shakespeare/plays/
hamlet.json")/PLAY/TITLE",
"match-text": [
"The Tragedy of ",
{ "highlight": "Hamlet" },
", Prince of Denmark"
] }
,]
...

REST API Streaming

STREAMING

NO NEED TO LOAD THE ENTIRE CONTENT INTO MEMORY

curl --anyauth --user user:password -i -o stream_sample.jpg -x get -h "accept: application/jpg" -r "0-
178564" http://localhost:8000/latest/documents?uri=/stream/stream_test.jpg

REST API Patch UPDATE

curl --anyauth --user user:password -x post -d
@./patch_example.xml -i -h "content-type:
application/xml“ -h "x-http-method-override: patch"
http://localhost:8000/latest/documents?uri=/patch
/patch_example.xml

PATCH TEMPLATE
<rapi:patch
xmlns:rapi="http://marklogic.com/rest-api">

<rapi:insert />
<rapi:replace-insert />
<rapi:replace/>
<rapi:delete />

</rapi:patch>

REST API Patch UPDATE (cont.)

<rapi:patch
xmlns:rapi="http://marklogic.com/rest-api">

<rapi:insert context="/header/p[1]">

<rapi:attribute-list attr1="val1" />

</rapi:insert>

</rapi:patch>

Before Update After Update
<header>

<p>one</p>
<p>two</p>
<p>three</p>

</header>

<header>
<p attr1=“val1">

one
</p>
<p>two</p>
<p>three</p>

</header>

REST API DELETE Request
BLANK DIRECTORY OR COLLECTION NAME DELETES THE ENTIRE DATABASE

SINGLE DOCUMENT

http://host:port/version/documents?uri=path_of_document_uri

MULTIPLE DOCUMENTS

http://host:port/version/search?collection=name_of_the_collection

When MarkLogic?
• SPARSE, DIVERSE DATA

• QUERIES DATA ACCORDING TO POWER LAW

• RENDER RESULT IN SPECIFIC FORMAT DIRECTLY

• TERABYTES OF DATA IN DIFFERENT GEOGRAPHICAL LOCATIONS.

• NEED FASTER RESULTS.

• ELASTIC SECURITY, REPLICATION

• …….

Use cases

• FASTER TIME TO PRODUCTION: 18 MONTHS,
WITHIN NEXT 6 MONTHS – 5500+ TRANSACTIONS
PER SECOND

• SCALABILITY:
160,000 CONCURRENT USERS,
99.9% AVAILABILITY,
QUERY RESPONSE TIME <0.1 SECOND

• SCHEMA-AGNOSTIC DATA MODEL: SEAMLESS
ONLINE SHOPPING FOR USERS

• ENTERPRISE GRADE DATABASE PLATFORM: HIGH
AVAILABILITY AND SECURITY

Project - HealthCare.gov

• DYNAMIC UPDATE ON EACH OF 10,000
ATHLETE PAGES

• OLYMPIC VIDEO CONTENT REQUESTS:
106 MILLIONS

• 2.8 PETABYTES OF DATA ON BUSIEST
DAY

• EASY LOADING OF DATA: VIDEOS,
ARTICLES, TWEETS, IMAGES, STATISTICS

Project – BBC (London Olympics)

• COMPLEX DATA MANAGEMENT
AND INTEGRATION

• ENHANCEMENTS EVERY 2 WEEKS
COMPARED TO ONCE OR TWICE
PER YEAR

• INCREASE IN REVENUE WITH
BETTER CUSTOMER EXPERIENCE

• COST REDUCTION WITH LESS
MANUAL DATA TRANSFER

Project – Mitchell1

And many more...

Trend charts

Trend charts (cont.)

Why not MarkLogic?

References
• M. CORPORATION, POWERED, AND M. S. 7, "REST APPLICATION DEVELOPER’S GUIDE — MARKLOGIC

8 PRODUCT DOCUMENTATION," 2016. [ONLINE]. AVAILABLE:
HTTPS://DOCS.MARKLOGIC.COM/GUIDE/REST-DEV.

• J HUNTER. INSIDE MARKLOGIC SERVER, 2011.

• DB-ENGINES RANKING. KNOWLEDGE BASE OF RELATIONAL AND NOSQL DATABASE MANAGEMENT
SYSTEMS, 2015.

• MARKLOGIC. HTTP://WWW.MARKLOGIC.COM/, 2001.

• MARKLOGIC SERVER, CONCEPTS GUIDE. HTTPS://DOCS.MARKLOGIC.COM/GUIDE/CONCEPTS.PDF

• MARKLOGIC. HTTPS://EN.WIKIPEDIA.ORG/WIKI/MARKLOGIC, 2016.

GROUP 11
AVIRUP CHAKRABORTY

RASHA ELHESHA

SAPTARSHI CHAKRABORTY

DEBARSHI MITRA

