
CIS 6930 Advanced Databases

(Group 8)

Nagapandu Potti

Aman Raj Singh

Tarun Gupta Akirala

Rakesh Dammalapati

Time Series Database

(InfluxDB)

What is time series data?

What about…

“...order by some_time_col”

Why a database for time series?

Events

Measurements

Exceptions

Page Views

User actions

Commits

Things happening in time...

Billions of data points

Scale horizontally.

Example from DevOps

2000 servers, VMs, containers, or sensor units

200 measurements per server/unit

Every 10 seconds

= 3,456,000,000 distinct points per day

Sharding Data
(Usually requires application level code)

Existing Tools

RRDTool (metrics)

Graphite (metrics)

OpenTSDB (metrics + events)

Kairos (metrics + events)

Something missing...

InfluxDB

Written in Go

Self Contained binary

No external dependencies

Distributed

Features

HTTP native API to build on

Automatically clear out old data if we want - Data Retention

Continuous queries (for rollups and aggregation)

Process or monitor data as it comes in

Built in tools for downsampling and summarizing

Sharding data

Applications - IoT

Applications - Custom DevOps Monitoring

Applications - Real time Analytics

Applications - Cloud and OpenStack

SCHEMA & DATA MODEL

Sample Data
Measurement (SQL table) Fields (not indexed) Tags (indexed)

Point (SQL record)

Fields

Field keys store meta data

Field values are your data

Not indexed

Field Sets

Fields

Tags

Tag keys and values record metadata

Indexed

Tags are optional

Tag Set

Tags

Measurement

Container for tags, fields & time column

Conceptually similar to SQL table

A “measurement” can belong to multiple “retention policies”

Retention Policy (RP)

● Life of the data [DURATION]

● Copies stored in cluster [REPLICATION]

● “shard group” duration [SHARD DURATION]

● RP is unique per DB

● `autogen` is the default RP

○ DURATION = INF

○ REPLICATION = 1

○ SHARD DURATION = 7d

Retention Policy

InfluxQL command:

CREATE RETENTION POLICY <retention_policy_name> ON <database_name>

DURATION <duration> REPLICATION <n> [SHARD DURATION <duration>]

[DEFAULT]

Example:

CREATE RETENTION POLICY "one_day_only" ON "NOAA_water_database"

DURATION 1d REPLICATION 1 SHARD DURATION 1h DEFAULT

of data nodes that

have the copy

Measurement (Coming back!)

Container for tags, fields & time column

Conceptually similar to SQL table

A “measurement” can belong to multiple “retention policies”

Duration + Replication + Shard Duration

Series

● Collection of data that share retention policy, measurement & tag set

Point

● Field set in the same series for a given timestamp

● Conceptually similar to an SQL record

(Measurement + Tag Set) remember?

Point

Tricky!

Retention Policy = A bucket of, duration (life) + [replication factor + shard duration]

Series = Retention Policy + Measurement + Tag Set

Point = Timestamp + Field Set + Series

Retention Policy

(one_day_only)

Series

Point

Retention Policy

(one_week_only)

Series

Point

DATABASE

DISTRIBUTION
“InfluxDB is distributed by design”

Why distributed database?

● Provides reliability

○ Data is located in multiple nodes in the cluster

● Offers scalability

○ For both write and query load

Sharding

● Lets us scale out

● Improves query and write performance

● Splits data on time field

Shard

● Contiguous block of time

● Represented by file on disk

● Contains a specific set of “series”

for a given time duration

Shard Group

● Just logical containers

● Organized by “retention policy”

● Contains 1 or more shards

Duration + Replication Factor + Shard Duration

Shard Group A

RP = one_month_only
(Shard Duration = 1d)

(Duration = 30d)

Shard Group B

RP = one_month_only
(Shard Duration = 1d)

(Duration = 30d)

● Each shard stores a specific set of

series

● All points in same series are stored in

same shard.

Shard 1

Shard 2

Shard 3

Replication

● Redundancy to prevent data loss

● Retention Policy determines the replication factor

Duration + Replication Factor + Shard Duration

Pros

● InfluxDB is a schema-less DB. Tags and Fields can be added on the fly!

● Optimized for high volume of reads and writes

● Writing of data in time ascending order is super fast

Cons

● No table joins due to schema-less design

● Updates and deletes are significantly restricted

● Writing of data with random times is slow

Influx QL

Comparing to SQL

Timing is everything!

Dynamic schema

Not CRUD

measurement SQL Table

point Rows

fields Unindexed columns

tags Indexed columns

Retention policies /

Continuous Queries

Stored Procedures /

Materialized views

InfluxQL

SELECT * FROM “foodships” WHERE “planet” = ‘Saturn’ AND time > ‘2015-04-16 12:00:01’

Relative or AbsoluteTags are strings

SELECT

Regex - For tags.

SELECT "level" + 2 FROM "h2o_feet" WHERE location !~ /./

Tag and Field Value

SELECT * FROM "h2o_feet" WHERE “location” = ‘gainesville’

AND "level" + 2 > 10

SELECT "level"::field, "location"::tag FROM "h2o_feet"

Comparators

= equal to

!= not equal to

> greater than

< less than

=~ matches against

!~ doesn’t match against

GROUP BY

Tags

SELECT MEAN("level") FROM "h2o_feet" GROUP BY "location"

Time Interval

SELECT MEAN("level") FROM "h2o_feet" WHERE time > now() - 2w GROUP

BY "location",time(3d, -1d)

● u Microseconds

● ms Milliseconds

● s Seconds

● m Minutes

● h Hours

● d Days

● w Weeks

now() → current time

GROUP BY

Fill

SELECT MEAN("level") FROM h2o_feet WHERE time >= '2015-08-18' AND time < '2015-09-24' GROUP

BY time(10d) fill(-100)

Options in fill clause :

None

Previous

Null

Any numerical value!

Regex

Regex

SELECT * FROM /.*/ LIMIT 1

SELECT * FROM /.*temperature.*/ LIMIT 5

SELECT * FROM "h2o_feet" WHERE "location" !~ /.*a.*/ LIMIT 4

Tags are Strings !

Cast Fields

SELECT "level"::float FROM "h2o_feet" LIMIT 4

Database

Series

Retention

Policy

Retention

Policy

Series

Series

Series

DB - RP - Series

Downsampling

INTO

Relocate Data to another database, retention policy, measurement.

SELECT "level" INTO "h2o_feet_copy" FROM "h2o_feet" WHERE "location" = 'coyote_creek'

Downsample

SELECT MEAN("level") INTO "average" FROM "h2o_feet" WHERE "location" = 'santa_monica' AND

time >= now() - 2w GROUP BY time(12m)

LIMIT and SLIMIT

Return 3 from each series.

SELECT "level" FROM "h2o_feet" GROUP BY * LIMIT 3

Return 3 oldest from one of the series

SELECT "level" FROM "h2o_feet" GROUP BY * LIMIT 3 SLIMIT 1

Continuous Queries

Humongous Data!

CREATE CONTINUOUS QUERY "mean" on "h2o_db" BEGIN

SELECT min("level") INTO "min_level" FROM "h2o_feet" GROUP BY time(1d)END

CREATE CONTINUOUS QUERY "mean_sample" ON "h2o_db"

RESAMPLE EVERY 15m FOR 60m BEGIN

SELECT min("level") AS "miniscule", max("h2o_feet") AS "monstrous" INTO

"h2o_feet_min" FROM "h2o_feet" GROUP BY time(30m)

END

Continuous Query

CREATE CONTINUOUS QUERY [name_of_continuous_query] ON [name_of_db] [RESAMPLE

[EVERY interval] [FOR interval]] BEGIN

SELECT [inner_part_of_select] INTO [new_measurement] FROM

[measurement]

GROUP BY time([frequency]), [tags]

END

EVERY Clause specified how frequently the CQ will run.

FOR Clause specifies how far back the CQ resample.

Design Policies

Do’s

Commonly queried → Tags.

Group By → Tags

InfluxQL function → Fields

Non string data → Field

Don’ts

Series cardinality

Kinds of info in a single tag

Database Management

Create db

curl -i -XPOST http://localhost:8086/query --data-urlencode "q=CREATE DATABASE pirates"

CREATE DATABASE pirates

Insert Data

INSERT INTO treasures,captain_id=pirate_king value=2

curl -i -XPOST 'http://localhost:8086/write?db=pirates' --data-binary 'treasures

,captain_id=pirate_king value=2 '

Database Management

Writing from a file

curl -i -XPOST 'http://localhost:8086/write?db=pirates' --data-binary @treasures.txt

Querying Data using http

curl -GET 'http://localhost:8086/query?pretty=true' --data-urlencode "db=pirates" --data-

urlencode "q=SELECT \"value\" FROM \"treasures\" WHERE \"captain_id\"='pirate_king'"

epoch=[h,m,s,ms,u,ns]

Chunk size

Max row limit

TSM - InfluxDB Storage Engine

● TSM - Time Structured Merge

● Very Similar to LSM - Log Structured Merge

○ Cassandra, LevelDB

Requirements

High Write throughput

Data Compression

Simultaneous reads and writes without blocking

Columnar format

No limit on number of fields.

TSM Components & Data Flow

Time Series Data

WAL

In memory

cache

Index files

WAL - Write ahead log

Append only file

Success message sent to the user

First entry point from which data corruption handled

Fsync data with In memory cache

WAL

In memory

cache

Index files

In memory cache

2 Internal Cache components

Regular write cache

Flush Cache

Memory Threshold

Data is split and stored.

Map[String] Values

WAL

In memory

cache

Index files

In memory cache

Index/Data files - on Disk

Contiguous Data blocks.

Can overlap on time - but a series within cannot.

DF - 1

Min: 10000

Max: 25000

DF - 2

Min: 15000

Max: 30000

DF - 3

Min: 35000

Max: 60000

Series A

Min: 10000

Max: 14000

Series A

Min: 15000

Max: 30000

Series A

Min: 35000

Max: 60000

WAL

In memory

cache

Index files

Properties:

Read only

Periodic Compaction

Compressed data

DF - 1

Min: 10000

Max: 25000

DF - 2

Min: 15000

Max: 30000

DF - 3

Min: 35000

Max: 60000

Layout:

Data file

4-Byte

ID
DB - n

8 Byte

Min Time
DB - 1

Index

block

8 Byte

Max time

4-Byte

Series

count

TICK Stack

References

• https://www.influxdata.com/

• https://en.wikipedia.org/wiki/Time_series_database

https://www.influxdata.com/
https://en.wikipedia.org/wiki/Time_series_database

Thank You!

