
ADVANCED DATABASES CIS 6930
Dr. Markus Schneider

Group 5
Ajantha Ramineni, Sahil Tiwari,

Rishabh Jain, Shivang Gupta

WHAT IS ELASTIC SEARCH ?

Elastic Search

Elasticsearch is a search engine based on Lucene. It provides a
distributed, multitenant-capable full-text search engine with an HTTP web
interface and schema-free JSON documents.

Key Features
• Real Time data

• Real Time advanced Analytics

• High Availability

• Multi-Tenancy

• Full Text Search

• Document-Oriented

• Conflict Management

• Per-Operation Persistence

Advanced Features
• Nested documents (Child-Parent)

• Like MySQL joins?

• Percolation Index

• Store queries in Elastic

• Send it documents

• Get returned which queries match

• Index Warming

• Register search queries that cause heavy load

• New data added to index will be warmed

• So next time query is executed: pre cached

Real-Time data

• Data flows into your system all the time. The question is

• The data accurate. Using Elastic search accurate real time data is achievable.

Real Time Analytics
• Search isn’t normal anymore. It’s about exploring the data, Understanding it. Gaining Insights.

High Availability

• Elasticsearch clusters are resilient-they will detect and remove failed nodes
and ensure that your data is safe and accessible.

Conflict Management
Optimistic Version control is used to ensure data is never lost in a transaction.

Full Text Search

Elastic search uses Lucene behind the scenes to provide the most powerful full text search
capabilities available in any open-source project.

Document Oriented
• Store complex real world entites in Elasticsearch as structured JSON

documents.

Schema Free
Elastic search takes a JSON document and it will detect the data structure,
index of the structure , index the data and make it searchable.

Terminology

MySQL Elastic Search

Database Index

Table Type

Row Document

Column Field

Schema Mapping

Index Everything is indexed

SQL Query DSL

SELECT * FROM table … GET http://…

UPDATE table SET … PUT http://…

Index, Document and Type
• Index: A collection of documents that have same characteristics
• Document: Basic unit of information.

Node, Cluster and Shard
• Any time that you start an instance of Elasticsearch, you are starting a node. A

collection of connected nodes is called a cluster.

What is Lucene

• High performance, scalable, full-text search library

• Focus: Indexing + Searching Documents

• 100% Java, no dependencies, no config files

Lucene in a search system

Raw
Content

Acquire content

Build document

Analyze document

Index document

Index

Users

Search UI

Build
query

Render
results

Run query

Modeling of Data

Inner Objects

• JSON objects inside your parent document

Example:

 `query: car.make=Saturn AND car.model=Imprezza`

 If you perform that query, you'll receive both documents as the
result which is incorrect.

 Reason: Internally the documents are represented as flattened
fields

Pros:

 Easy, fast performance

 No need of special queries

Cons:

 Only applicable when one to one relationships

Nested

• As an alternative to inner objects, Elasticsearch provides the
concept of "nested types".

• Example of a nested document:

• At the mapping level, nested types must be
explicitly declared (unlike inner objects, which
are automatically detected):

Pros: The earlier search query returns correct results.
 Reason: The root and the nested objects are saved as separate

documents on same lucene block on the same shard to
improve performance and are related internally.

Cons:
 A special nested query is required.
 Any update to root or nested object requires reindexing of the

entire document to a new lucene block, ie, unnecessary
overhead.

 Best suited for data that does not change frequently

Parent/Child
• The next method that Elasticsearch provides are Parent/Child

types

• Example of parent mapping:

• Example of child mapping:

• The children have their own mapping outside the parent, with a special
`_parent` property set.

• The parent doc is indexed as normal:

• For indexing children documents, you need to specify
which parent this child belongs to in the query parameter

Pros:

 Saves us from the overhead of reindexing when updating

Cons:

 Less performance
 More memory intensive

Denormalization

• Relations are not always required

• We should judiciously choose which data to normalize and
when we need queries to retrieve children.

• Denormalization provides us with the following powers:

 We can manage relationships ourselves

 More flexibility

 Can be more/less performant depending on the setup

ARCHITECTURE

• Highly Distributed

• Node is single instance of Elasticsearch.

• Communicate each other via network calls.

• There is a master node that organizes the cluster and
transfers the request to the other data nodes.

• A node is configured as master node by setting
node.master property to be true in elasticsearch.yml file

• Data nodes provide the necessary result transfers to the
client.

Index Request

Search Request

QUERY LANGUAGE
AND

FEW OPERATIONS

QUERY LANGUAGE-INTRO.
• Elasticsearch provides a JSON-style domain specific language known as

Query DSL.
• Basic queries can be done using only query string parameters in URL.
• Let us take the following example:

GET /_search
{

“query”: { “match_all”: { } }
}

• A query DSL consists of two types of clauses:
Leaf query clauses
Compound query clauses

• Leaf Query Clauses:

– These are used to compare field/fields to a query string.

• Compound Clauses:

– Merging other query clauses.

– Combine a leaf as well as other compound clauses.

– These queries are nested.

ex: {

“bool”:{

“must”: {“match”: {“tweet”:”elasticsearch”}},

“must_not”: {“match”: {“name”: “Mary”}},

“filter” : { “range”: {“age” : { “gt”:30}}}

}

}

• Requests are in JSON format.

• No JSON schema required.

• The requests are in the form of REST APIs.

• General request is of the form:

curl –X(GET/POST/PUT/DELETE) “http://{server
name}/<index>/....” –d’

{

//fields and data here

}

INDEX CREATION

curl -XPUT "http://localhost:9200/movies/movie/1" -d‘ {

"title": "The Godfather",

"director": "Francis Ford Coppola",

"year": 1972

}'

http://localhost:9200/<index>/<type>/[<id>]

INDEX CREATION RESPONSE

MECHANISM OF INDEX CREATION

• All nodes in Elasticsearch have metadata about which
shard lives in which node.

• Elasticsearch uses the murmur-hash function to
determine in which shard document should be indexed
in.

shard= hash(document_id)%(number of primary shards)

• The memory buffer is refreshed at regular
intervals(default: 1second) and contents are written to
a new segment.

UPDATE

curl -XPUT "http://localhost:9200/movies/movie/1" -d' {
"title": "The Godfather",
"director": "Francis Ford Coppola",
"year": 1972,
"genres": ["Crime", "Drama"]

}'

Updated Version

New field

curl -XDELETE "http://localhost:9200/movies/movie/1" -d''

DELETE

DELETE AND UPDATE MECHANISMS.

• IMPORTANT: Documents in Elasticsearch are immutable
• Existence of .del file in disk segment.
• When a delete request is sent, document is not really deleted,

but marked as deleted in the .del file. While merging
segments, the documents marked deleted won’t appear in
new one.

• A version number is given to every newly created document.
• Every change to the document results in a new version

number.
• When update is performed, the old version is marked as

deleted in the .del file and new version is indexed.

Updating existing Mapping
curl -XPUT "http://localhost:9200/movies/movie/_mapping" -d'

{

"movie": {

"properties": {

"director": {

"type": "multi_field",

"fields": {

"director": {"type": "string"},

"original": {"type" : "string", "index" : "not_analyzed"}

}

}

}

}

}'

GET

curl -XGET "http://localhost:9200/movies/movie/1" -d''

 Search across all indexes and all types

 http://localhost:9200/_search

 Search across all types in the movies index.

 http://localhost:9200/movies/_search

 Search explicitly for documents of type movie within the

movies index.

 http://localhost:9200/movies/movie/_search

curl -XPOST "http://localhost:9200/_search" -d'

{

"query": {

"query_string": {

"query": "kill"

}

}

}'

SEARCH

SEARCH RESPONSE

THE READ OR SEARCH OPERATION
• Read operations consist of two phases:

– Query Phase
– Fetch Phase

• Query Phase:

– The coordinating node routes the search request to all shards of
index.

– Each shard performs search independently and create a priority
queue of results sorted by relevance score.

– All shards return document ids and relevant scores of the matched
documents to the coordinating node.

– The coordinating node then creates a priority queue and sorts the
results globally.

Fetch Phase
• The coordinating node requests original documents from all shards.

• All shards enrich documents and return them to coordinating node.

• Usually searching is carried out in the lucene segments by inverted index.

• The inverted index is composed of two parts:

• Sorted dictionary

• Posting lists

Inverted Index

aardvark

hood

red

little

riding

robin

women

zoo

Little Red Riding Hood

Robin Hood

Little Women

0 1

0 2

0

0

2

1

0

1

2

SEARCH RELEVANCE SCORE
• Relevance score is a score that Elasticsearch assigns

to each document returned in their search result.

• Default algorithm used for scoring is tf/idf.

• Where tf or term frequency is the measure of how
many times a term appears in a document.

• And idf or inverse document frequency measures
how often a term appears in entire index as a
percentage of total number of documents in the
index.

AGGREGATIONS

• Used for building analytic information over a set of
documents.

• Three families of aggregations:

– Bucketing

• Bucketing Aggregations can have sub-aggregations. No definite
depth.

– Metric

– Pipeline

"aggregations" : {
"<aggregation_name>" : {

"<aggregation_type>" : {
<aggregation_body>

}
[,"meta" : { [<meta_data_body>] }]?
[,"aggregations" : { [<sub_aggregation>]+ }]?

}
[,"<aggregation_name_2>" : { ... }]*

}
Aggregations object holds the aggregations to compute.
Each aggregation has a unique name.
If sub-aggregations are defined under parent aggregation, then
these will be computed as well.

AUTO COMPLETION

SELECT name

FROM product

WHERE name

LIKE ‘d%’

1k records 500k

records

20m

records

• There is a completion suggester that allows basic
auto-complete functionality.

• Lucene’s AnalyzingSuggester is used for
suggestion purposes, uses FST or finite state
transducers.

• Pros of fast loads and executions.

Auto Completion - Mapping:

curl -X PUT localhost:9200/music
curl -X PUT localhost:9200/music/song/_mapping -d '{
"song" : {

"properties" : {
"name" : { "type" : "string" },
"suggest" : { "type" : "completion",

"analyzer" : "simple",
"search_analyzer" : "simple",
"payloads" : true

}
}

}
}

Auto Completion - Querying

• Plugins
Many third party plugins available

• Clients for many languages
Ruby, python, php, perl, javascript, .NET, Scala, clojure, go

• Kibana

• Logstash

• Hadoop integration

Ecosystem

I
60

Search

62

Enrichment

63

Sorting

64

Pagination

65

Aggregation

66

Suggestions

67

• 15 million of its articles published over the last 160 years fed
into Elasticsearch.

• Typical use cases:
– Find something you read

– Find book/movie reviews

– Serious research

• Why not just use google?
– Keep the customer on site.

– There is no google for native apps.

– They know their content better.

Elasticsearch as a primary data store?

• No transactions

• Relations and constraints

• Robustness

• Security

Conclusion

• Commonly used in addition to another database.

• But if the previously mentioned issues are not a concern, it can
be used as a primary database also.

Like with everything else, there's no silver bullet, no
one database to rule them all.

REFERENCES
1. https://www.elastic.co/products/elasticsearch

2. https://qbox.io/blog/what-is-elasticsearch

3. https://www.elastic.co/blog/index-vs-type

4. https://www.elastic.co/guide/en/elasticsearch/reference/current/map
ping.html

5. http://exploringelasticsearch.com/overview.html

https://www.elastic.co/products/elasticsearch
https://qbox.io/blog/what-is-elasticsearch
https://www.elastic.co/blog/index-vs-type
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
http://exploringelasticsearch.com/overview.html

Thank You

