ADVANCED DATABASES CIS 6930
Dr. Markus Schneider

p T

elasticsearch
Group 5

Ajantha Ramineni, Sahil Tiwari,
Rishabh Jain, Shivang Gupta

WHAT IS ELASTIC SEARCH ?

Google What is ElasticSearch \!,
what is elasticsearch Remove

what is elasticsearch written in
what is elasticsearch in java
what is elasticsearch qood for

Elasticsearch is a search engine based on Lucene. It provides a
distributed, multitenant-capable full-text search engine with an HTTP web
interface and schema-free JSON documents.

Real Time data

Real Time advanced Analytics
High Availability
Multi-Tenancy

Full Text Search
Document-Oriented

Conflict Management
Per-Operation Persistence

* Nested documents (Child-Parent)
* Like MySQL joins?
* Percolation Index
* Store queries in Elastic
* Send it documents
* Get returned which queries match
* Index Warming
* Register search queries that cause heavy load
* New data added to index will be warmed
* So next time query is executed: pre cached

Real-Time data

e Data flows into your system all the time. The question is

* The data accurate. Using Elastic search accurate real time data is achievable.

S0 . '
Bl lang:en / Ss

20
10 I I
ol

Real Time Analytics

e Searchisn’t normal anymore. It’s about exploring the data, Understanding it. Gaining Insights.

* Elasticsearch clusters are resilient-they will detect and remove failed nodes
and ensure that your data is safe and accessible.

Optimistic Version control is used to ensure data is never lost in a transaction.

O

Elastic search uses Lucene behind the scenes to provide the most powerful full text search
capabilities available in any open-source project.

e Store complex real world entites in Elasticsearch as structured JSON
documents.

Document oriented

$ curl -XPUT http://localhost:9200/twitter/user/kimchy -d
4 |

“Shay Banon™

Elastic search takes a JSON document and it will detect the data structure,
index of the structure , index the data and make it searchable.

ri -XPUT http:
ok

Terminology

Database Index

Table Type

Row Document

Column Field

Schema Mapping

Index Everything is indexed
SQL Query DSL

SELECT * FROM table ... GET http://...

UPDATE table SET ... PUT http://...

Index, Document and Type

 |ndex: A collection of documents that have same characteristics
e Document: Basic unit of information.

* Any time that you start an instance of Elasticsearch, you are starting a node. A
collection of connected nodes is called a cluster.

. I

| |

I I

| I

g '

. [Node 1) (Node 2 D

I i I

: : : :

! Shard 1 | Replica 2 Shard 2 | Replica 1 :
I |

1 I I !

I 1 I :

E Shard 3 | | | Replica 4 Shard 4 | | | Replica 3 :
I I

: - ! |

| I

| I

I I

| I

 High performance, scalable, full-text search library

 Focus: Indexing + Searching Documents

« 100% Java, no dependencies, no config files

Lucene in a search system

=

[Search Ul]

Build document
A

—_— N

[
[

Acquire content

Raw
Conte

Modeling of Data

* JSON objects inside your parent document

{
"name”:"Zach",
"car":{
"make":"Saturn”,
"model™:"SL"
}

Example:

{

“"name" : "Zach",
"car"™ : [
{
"make" : "Saturn",
Ilmodelll : IISLII

3
{

"make" : "Subaru",
"model”™ : "Imprezza"

}

{
“"name" : "Bob",
"car"™ : [

{

"make" : "Saturn",
“"model”™ : "Imprezza"

» ‘query: car.make=Saturn AND car.model=Imprezza

» If you perform that query, you'll receive both documents as the
result which is incorrect.

» Reason: Internally the documents are represented as flattened
fields

{
"name"” : "Zach",
"car.make"” : ["Saturn”, "Subaru"]
“car.model” : ["SL", "Imprezza"]

» Pros:
" Easy, fast performance
" No need of special queries

» Cons:
= Only applicable when one to one relationships

* As an alternative to inner objects, Elasticsearch provides the
concept of "nested types".

* Example of a nested document:

{
"name" : "Zach",
"car" [
{
"make"™ : "Saturn",
"model” : "SL"
s
{
"make" : "Subaru",
"model"” : "Imprezza"
¥

]
}

* At the mapping level, nested types must be
explicitly declared (unlike inner objects, which
are automatically detected):

{
"person”:{
"properties”:{
"name" : {
"type" : "string"
} s
"car":{
"type" : "nested"
}
}
}

» Pros: The earlier search query returns correct results.

= Reason: The root and the nested objects are saved as separate
documents on same lucene block on the same shard to
improve performance and are related internally.

» Cons:
= A special nested query is required.

" Any update to root or nested object requires reindexing of the
entire document to a new lucene block, ie, unnecessary
overhead.

= Best suited for data that does not change frequently

* The next method that Elasticsearch provides are Parent/Child
types
 Example of parent mapping:

{
"mappings":{
"person":{
"name": {
"type":"string"
}
}
}
}

 Example of child mapping:

{
"homes" : {
" parent":{
"type" : "person"
}s
"state" : {
"type" : "string"
}
}
}

* The children have their own mapping outside the parent, with a special
"_parent’ property set.

* The parent doc is indexed as normal:

$ curl -XPUT localhost:92@e/test/person/zach/ -d°’
{

"name" : "Zach"

¥

* For indexing children documents, you need to specify
which parent this child belongs to in the query parameter

$ curl -XPOST localhost:9200/homes?parent=zach -d'
{

"state" : "Ohio"

}
$ curl -XPOST localhost:9200/test/homes?parent=zach -d'

{

"state" : "South Carolina"

}

Pros:
= Saves us from the overhead of reindexing when updating

Cons:
" Less performance
= More memory intensive

* Relations are not always required

 We should judiciously choose which data to normalize and
when we need queries to retrieve children.

 Denormalization provides us with the following powers:
" We can manage relationships ourselves

= More flexibility

= Can be more/less performant depending on the setup

ARCHITECTURE

Highly Distributed
Node is single instance of Elasticsearch.
Communicate each other via network calls.

There is a master node that organizes the cluster and
transfers the request to the other data nodes.

A node is configured as master node by setting
node.master property to be true in elasticsearch.yml file

Data nodes provide the necessary result transfers to the
client.

Elasticsearch
Data Nodes

Search Load Balancers

; N

Web UI

(Search Query) .
N y - - -

r \ SEEES

Collector . .
)) S EEES
8 Y.

Elasticsearch
Master Nodes . :Search Load Balancer Node

. : Master Node
. : Data Node

| ElasticSearch Cluster -\

Node 1 Node 2

4 N 7 N 4 N /7 N
Index A Index B Index A Index B

Shard 10 (Replica) Shard 1 (Replica)
Indus i
T (i
Shard 2 {Replica) Shard 11 {Replica)
ez Index
i [

(. /N S N /N J

Index Request

Index request Client

~ 08 B8 6C
-(88 g O

\“" “—"

Request to node holding
shard's master replica

Search Request

Search request

(" Node1l N / Node2 N [/ Node3 e

i g
- (@8 B8 &G

\ ~——’) S P

é p
- | @ OO O

- 4

| R | AN bl N b

A f’ ¥
A\ ~; / /
\ ~ ~— — - /
N\ = — = Broadcast requests to J
K ” nodes holding shard 7
. -~
replicas —~

Chent

il ——

QUERY LANGUAGE
AND
FEW OPERATIONS

Elasticsearch provides a JSON-style domain specific language known as
Query DSL.

Basic queries can be done using only query string parameters in URL.
Let us take the following example:
GET /_search
{
“query”: { “match_all”: { } }
}
A query DSL consists of two types of clauses:
Leaf query clauses
Compound query clauses

— These are used to compare field/fields to a query string.

— Merging other query clauses.
— Combine a leaf as well as other compound clauses.
— These queries are nested.

ex: {
“bool”{
“must”: {“match”: {“tweet”:"”elasticsearch”}},
“must_not”: {“match”: {“name”: “Mary”}},
“filter” : { “range”: {“age” : { “gt”:30}}}

 Requests are in JSON format.

* No JSON schema required.

* The requests are in the form of REST APIs.
* General request is of the form:

curl =X(GET/POST/PUT/DELETE) “http://{server
name}/<index>/..."” —d’

{
//fields and data here

http://localhost:9200/<index>/<type>/[<id>]

curl -XPUT "http://localhost:9200/movies/movie/1" -d* {
"title": "The Godfather",
"director": "Francis Ford Coppola",
"year": 1972

"took™: 39
"timed _out

" _shards™:

! "total“™: S,
"successful":
! "failed“: @
}I

"hits": {

=1

"total™: 1,
“max_score™:
"hits": [

- {

H® WO NhWN R

£

“_index": “mowvies",

“_type”: “"mowvie",

"_id": "1,

"_score™: 1,

" _source™: {
"title": “"The Godfather",
“*director”: “"Francis Ford Coppola®,

L=

“wear”: 1972

 All nodes in Elasticsearch have metadata about which
shard lives in which node.

e Elasticsearch uses the murmur-hash function to
determine in which shard document should be indexed
in.

shard= hash(document_id)%(number of primary shards)

* The memory buffer is refreshed at regular
intervals(default: 1second) and contents are written to
a new segment.

curl -XPUT "http://localhost:9200/movies/movie/1" -d' {
"title": "The Godfather",

"director": "Francis Ford Coppola",

"year": 1972,
"genres": ["Crime", "Drama"]

}I

"ok"™: true,
"_index": "movies", New field
I._tFpE'I. : mu.l .‘LE'IH »

Il_.‘Ldll : 'Ill'll »

" _wversion": 2

3 Updated Version

curl -XDELETE "http://localhost:9200/movies/movie/1" -d"

/movies/movie/ DELETE

==

"ok": true,
"found": true,
"_index": “"movies",
"_type": "movie",
"_id":; "1",
"_wversion": 3

1
2
3
4
]
6
7
8

e

IMPORTANT: Documents in Elasticsearch are immutable
Existence of .del file in disk segment.

When a delete request is sent, document is not really deleted,
but marked as deleted in the .del file. While merging
segments, the documents marked deleted won’t appear in
new one.

A version number is given to every newly created document.

Every change to the document results in a new version
number.

When update is performed, the old version is marked as
deleted in the .del file and new version is indexed.

curl -XPUT "http://localhost:9200/movies/movie/ _mapping" -d'
{
"movie": {
"properties”: {
"director": {
"type": "multi_field",
"fields": {
"director": {"type": "string"},
"original”: {"type" : "string", "index" : "not_analyzed"}

y_mapping

“ok"™: true,
"acknowledged”: true

curl -XGET

/movies/movie/1 \

(] Seras - = JSON sware i

t "The Gosfother”,

w": “"Froncls Ford Coppola™,

HBD U N ENWN

"o

I~

o
w s

“The Godfather™,
“"Francis Ford

I
o

Search across all indexes and all types
Search across all types in the movies index.

= Search explicitly for documents of type movie within the
movies index.

curl -XPOST "http://localhost:9200/ search" -d'

{
"query": {
"query_string": {

"query": "kill"

NNNNNNNNREHREREERE R R
VOO RORNRE b NG0bbRESomvonswne

“"took™: 4,
“timed_owut

—shards
“total

"successful™: 5,

“failed
} £l
“"hits": {
{ "“potal™
“max__s.o
“hits":z

" _index"

Y _irdex™ s
Y _typea':

are

C

a

Information about the
execution of the request.

Object with information about the search
results, including the actual results.

Total number of documents that
match the query.

B - Array with search hits.
"mowvies'™,

Meta data about the hit.

"Kill Bill: Wol. 1™, — The document that produced the hit.

ear™

enres"”: [
"Action™,
“"Crime™,

"Quentin Tarantino™,

“"Thriller"

"o

_score
" _source™: {
: title": "To Kill a Mockingbird",

director"™:
ear"

genres

" Drama™ ,

"mowvies'™,
"monie',

"Robert Mulligan,

* Read operations consist of two phases:
— Query Phase
— Fetch Phase

* Query Phase:
— The coordinating node routes the search request to all shards of
index.
— Each shard performs search independently and create a priority
queue of results sorted by relevance score.

— All shards return document ids and relevant scores of the matched
documents to the coordinating node.

— The coordinating node then creates a priority queue and sorts the
results globally.

The coordinating node requests original documents from all shards.
All shards enrich documents and return them to coordinating node.

Usually searching is carried out in the lucene segments by inverted index.
The inverted index is composed of two parts:

Sorted dictionary

Posting lists

Inverted Index

0
Little Red Riding Hood J

1
Robin Hood J

2
Little Women J

Relevance score is a score that Elasticsearch assigns
to each document returned in their search result.

Default algorithm used for scoring is tf/idf.

Where tf or term frequency is the measure of how
many times a term appears in a document.

And idf or inverse document frequency measures
how often a term appears in entire index as a
percentage of total number of documents in the
index.

e Used for building analytic information over a set of
documents.

* Three families of aggregations:
— Bucketing

* Bucketing Aggregations can have sub-aggregations. No definite
depth.

— Metric
— Pipeline

"aggregations" : {
"<aggregation_name>" : {
"<aggregation_type>" : {
<aggregation_body>
}
[,"meta" : { [<meta_data_body>] }]?
[,"aggregations" : { [<sub_aggregation>]+}]?
}
[,'<aggregation_name_2>":{...}]*
}

Aggregations object holds the aggregations to compute.
Each aggregation has a unigue name.

If sub-aggregations are defined under parent aggregation, then
these will be computed as well.

SELECT name
FROM product
WHERE name
LIKE ‘d%’
1k records 500k 20m
records records

* There is a completion suggester that allows basic
auto-complete functionality.

 Lucene’s AnalvzingSuggester is used for

0 ! ¢ |

h . I I (4]
A0S0 00

R,

t
C u [=

curl -X PUT localhost:9200/music
curl -X PUT localhost:9200/music/song/_mapping -d '{
"song" : {
"properties" : {
"name" : { "type" : "string" },
"suggest" : { "type" : "completion”,
"analyzer" : "simple",
"search_analyzer" : "simple",
"payloads" : true

Auto Completion - Querying

curl -X POST 'localhost:920@/music/ suggest?pretty’ -d '{
"song-suggest" : {
"text" : "n",
"completion” : {

"field" : "suggest”

" shards" : {
"total" : 5,
"successful™ : 5,
"failed" : @

b

"song-suggest" : [{
"text" : "n",
"offset" : @,
"length" : 1,
"options" : [{

"text" : "Nirvana - Nevermind",

"score" : 34.0, "payload" : {"artistId":2321}
H1

Ecosystem

Plugins
Many third party plugins available

Clients for many languages
Ruby, python, php, perl, javascript, .NET, Scala, clojure, go

Kibana
Logstash

Hadoop integration

E wg@mss
ol e

NETFLIX el mozilla

N
1= stackoverflow

guardian flickr 'i
Ftsy verizon
st]oan],

7V Adobe @peNewdork@imes €boany L L

GitHub

Search

Repositories
<> Code
@ Issues

%Usors

Languages

Java

Ruby
JavaScript
Python
PHP

Shell
Puppet
Perl

Scala

C#

N7

17,881

2,008

167
139
117

69

> 6 8 @

13

Search

Explore Features Enterprise Blog

=g -

We've found 317 repository results

Q

elasticsearch/elasticsearch

Open Source, Distributed, RESTful Search Engine
Last updated 2 hours ago

richardwilly98/elasticsearch-river-mongodb
MongoDB8 River Plugin for ElasticSearch
Last updated 2 minutes ago

jprante/elasticsearch-river-jdbc
JDBC river for Elasticsearch
Last updated 12 days ago

elasticsearch/elasticsearch-hadoop
Read and write data to/from ElasticSearch within Hadoop
Last updated 3 days ago

62

Sort. Best match ~

Java Wasss 1007

Java w308 Vas

Java Wi170 70

Java W79 VPa2s

GitHub

Search

Repositories
<> Code
@ Issues

%Usors

Languages

Java

Ruby
JavaScript
Python
PHP

Shell
Puppet
Perl

Scala

C#

N7

17,881

2,008

167
139
117

69

> 6 8 @

13

Enrichment

Explore Features Enterprise Blog m Sign in

We've found 317 reposito results Sort. Best match ~
elasticsearch/elasticsearch Java Wrasss U007
Open Source, Distributed, RESTful Search Engine
Last updated 2 hours ago
richardwilly98/elasticsearch-river-mongodb Java Wra30e Lias
MongoDB8 River Plugin for ElasticSearch
Last updated 2 minutes ago
jprante/elasticsearch-river-jdbc Java Wi170 P70
JDBC river for Elasticsearch
Last updated 12 days ago
elasticsearch/elasticsearch-hadoop Java W70 D2s

Read and write data to/from ElasticSearch within Hadoop
Last updated 3 days ago

63

GitHub

Search

Repositories
<> Code
@ Issues

%Usors

Languages

Java

Ruby
JavaScript
Python
PHP

Shell
Puppet
Perl

Scala

C#

N7

17,881

2,008

167
139
117

69

> 6 8 @

13

Sorting

Explore Features E

We've found 317 repository results

Q

elasticsearch/elasticsearch

Open Source, Distributed, RESTful Search Engine
Last updated 2 hours ago

richardwilly98/elasticsearch-river-mongodb
MongoDB8 River Plugin for ElasticSearch
Last updated 2 minutes ago

jprante/elasticsearch-river-jdbc
JDBC river for Elasticsearch
Last updated 12 days ago

elasticsearch/elasticsearch-hadoop
Read and write data to/from ElasticSearch within Hadoop
Last updated 3 days ago

64

Java Wasss 1007

Java w308 Vas

Java Wi170 70

Java W79 VPa2s

Pagination

GitHub Explore Features Enterprise Blog m Sign in

Search etasticsearch] Search
We've found 31 sitory results Sort. Best match ~
L] Repositories 317
<> Code 17,881
D s . _| elasti rch/elasticsearch sova Hrasss 151007
Open e, Distributed, RESTful Search Engine
% Users 2 2 hours ago
Langt
Ruby
dons spinscale/g¢lasticsearch-suggest-plugin Java 103 D23
o Plugin for elasti rch which uses the lucene FSTSuggester
e Last updated 4
Shell
Puppe '
Perl
Sk < n 2 3 4 5 (5] 7 8 9 o2 31 32 > How are these search results? Tell us!

C#

GitHub

Search

Q Repositories

<> Code
@ Issues

%Usors

“— >

Ruby
JavaScript
Python
PHP

Shell
Puppet
Perl

Scala

C#

Aggregation

N7
17,881

2,008

167
139
117

69

49
40
38
16

13

Explore Features Enterprise Blog

| search

. elasticsearch/elasticsearch

Open Source, Distributed, RESTful Search Engine
Last updated 2 hours ago

richardwilly98/elasticsearch-river-mongodb

MongoDB8 River Plugin for ElasticSearch
Last updated 2 minutes ago

jprante/elasticsearch-river-jdbc
JDBC river for Elasticsearch
Last updated 12 days ago

elasticsearch/elasticsearch-hadoop
Read and write data to/from ElasticSearch within Hadoop
Last updated 3 days ago

66

Sort. Best match ~

Java Wasss 1007

Java w308 Vas

Java Wi170 70

Java W79 VPa2s

GitHub

elasticse

Browse Issues

Everyone's Issu

Labels

] Lucene 4.5 Upgr

Suggestions

This repository - debian

] breaking

f bug

] enhancement
i} reature

non-issue

(1) elasticsearch/elasticsearch#1726

(1) elasticsearch/elasticsearch#3571

il elasticsearch/elasticsearch#16881 Debian pkg

debian package violates naming convention

debian package init-script: start-stop-dasmon ne

Sign up Sign in

W Star 4,683 I¥ Fork

(D) elasticsearch/elasticsearch#3286 There is no official debian/ubuntu repository New Issue
(7% elasticsearchfelasticsearch#3500 Elasticsearch should include debian's standard j P n s g 19 -
i elasticsearchfelasticsearch#1526 Moving debian package to mawven
FIMS #3702
Search elasticsearchfelasticsearch for 'debian'
Search GitHub for 'debian' Poduclhle #3701
b | Opened by =Tmomy 14 hours ago
11
(O NoShardAvailableActionException in ES 0.90.3 on startup #3700
10 Opened by richardwily9g a day ago
9
) Feature Request: Don't reindex the document when updating non-indexed fields #3606
1 O pened by ddorian 2 days ago ® 4 comments H

67

1,007

* 15 million of its articles published over the last 160 years fed
into Elasticsearch.

* Typical use cases:
— Find something you read
— Find book/movie reviews
— Serious research
* Why not just use google?
— Keep the customer on site.
— There is no google for native apps.
— They know their content better.

No transactions
Relations and constraints
Robustness

Security

e Commonly used in addition to another database.

e Butif the previously mentioned issues are not a concern, it can
be used as a primary database also.

Like with everything else, there's no silver bullet, no
one database to rule them all.

https://www.elastic.co/products/elasticsearch

https://qgbox.io/blog/what-is-elasticsearch

https://www.elastic.co/blog/index-vs-type

https://www.elastic.co/guide/en/elasticsearch/reference/current/map
ping.html

http://exploringelasticsearch.com/overview.html|

https://www.elastic.co/products/elasticsearch
https://qbox.io/blog/what-is-elasticsearch
https://www.elastic.co/blog/index-vs-type
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
http://exploringelasticsearch.com/overview.html

Thank You

