Advanced Databases

CIS 4930 / CIS 6930

Markus Schneider

Department of Computer and Information Science and Engineering CSE Building, Room E450
University of Florida

Preliminaries

□ CIS4301 course web page

 http://www.cise.ufl.edu/~mschneid/Teaching/CIS4930+CIS6930_Fall2016/CIS4930+CIS6930_Fall2016.html

 □ Syllabus available on CIS 4930 / CIS 6930 course web page
 □ My messages to the class are communicated by a class mailing list.
 □ Your questions ...

Course Contents and Objectives

- Exploration of a selected collection of advanced database systems such as Cassandra, Couchbase, CouchDB, MongoDB, Neo4j, ObjectStore, PostGIS, SciDB, SparkleDB, Tamino
- All systems are non-relational except one system
- Knowledge acquisition about their
 - underlying data models
 - query languages
 - concepts and principles
 - techniques
 - functionalities
 - architectures
 - special features
- ☐ Comparison to established relational database systems

Teaching Objectives (I)

Teamwork

- Students learn to work in and be responsible for a group since group work will be the basis of all deliverables.
- This will increase their social competence as well as their communication and discussion skills.
- ☐ Installation and demonstration of an advanced database system
 - An advanced database system from a pre-defined list is assigned to each group. Group priorities will be taken into account.
 - Each group has to install the assigned advanced database system on a laptop or a PC. Note that laptops or PCs cannot be provided by the university or the CISE department for this task so that laptops or PCs have to be taken from group members.
 - Students learn how to install an advanced database system on a computer, cope with installation problems, and also provide installation requirements such as particular operating systems.
 - Each group will provide an in-class demonstration of their system.

Teaching Objectives (II)

- "Students teach students"
 - Only at the beginning the instructor will hold lectures. Afterwards, the student groups will take over.
 - Each group will learn how to present their assigned system to all the other students in class by means of a PowerPoint presentation. In this manner, students will teach students as well as practice and improve their presentation and communication skills.
- Performing a literature study
 - > A topic or system requires to become aware of the state of the art.
 - Students learn how to perform a literature study and process the found references and papers.
 - ➤ The literature of interest can relate directly to the topic or system itself but also be centered around the topic or system. For example, if a system rests on a particular data model, scientific literature about this data model would be very helpful.
 - References will be kept in BibTeX format.

Teaching Objectives (III)

- Design and implementation of an application that showcases the special features of the assigned system
 - Each group will develop and implement a meaningful web-based application that demonstrates the particular features of the assigned advanced database system.
 - Students learn to perform software development and implementation on top of a new database software.
 - Each group will decide about the deployed programming languages and software packages.
- Writing a LaTeX document about the assigned system
 - At the end of the semester, each group will provide a well written and well formatted document that describes the main features of the assigned advanced database system as well as the designed and implemented application.
 - LaTeX is the only word processing tool that is allowed for writing this document. A LaTeX template will be provided.

Group Deliverables and Grading (I)

- No exams, no homework assignments
- Six deliverables
 - Literature study about the group-assigned ADBS described in a text document written in LaTeX and with references in BibTeX format and papers in PDF format (5 %)
 - 2. ADBS installation and demonstration (10 %)
 - 3. PowerPoint presentation about the group-assigned ADBS in front of the class (25 %)
 - 4. Application design showcasing the outstanding features of the groupassigned ADBS and described in a text document written in LaTeX with references in BibTeX format (15 %)
 - 5. Application implementation and demonstration (25 %)
 - 6. Detailed overview text document about the group-assigned ADBS written in LaTeX with references in BibTeX format (20 %)

Group Deliverables and Grading (II)

☐ Student's performance p

$$p = 5 \cdot \frac{ls}{100} + 10 \cdot \frac{id}{100} + 25 \cdot \frac{pp}{100} + 15 \cdot \frac{ad}{100} + 25 \cdot \frac{ai}{100} + 20 \cdot \frac{td}{100}$$

■ Letter grades

Student's Performance <i>p</i>	Letter Grade
>94-100	Α
>88-94	A-
>82-88	B+
>76-82	В
>70-76	B-
>64-70	C+
>58-64	С
>52-58	C-
>46-52	D+
>40-46	D
>34-40	D-
0-34	Е