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ABSTRACT
For a long time topological relationships between spatial objects
have been a main focus of research on spatial data handling and
reasoning. They have especially been integrated into query lan-
guages of spatial database systems and geographical information
systems. One of their fundamental features is that they operate
on spatial objects with precisely defined, sharp boundaries. But
in many geometric and geographic applications there is a need to
model spatial phenomena and their topological relationships rather
through vague or fuzzy concepts due to indeterminate boundaries.
This paper presents a model of fuzzy regions and focuses on the
definition of topological predicates between them. Moreover, some
properties of these predicates are shown, and we demonstrate how
the predicates can be integrated into a query language.
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1. INTRODUCTION
Representing, storing, quering, and manipulating spatial infor-

mation is important for many non-standard database applications.
Specialized systems like geographical information systems (GIS),
spatial database systems, and image database systems to some ex-
tent provide the needed technology to support these applications.
For these systems the development of formal models for spatial ob-
jects and for topological relationships between these objects is a
topic of great importance and interest, since these models exert a
great influence on the efficiency of spatial systems and on the ex-
pressiveness of spatial query languages.

In the past, a number of data models and query languages for
spatial objects with precisely defined boundaries, so-called crisp
spatial objects, have been proposed with the aim of formulating
and processing spatial queries in databases (e.g., [8, 9]). Spatial
data types (see [9] for a survey) like point, line, or region are the
central concept of these approaches. They provide fundamental ab-
stractions for modeling the structure of geometric entities, their re-
lationships, properties, and operations. Topological predicates [6]
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between crisp objects have been studied intensively in disciplines
like spatial analysis, spatial reasoning, and artificial intelligence.

Increasingly, researchers are beginning to realize that the current
mapping of spatial phenomena of the real world to exclusively crisp
spatial objects is an insufficient abstraction process for many spatial
applications and that the feature of spatial vagueness is inherent to
many geographic data [3]. Moreover, there is a general consensus
that applications based on this kind of indeterminate spatial data are
not covered by current information systems. In this paper we fo-
cus on a special kind of spatial vagueness called spatial fuzziness.
Fuzziness captures the property of many spatial objects in reality
which do not have sharp boundaries or whose boundaries cannot
be precisely determined. Examples are natural, social, or cultural
phenomena like land features with continuously changing proper-
ties (such as population density, soil quality, vegetation, pollution,
temperature, air pressure), oceans, deserts, English speaking areas,
or mountains and valleys. The transition between a valley and a
mountain usually cannot be exactly ascertained so that the two spa-
tial objects “valley” and “mountain” cannot be precisely separated
and defined in a crisp way. We will designate this kind of entities
as fuzzy spatial objects. In the GIS community, a number of mod-
els based on fuzzy sets (e.g., [1, 5, 13, 14]) have been proposed,
but these are not suitable for an integration into a database system,
because they do not provide data types for fuzzy spatial data. The
author himself has started to work on this topic and to design a sys-
tem of fuzzy spatial data types including operations and predicates
[10, 11] that can be embedded into a DBMS.

The goal of this paper is to give a definition of topological pred-
icates on fuzzy regions, which is currently an open problem, and
to discuss some properties of these predicates. Besides, we show
the integration of these predicates into a query language. Section 2
presents a formal model of very generally defined crisp regions and
sketches the design of a well known collection of topological pred-
icates on crisp regions. In Section 3 we employ the concept of a
crisp region for a definition of fuzzy regions. Fuzzy regions are de-
scribed as collections of so-called crisp α-level regions. In practice,
this enables us to transfer the whole formal framework and later all
the well known implementation methods available for crisp regions
to fuzzy regions. In Section 4 we present an approach for designing
topological predicates between fuzzy regions that is based on fuzzy
set theory. Section 5 discusses some properties of these predicates,
and Section 6 deals with their integration into a query language.
Finally, Section 7 draws some conclusions.

2. CRISP REGIONS AND TOPOLOGICAL
PREDICATES

Our definition of crisp regions is based on point set theory
and point set topology [7]. Regions are embedded into the two-



Figure 1: Example of a (complex) region object.

dimensional Euclidean space IR2 and are thus point sets. Unfortu-
nately, the use of pure point set theory for their definition causes
problems. If regions are modeled as arbitrary point sets, they can
suffer from undesired geometric anomalies. These degeneracies re-
late to isolated or dangling line and point features as well as missing
lines and points in the form of cuts and punctures. A process called
regularization avoids these anomalies.

We assume that the reader is familiar with some needed, well-
known concepts of point set topology like topological space, open
set, closed set, interior, closure, exterior, and boundary. The con-
cept of regularity defines a point set S as regular closed if S � S

�
.

We define a regularization function regc which associates a set S
with its corresponding regular closed set as regc

�
S � : � S

�
. The

effect of the interior operation is to eliminate dangling points, dan-
gling lines, and boundary parts. The effect of the closure operation
is to eliminate cuts and punctures by appropriately supplementing
points and to add the boundary. We are now already able to give a
general definition of a type for complex crisp regions:

region ��� R � IR2 � R is bounded and regular closed �
In fact, this very “structureless” and implicit definition models (com-
plex) crisp regions possibly consisting of several components and
possibly having holes (Figure 1). As a special case, a simple region
is a region that does not have holes and does not consist of multiple
components.

An important approach to designing topological predicates on
simple crisp regions rests on the well-known 9-intersection model
[6] from which a complete collection of mutually exclusive topo-
logical relationships can be derived. The model is based on the
nine possible intersections of boundary (∂A), interior (A

�
), and ex-

terior (A 	 ) of a spatial object A with the corresponding compo-
nents of another object B. Each intersection is tested with regard to
the topologically invariant criteria of emptiness and non-emptiness.
29 � 512 different configurations are possible from which only a
certain subset makes sense depending on the combination of spa-
tial objects just considered. For two simple regions eight mean-
ingful configurations have been identified which lead to the eight
predicates of the set Tcr

�
� disjoint, meet, overlap, equal, inside,
contains, covers, coveredBy � . Each predicate is associated with a
unique combination of nine intersections so that all predicates are
mutually exclusive and complete with regard to the topologically
invariant criteria of emptiness and non-emptiness. We explain the
meaning of these predicates only informally here. Two crisp re-
gions A and B are disjoint if their point sets are disjoint. They meet
if their boundaries share points and their interiors are disjoint. They
are equal if both their boundaries and their interiors coincide. A is
inside B (B contains A) if A is a proper subset of B and if their
boundaries do not touch. A is covered by B (B covers A) if A is a
proper subset of B and if their boundaries touch. Otherwise, A and
B overlap. Generalizations to topological predicates for complex
crisp regions leading to the same (clustered) collection Tcr of pred-
icates have been given in [12, 2]. We will base our definition of
topological predicates for fuzzy regions on these topological pred-
icates for complex crisp regions.

3. MODELING FUZZY REGIONS
A “structureless” definition of fuzzy regions in the sense that

only “flat” point sets are considered and no structural information
is revealed has been given in [10]. For our purposes we deploy a
“semantically richer” characterization and approximation of fuzzy
regions and define them in terms of special, nested α-cuts. A fuzzy
region F̃ is described as a collection of crisp α-level regions1 [10],
i.e., F̃ ��� Fα1 ������ Fαn � 1 � where αi � ΛF̃ , which is the level set of
F̃ , and where

Fαi
� regc

� � � x � y � � IR2 � µF̃
�
x � y ��� αi ���

We call Fαi an α-level region. Clearly, Fαi is a complex crisp region
whose boundary is defined by all points with membership value αi.
In particular, Fαi can have holes. The kernel of F̃ is then equal
to F1 � 0. An essential property of the α-level regions of a fuzzy
region is that they are nested, i.e., if we select membership values
1 � α1 � α2 ��������� αn � αn � 1

� 0 for some n � IN, then

Fα1 � Fα2 � ����� � Fαn � Fαn � 1

We here describe the finite, discrete case. If ΛF̃ is infinite, then
there are obviously infinitely many α-level regions which can only
be finitely represented within this view if we make a finite selection
of α-values. In the discrete case, if �ΛF̃

� � n � 1 and if we take
all these occurring membership values of a fuzzy region, we can
even replace ” � ” by ” � ” in the inclusion relationships above. This
follows from the fact that for any p � Fαi � Fαi � 1 with i � � 2 ���� � n �
1 � , µF̃

�
p � � αi. For the continuous case, we get µF̃

�
p � �"!αi � αi 	 1 � .

As a result, we obtain:

A fuzzy region is a (possibly infinite) set of α-level re-
gions, i.e., F̃ �#� Fαi

� 1 $ i $ �ΛF̃
� � with αi � αi � 1 %

Fαi � Fαi � 1 for 1 $ i $ �ΛF̃
� � 1.

4. TOPOLOGICAL PREDICATES ON
FUZZY REGIONS

In this section we introduce a concept of topological predicates
for fuzzy regions. To clarify the nature of a fuzzy (topological)
predicate, we can draw an analogy between the transition of a crisp
set to a fuzzy set and the transition of a crisp predicate to a fuzzy
predicate. In a similar way as we can generalize the characteris-
tic function χA : X & � 0 � 1 � to the membership function µÃ : X &
! 0 � 1 ' , we can generalize a (binary) predicate pc : X ( Y & � 0 � 1 � to
a (binary) fuzzy predicate pf : X̃ ( Ỹ & ! 0 � 1 ' . Hence, the value of
a fuzzy predicate expresses the degree to which the predicate holds
for its operand objects. In case of topological predicates, in this
paper the sets X and Y are both equal to the type region, and the set� 0 � 1 � is equal to the type bool. The sets X̃ and Ỹ are both equal to
the type fregion for fuzzy regions, and for the set ! 0 � 1 ' we need a
type fbool for fuzzy booleans.

For the definition of fuzzy topological predicates, we take the
view of a fuzzy region as a collection of α-level regions (Section 3),
which are complex crisp regions (Section 2), and assume the set Tcr
of topological predicates on these regions. This preparatory work
now enables us to reduce topological predicates on fuzzy regions
to topological predicates on collections of crisp regions.

The approach presented in this section is generic in the sense
that any meaningful collection of topological predicates on crisp
regions could be the basis for our definition of a collection of topo-
logical predicates on fuzzy regions. If the former collection addi-
tionally fulfils the properties of completeness and mutual exclusion
1Other structured characterizations given in [10] describe fuzzy re-
gions as multi-component objects, as three-part crisp regions, and
as α-partitions.



(which is the case for Tcr), the latter collection automatically inher-
its these properties.

The open question now is how to compute the topological re-
lationships of two collections of α-level regions, each collection
describing a fuzzy region. We use the concept of basic probabil-
ity assignment [4] for this purpose. A basic probability assignment
m
�
Fαi � can be associated with each α-level region Fαi and can be

interpreted as the probability that Fαi is the “true” representative of
F . It is defined as

m
�
Fαi � � αi � αi � 1

for 1 $ i $ n for some n � IN with α1
� 1 and αn � 1

� 0. That is,
m is built from the differences of successive αi’s. It is easy to see
that the telescoping sum ∑n

i � 1 m
�
Fαi � � α1 � αn � 1

� 1 � 0 � 1.
Let πf

�
F � G � be the value that represents a (binary) property πf

between two fuzzy regions F and G. For reasons of simplicity,
we assume that ΛF̃

� ΛG̃
� : Λ. Otherwise, it is not difficult to

“synchronize” ΛF̃ and ΛG̃ by forming their union Λ : � ΛF̃
� ΛG̃

and by reordering and renumbering all α-levels. Based on the work
in [4] property πf of F and G can be determined as the summation
of weighted predicates by

πf
�
F � G � �

n

∑
i � 1

n

∑
j � 1

m
�
Fαi � � m

�
Gα j � � πcr

�
Fαi � Gα j �

where πcr
�
Fαi � Gα j � yields the value of the corresponding prop-

erty πcr for two crisp α-level regions Fαi and Gα j . This formula
is equivalent to

πf
�
F � G � �

n

∑
i � 1

n

∑
j � 1

�
αi � αi � 1 � � � α j � α j � 1 � � πcr

�
Fαi � Gα j �

If πf is a topological predicate of Tf
� � disjointf , meetf , overlapf ,

equalf , insidef , containsf , coversf , coveredByf � between two fuzzy
regions, we can compute the degree of the corresponding relation-
ship with the aid of the pertaining crisp topological predicate πcr �
Tcr. The value of πcr

�
Fαi � Gα j � is either 1 (true) or 0 (false). Once

this value has been determined for all combinations of α-level re-
gions from F and G, the aggregated value of the topological pred-
icate πf

�
F � G � can be computed as shown above. The more fine-

grained the level set Λ for the fuzzy regions F and G is, the more
precisely the fuzziness of topological predicates can be determined.

It remains to show that 0 $ πf
�
F � G � $ 1 holds, i.e., πf is re-

ally a fuzzy predicate. Since αi � αi � 1 � 0 for all 1 $ i $ n and
since πcr

�
Fαi � Gα j � � 0 for all 1 $ i � j $ n, πf

�
F � G � � 0 holds. We

can show the other inequality by determining an upper bound for
πf

�
F � G � :

πf
�
F � G � � n

∑
i � 1

n

∑
j � 1

�
αi � αi � 1 � � � α j � α j � 1 � � πcr

�
Fαi � Gα j �

$
n

∑
i � 1

n

∑
j � 1

�
αi � αi � 1 � � � α j � α j � 1 �

�
since πcr

�
Fαi � Gα j � $ 1 �� �

α1 � α2 � � α1 � α2 � � �����
� �

α1 � α2 � � αn � αn � 1 � � �����
� �

αn � αn � 1 � � α1 � α2 � � �����
� �

αn � αn � 1 � � αn � αn � 1 �� �
α1 � α2 �

� �
α1 � α2 � � ����� � �

αn � αn � 1 ��� � �����
� �

αn � αn � 1 �
� �

α1 � α2 � � ����� � �
αn � αn � 1 � �� �

α1 � α2 � � ����� � �
αn � αn � 1 ��

since
n

∑
i � 1

�
αi � αi � 1 � � 1 �

� 1

Hence, πf
�
F � G � $ 1 holds.

An alternative definition of fuzzy topological predicates, which
pursues a similar strategy like the one discussed so far, is based
on the topological predicates πsrh on simple regions with holes
(but without multiple components). If Fαi is an α-level region, let
us denote its connected components by Fαi1 ������ Fαi fi

. Similarly,
we denote the connected components of an α-level region Gα j by
Gα j1 ���� � Gα jg j

. We can then define a topological predicate π �f as

π �f
�
F � G � �

n

∑
i � 1

fi

∑
k � 1

n

∑
j � 1

g j

∑
l � 1

m
�
Fαi � � m

�
Fα j � � πsrh

�
Fαik � Gα jl �

fi � g j

It is obvious that π �f
�
F � G � � 0 holds since all factors have a value

greater than or equal to 0. We can also show that π �f
�
F � G ��$ 1 by

the following transformations:

π �f
�
F � G � $

n

∑
i � 1

fi

∑
k � 1

n

∑
j � 1

g j

∑
l � 1

�
αi � αi � 1 � � � α j � α j � 1 �

fi � g j�
since πsrh

�
Fαik � Gα jl ��$ 1 �

� n

∑
i � 1

n

∑
j � 1

�
αi � αi � 1 � � � α j � α j � 1 �

fi � g j
� fi � g j

� n

∑
i � 1

n

∑
j � 1

�
αi � αi � 1 � � � α j � α j � 1 �

� 1

Hence, π �f
�
F � G ��$ 1 holds. As a rule, the predicates πf and π �f do

not yield the same results. Assume that Fαi and Gα j fulfil a pred-
icate πcr � Tcr. This fact contributes once to the summation pro-
cess for πf . But it does not take into account that possibly several
faces Fαik (at least one) of Fαi satisfy the corresponding predicate
πsrh � Tsrh with several faces Gα jl (at least one) of Gα j . This fact
contributes several times (at most fi � g j) to the summation process
for π �f . Hence, the evaluation process for π �f is more fine-grained
than for πf .

Both generic predicate definitions reveal their quantitative
character. If the predicate πcr

�
Fαi � Gα j � and the predicate

πsrh
�
Fαik � Gα jl � , respectively, is never fulfilled, the predicate

πf
�
F � G � and π �f

�
F � G � , respectively, yields false. The more α-level

regions of F and G (simple regions with holes of Fαi and Gα j ) fulfil
the predicate πcr

�
Fαi � Gα j � (πsrh

�
Fαik � Gα jl � ), the more the validity

of the predicate πf (π �f ) increases. The maximum is reached if all
topological predicates are satisfied.

5. PROPERTIES
An interesting issue relates to the effect of the number of α-level

regions on the computation results for πf
�
F � G � . What can we ex-

pect if we supplement Λ with an additional membership value? Can
we make a general statement saying that the value for πf

�
F � G � will

then always increase or decrease or stagnate? To answer this ques-
tion, let πn

f

�
F � G � denote the predicate πf

�
F � G � if for its computa-

tion Λ contains n labels except for αn � 1
� 0. We now extend Λ

by an additional label αk
� αn � 2 � ! 0 � 1 '�� Λ without rearranging

the indices of the membership values. Without loss of generality
we assume an l � � 1 ���� � n � such that 1 � α1 � ����� � αl � αk �
αl � 1 � ����� � αn � 1

� 0. This enables us to compute the differ-
ence πn � 1

f

�
F � G � � πn

f

�
F � G � and to investigate whether this differ-

ence is always greater than, less than, or equal to 0. The com-
putation is simplified by the observation that all addends

�
αi �

αi � 1 � � � α j � α j � 1 � � πcr
�
Fαi � Gα j � of πn � 1

f

�
F � G � and πn

f

�
F � G � with

i � j � � 1 ���� � n ��� � l � neutralize each other. That is, for πn � 1
f

�
F � G �



disjointcr(F ,G) $ disjointcr(F � ,G) meetcr(F ,G) � meetcr(F � ,G)
1 � 1 1 � 0 � 1
0 $ 0 � 1 0 $ 0 � 1

0 � 1 $ 1 0 � 1 $ 1
0 � 0 0 � 1 � 0

overlapcr(F ,G) � overlapcr(F � ,G) equalcr(F ,G) � equalcr(F � ,G)
1 � 0 � 1 1 � 0 � 1
0 $ 0 � 1 0 $ 0 � 1

0 � 1 $ 1 0 � 1 $ 1
0 � 1 � 0 0 � 1 � 0

containscr(F ,G) � containscr(F � ,G) coverscr(F ,G) � coverscr(F � ,G)
1 � 0 � 1 1 � 0 � 1
0 � 0 0 $ 0 � 1
1 � 1 0 � 1 $ 1

0 � 1 � 0 0 � 1 � 0

Table 1: Evaluation of the predicate comparisons of the first class.

we have only to consider those addends having factors with an in-
dex equal to k. For πn

f

�
F � G � we have only to consider addends

having factors with i � l or j � l. With ∆ � πn � 1
f

�
F � G � � πn

f

�
F � G �

we obtain:

∆ � �
αl � αk �

n

∑
i � 1

�
αi � αi � 1 � �
�
πcr

�
Fαi � Gαl � � πcr

�
Fαl � Gαi ���

�
�
αl � αk � � αl � αl � 1 � � 2 � πcr

�
Fαl � Gαl �� �

αl � αk � � αl � αk � � 2 � πcr
�
Fαl � Gαl �

� �
αk � αl � 1 �

n

∑
i � 1

�
αi � αi � 1 � �
�
πcr

�
Fαi � Gαk � � πcr

�
Fαk � Gαi ���

�
�
αk � αl � 1 � � αl � αl � 1 � ��

πcr
�
Fαk � Gαl � � πcr

�
Fαl � Gαk ���� �

αk � αl � 1 � � αl � αk � � 2 ��
πcr

�
Fαk � Gαl � � πcr

�
Fαl � Gαk ���� �

αk � αl � 1 � � αk � αl � 1 � � 2 � πcr
�
Fαk � Gαk �

�
�
αl � αl � 1 �

n

∑
i � 1

�
αi � αi � 1 � �
�
πcr

�
Fαi � Gαl � � πcr

�
Fαl � Gαi ���

The first line computes the sum of all addends having the factor
αl � αk. The fourth line does the same for all addends having the
factor αk � αl � 1. Unfortunately, these sums include addends hav-
ing the factor αl � αl � 1 so that these addends have to be subtracted
(second and fifth line). The third, sixth, and seventh line insert
the correct addends. The eighth line subtracts all those addends of
πn

f

�
F � G � having the factor αl � αl � 1. The whole expression can be

restructured as follows:

∆ � �
�
αk � αl � 1 �

n

∑
i � 1

�
αi � αi � 1 � �
�
πcr

�
Fαi � Gαl � � πcr

�
Fαl � Gαi ���

� �
αk � αl � 1 �

n

∑
i � 1

�
αi � αi � 1 � �
�
πcr

�
Fαi � Gαk � � πcr

�
Fαk � Gαi ���

�
�
αk � αl � 1 � � αk � αl � 1 � ��

πcr
�
Fαk � Gαl � � πcr

�
Fαl � Gαk ���

�
�
αk � αl � 1 � � αl � αk � � 2 � πcr

�
Fαl � Gαl �� �

αk � αl � 1 � � αl � αk � ��
πcr

�
Fαk � Gαl � � πcr

�
Fαl � Gαk ���� �

αk � αl � 1 � � αk � αl � 1 � � 2 � πcr
�
Fαk � Gαk �

� �
αk � αl � 1 � �� n

∑
i � 1

�
αi � αi � 1 � � � πcr

�
Fαk � Gαi � � πcr

�
Fαl � Gαi ���

πcr
�
Fαi � Gαk � � πcr

�
Fαi � Gαl ���� �

αl � αk � � � πcr
�
Fαl � Gαk � � πcr

�
Fαl � Gαl ���

πcr
�
Fαk � Gαl � � πcr

�
Fαl � Gαl ���� �

αk � αl � 1 � � � πcr
�
Fαk � Gαk � � πcr

�
Fαk � Gαl ���

πcr
�
Fαk � Gαk � � πcr

�
Fαl � Gαk �����

For a comparison of ∆ with 0 we can observe that the values
of the factors αk � αl � 1, αi � αi � 1

�
1 $ i $ n � , αl � αk, and

αk � αl � 1 are all greater than 0. Hence, the result only depends
on the predicate values. Analyzing the six differences of predi-
cates, we can group them into two classes. The first class con-
tains the differences πcr

�
Fαk � Gαi � � πcr

�
Fαl � Gαi � , πcr

�
Fαk � Gαl � �

πcr
�
Fαl � Gαl � , and πcr

�
Fαk � Gαk � � πcr

�
Fαl � Gαk � . Their common

structure is πcr
�
F � G � � πcr

�
F � � G � with F � � F . The second class

contains the remaining differences πcr
�
Fαi � Gαk � � πcr

�
Fαi � Gαl � ,

πcr
�
Fαl � Gαk � � πcr

�
Fαl � Gαl � , and πcr

�
Fαk � Gαk � � πcr

�
Fαk � Gαl � .

Their common structure is πcr
�
F � G � � πcr

�
F � G ��� with G � � G.

Table 1 shows the result of comparing the predicates involved
in the differences of the first class. For each predicate combi-
nation πcr

�
F � G � and πcr

�
F � � G � we first set πcr

�
F � G � and then

πcr
�
F � � G � both to 1 (true) and 0 (false) (written in bold font). Af-

terwards we determine the result of the respective other predicates
and thus obtain four pairs of values. For instance, if disjointcr

�
F � G �

is equal to 0, disjointcr
�
F � � G � is either equal to 0 or to 1 (in-

dicated by the expression “0 � 1”). Next, we assign the cor-
rect comparison operator � , $ , or � reflecting the relationship
of a pair of values to each of the four cases. In the end, we
form the combination of the four comparison operators and ob-
tain the relationship between πcr

�
F � G � and πcr

�
F � � G � . The symbol

� indicates that the equality or inequality of the two predicates
cannot be generally decided. The only solution here is to com-
pute it for each single case. We have omitted the comparisons
for inside and coveredBy, since they are inverse to contains and
covers, respectively. That is, insidecr

�
F � G � $ insidecr

�
F � � G � and

coveredBycr
�
F � G ��� coveredBycr

�
F � � G � .

For an investigation of the second class we do not have to con-
sider the predicates disjointcr, meetcr, overlapcr, and equalcr; they
are symmetric in their arguments, that is, πcr

�
F � G � = πcr

�
G � F � .

We also need not consider the predicates coverscr and coveredBycr,
since already their predicate combinations in the first class cannot



be decided generally. Thus, only the predicates containscr and the
inverse insidecr remain. For containscr we obtain Table 2.

containscr(F,G) $ containscr(F ,G � )
1 � 1
0 $ 0 � 1

0 � 1 $ 1
0 � 0

Table 2: Evaluation of the contains comparison of the second
class.

In summary, we obtain a rather negative result. Since the differ-
ences for meetcr, overlapcr, equalcr, coverscr, and coveredBycr can-
not be decided in general, no general statement can be made about
the difference between πn � 1

f

�
F � G � and πn

f

�
F � G � for these predi-

cates. The computation of this difference also fails for containscr
and insidecr. The problem is that the behavior of both predicates
in the first and second class is opposite to each other. That is, in
the first class containscr

�
F � G � � containscr

�
F � � G � � 0 and in the

second class containscr
�
F � G � � containscr

�
F � G � � $ 0 hold. For the

computation of ∆ these two differences are added, and we cannot
generally decide whether the result is less than, greater than, or
equal to 0. Hence, all these predicates do not satisfy some kind of
“monotonicity criterion”. A positive exception is only the predicate
disjointcr for which we obtain disjointn � 1

f

�
F � G � $ disjointn

f

�
F � G � .

6. QUERYING WITH FUZZY TOPOLOGI-
CAL PREDICATES

In this section we demonstrate how fuzzy topological predicates
can be integrated into an SQL-like spatial query language. The fact
that the membership degree yielded by a fuzzy topological predi-
cate is a computationally determined quantification between 0 and
1, i.e., a fuzzy boolean, impedes a direct integration. First, it is not
very comfortable and user-friendly to use such a numeric value in
a query. Second, spatial selections and spatial joins expect crisp
predicates as filter conditions and are not able to cope with fuzzy
predicates.

As a solution, we propose to embed adequate qualitative lin-
guistic descriptions of nuances of topological relationships as ap-
propriate interpretations of the membership values into a spatial
query language. For instance, depending on the membership value
yielded by the predicate insidef , we could distinguish between not
inside, a little bit inside, somewhat inside, slightly inside, quite in-
side, mostly inside, nearly completely inside, and completely inside.
These fuzzy linguistic terms can then be incorporated into spatial
queries together with the fuzzy predicates they modify. We call
these terms fuzzy quantifiers, because their semantics lies between
the universal quantifier for all and the existential quantifier there
exists. It is conceivable that a fuzzy quantifier is either predefined
and anchored in the query language, or user-defined.

We know that a fuzzy topological predicate πf is defined as πf :
fregion ( fregion & ! 0 � 1 ' . The idea is now to represent each fuzzy
quantifier γ � Γ � � not, a little bit, somewhat, slightly, quite, mostly,
nearly completely, completely � by an appropriate fuzzy set with a
membership function µγ : ! 0 � 1 ' & ! 0 � 1 ' . Let F � G � fregion, and
let γπ f be a quantified fuzzy predicate (like somewhat inside with
γ � somewhat and π f

� insidef ). Then we can define:

γπ f
�
F � G � � true : �

�
µγ � πf � � F � G � � 1

That is, only for those values of πf
�
F � G � for which µγ yields 1, the

predicate γπ f is true. A membership function that fulfils this quite

strict condition is, for instance, the crisp partition of ! 0 � 1 ' into �Γ �
disjoint or adjacent intervals completely covering ! 0 � 1 ' and the as-
signment of each interval to a fuzzy quantifier. If an interval ! a � b '
is assigned to a fuzzy quantifier γ, the intended meaning is that
µγ
�
πf

�
F � G ��� � 1, if a $ πf

�
F � G � $ b, and 0 otherwise. For exam-

ple, we could select the intervals ! 0  0 � 0  02 ' for not, ! 0  02 � 0  05 ' for
a little bit, ! 0  05 � 0  2 ' for somewhat, ! 0  2 � 0  5 ' for slightly, ! 0  5 � 0  8 '
for quite, ! 0  8 � 0  95 ' for mostly, ! 0  95 � 0  98 ' for nearly completely,
and ! 0  98 � 1  00 ' for completely.

Alternative membership functions are shown by the fuzzy sets
in Figure 2. While we can always find a fitting fuzzy quantifier
for the partition due to the complete coverage of the interval ! 0 � 1 ' ,
this is not necessarily the case here. Each fuzzy quantifier is as-
sociated with a fuzzy number having a trapezoidal-shaped mem-
bership function. The transition between two consecutive fuzzy
quantifiers is smooth and here modeled by linear functions. Within
a fuzzy transition area µγ yields a value less than 1 which makes
the predicate γπ f false. Examples in Figure 2 can be found at 0  2,
0  5, or 0  8. Each fuzzy number associated with a fuzzy quantifier
can be represented as a quadruple

�
a � b � c � d � where the member-

ship function starts at
�
a � 0 � , linearly increases up to

�
b � 1 � , remains

constant up to
�
c � 1 � , and linearly decreases up to

�
d � 0 � . Figure 2

assigns
�
0  0 � 0  0 � 0  0 � 0  02 � to not,

�
0  01 � 0  02 � 0 � 03 � 0  08 � to a lit-

tle bit,
�
0  03 � 0  08 � 0  15 � 0  25 � to somewhat,

�
0  15 � 0  25 � 0  45 � 0  55 �

to slightly,
�
0  45 � 0  55 � 0  75 � 0  85 � to quite,

�
0  75 � 0  85 � 0  92 � 0  96 �

to mostly,
�
0  92 � 0  96 � 0  97 � 0  99 � to nearly completely, and�

0  97 � 1  0 � 1  0 � 1  0 � to completely.
So far, the predicate γπ f is only true if µγ yields 1. We can relax

this strict condition by defining:

γπ f
�
F � G � � true : �

�
µγ � πf � � F � G � � 0

In a crisp spatial database system this gives us the chance also to
take the transition zones into account and to let them make the pred-
icate γπ f true. When evaluating a fuzzy spatial selection or join in
a fuzzy spatial database system, we can even set up a weighted
ranking of database objects satisfying the predicate γπ f at all and
being ordered by descending membership degree 1 � µγ � 0.

A special, optional fuzzy quantifier, denoted by at all, represents
the existential quantifier and checks whether a predicate π f can be
fulfilled to any extent. An example query is: “Do regions A and B
(at all) overlap?” With this quantifier we can determine whether
µγ
�
x � � 0 for some value x � ! 0 � 1 ' .

The following few example queries demonstrate how fuzzy spa-
tial data types and quantified fuzzy topological predicates can be
integrated into an SQL-like spatial query language. It is not our ob-
jective to give a full description of a specific language. We assume
a relational data model where tables may contain fuzzy regions as
attribute values.

What we need first is a mechanism to declare user-defined fuzzy
quantifiers and to activate predefined or user-defined fuzzy quanti-
fiers. This mechanism should allow to specify trapezoidal-shaped
and triangular-shaped membership functions as well as crisp parti-
tions. In general, this means to define a classification, which could
be expressed in the following way:

create classification fq�
not

�
0  00 � 0  00 � 0  00 � 0  02 � �

a little bit
�
0  01 � 0  02 � 0 � 03 � 0  08 � �

somewhat
�
0  03 � 0  08 � 0  15 � 0  25 � �

slightly
�
0  15 � 0  25 � 0  45 � 0  55 � �

quite
�
0  45 � 0  55 � 0  75 � 0  85 � �

mostly
�
0  75 � 0  85 � 0  92 � 0  96 � �

nearly completely
�
0  92 � 0  96 � 0  97 � 0  99 � �

completely
�
0  97 � 1  0 � 1  0 � 1  0 � )



slightly quite mostlysomewhat

a little bitnot

completely
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0

Figure 2: Membership functions for fuzzy quantifiers.

Such a classification could then be activated by

set classification fq

Assuming that we have a relation pollution, which stores among
other things the blurred geometry of polluted zones as fuzzy re-
gions, and a relation areas, which keeps information about the use
of land areas and which stores their vague spatial extent as fuzzy
regions. A query could be to find out all inhabited areas where peo-
ple are rather endangered by pollution. This can be formulated in
an SQL-like style as (we here use infix notation for the predicates):

select areas.name
from pollution, areas
where area.use = inhabited and

pollution.region quite overlaps areas.region

This query and the following two ones represent fuzzy spatial joins.
Another query could ask for those inhabited areas lying almost

entirely in polluted areas:

select areas.name
from pollution, areas
where areas.use = inhabited and

areas.region nearly completely inside
pollution.region

Assume that we are given living spaces of different animal species
in a relation animals and that their vague extent is represented as a
fuzzy region. Then we can search for pairs of species which share
a common living space to some degree:

select A.name, B.name
from animals A, animals B
where A.region at all overlaps B.region

As a last example, we can ask for animals that usually live on land
and seldom enter the water or for species that never leave their land
area (the built-in aggregation function sum is applied to a set of
fuzzy regions and aggregates this set by repeated application of
fuzzy geometric union):

select name
from animals
where (select sum(region) from areas)

nearly completely covers or
completely covers region

7. CONCLUSIONS
We have presented a definition of topological predicates on fuzzy

regions. We have shown that all these predicates with one ex-
ception do not fulfil some kind of “monotonicity criterion” which
documents the independence of topological and metric properties.
Moreover, we have sketched the integration of these predicates into
fuzzy spatial query languages. For that purpose, fuzzy quantifiers
are used that can be incorporated into spatial queries.
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