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ABSTRACT

Uncertainty management for geometric data is currently an important problem in spatial databases,
image databases, and GIS. Spatial objects do not always have homogeneous interiors and sharply
defined boundaries but frequently their interiors and boundaries are partially or totally indeterminate
and vague. For an important kind of spatial vagueness called fuzziness this paper provides a con-
ceptual model of fuzzy spatial objects that also incorporates fuzzy geometric union, intersection, and
difference operations as well as fuzzy topological predicates. In particular, this model is not based on
Euclidean space and on an infinite-precision arithmetic which lead to lacking numerical robustness
and to topological inconsistency; it rests on a finite, discrete geometric domain called grid partition
which takes into account finite-precision number systems available in computers. Last but not least
this paper shall also be a contribution to achieve a uniform treatment of vector and raster data.

1 INTRODUCTION

Currently, spatial data modeling, as the basis of spatial databases and GIS, is affected by two main
problems. The first problem is that it has so far been suffering from the “boundary syndrom” which
relates to the imagination that the extent of a spatial object is or has to be always limited by a pre-
cisely defined and abrupt boundary separating the interior of the object from its exterior. In practice,
however, there is no apparent reason for the whole boundary of a region to be determined. There are
many geographical application examples which illustrate that the boundaries of spatial objects (like
geological, soil, and vegetation units) can be partially or totally indeterminate and blurred; many hu-
man concepts like “the Indian Ocean” are implicitly vague. The second problem is that spatial data
modeling mainly rests on Euclidean space and Euclidean geometry and hence on an infinite-precision
arithmetic. This conflicts with the reality of finite-precision number systems available in computers.
For example, an intersection point of two lines has to be rounded to the nearest grid point where the
grid corresponds to the resolution of the number system used. It is left to the implementor to close
this gap between theory and practice. This leads inevitably not only to numerical but especially to
topological errors and thus to wrong query results. Hence, it is recommendable to incorporate the as-
pect of finite representations explicitly into a spatial data model and to design finite resolution spatial
data types that can be integrated as attribute types into databases. Image data modeling, as the basis
of image databases and image processing, suffers from the problem that previous attempts to design
a consistent topological model for digital images have led to topological anomalies or have implied
new unfavorable properties.

The goals of this paper are three-fold: first, we provide a conceptual model of crisp and fuzzy spatial
objects (in this paper we will only describe regions) and investigate their topological properties. Sec-



ond, we base our spatial objects on a finite resolution grid in order to take into account the discrete
representations available in computers. These representations are especially interesting for fuzzy spa-
tial objects since each contained, representable point has to be associated with a membership value.
Third, this paper shall also be a contribution to achieve a uniform treatment of vector and raster data.

Section 2 compares with related work. Section 3 gives a unified view of vector and raster data, and
Section 4 introduces a formalization of crisp and fuzzy regions based on a finite resolution grid.
Section 5 gives a definition of the fuzzy geometric operations union, intersection, and difference, and
Section 6 deals with topological predicates for discrete regions. Section 7 concludes the paper.

2 RELATED WORK

Mainly two kinds of spatial vagueness can be identified: uncertainty is traditionally equated with ran-
domness and chance occurrence and relates either to a lack of knowledge about the position and shape
of an object with an existing, real boundary or to the inability of measuring such an object precisely.
Fuzziness is an intrinsic feature of an object itself and describes the vagueness of an object which
certainly has an extent but which inherently cannot or does not have a precisely definable boundary
(e.g., between a mountain and a valley). At least four alternatives are proposed as general design
methods: (1) exact models (for example, (Clementini et al., 1996; Erwig et al., 1997b; Schneider,
1996)) which transfer type systems and concepts for spatial objects with sharp boundaries to objects
with unclear boundaries, (2) models based on rough sets (Worboys, 1998) which work with lower
and upper approximations of spatial objects, (3) probabilistic models (for example, (Burrough, 1996;
Shibasaki, World Scientific, 1993)) which predominantly model positional and measurement uncer-
tainty, and (4) models based on fuzzy sets (for example, (Altman, 1994; Burrough, 1996; Dutta, 1989;
Schneider, 1999) which predominantly model fuzziness. The vagueness represented by fuzziness, in
which we are only interested in this paper, does not describe the uncertainty of expectation like in
probabilistic models but the vagueness resulting from the imprecision of the meaning of a concept.
Examples of fuzzy spatial objects include mountains, valleys, biotopes, oceans. The only proposal
of a discrete fuzzy data type relates to fuzzy regions (Altman, 1994) defined as a fuzzy set over

� 2.
Each coordinate � x � y ��� � 2 is associated with a value between 0 and 1 and describes the concentra-
tion of some feature attribute at that point. Unfortunately, the simple set property is insufficient since
topological anomalies can arise, as we will see later.

In image data modeling and image processing in principle there has never been a problem to handle,
that is, to visualize, values being of the same kind but having different intensity levels. Color shading
and gray values are examples of such visualization methods. Thus, fuzziness has played a certain role.
This can be seen from fuzzy digital topology (Rosenfeld, 1979), the fuzzy version of digital topology
(Kong et al., 1989), which has been applied to pixel structures.

Finite resolution spatial data, that is, spatial data defined over a discrete underlying geometric do-
main (for example, a homogeneous grid), has so far had a completely different significance for spatial
and image information. It lies in the nature of image data modeling to handle discrete spatial data
which is available as digital raster images. Digital topology (fuzzy digital topology) has been applied
to describe the structure and the topological features of binary (finite-valued) images. In Section 3
we will show that these theories suffer from topological anomalies which make them inappropriate
for our purposes. In spatial data modeling hardly any work has so far been based on finite resolu-
tion data. Spatial data types (see (Schneider, 1997) for an overview) proposed so far have all been
based on exact two-dimensional Euclidean space. An exception is the realm concept (Güting et al.,
1993; Schneider, 1997). A realm replaces the Euclidean space with a discrete geometric basis and is
intended to represent the entire underlying geometry of an application. It consists of a finite set of
points and line segments which are defined over a discrete grid and which form a spatially embedded
planar graph. On top of realms a comprehensive and coherent spatial type system called the ROSE



algebra (Güting et al., 1995; Schneider, 1997) and a concept of vague regions (Erwig et al., 1997b)
have been built. Each spatial object is described by a finite boundary representation and consists of a
finite set of representable grid points.

The expositions so far indicate that in the end both spatial and image data modeling have (also con-
ceptually) to deal with finite representations in order to guarantee implementability of spatial type
systems in general and numerical robustness and topological consistency in particular. This under-
standing is a prerequisite for a uniform spatial information theory.

3 UNIFYING THE VIEW OF VECTOR AND RASTER DATA

In this section we deal with the transformation of vector data into finite resolution data (Section 3.1),
with the benefits of point set topology and the deficiencies of digital topology (Section 3.2), and
with grid partitions as the underlying discrete geometric domain for finite resolution spatial objects
(Section 3.3).

3.1 Transforming Vector Data to Finite Resolution Data

The transformation of vector data to finite resolution data can be imagined as a three-step process. In
a first step, we determine as the underlying discrete geometric domain a homogeneous grid given as a
finite subset Ω � ���

n ������� � n � 2 �	� 2 with an arbitrary but fixed and representable n � � . An element
of Ω is called a grid point. The second step is to define spatial objects by boundary representations
over this finite resolution grid so that their vertices are grid points. In a third step, a spatial object
is represented as the finite collection of points (possibly with particular properties) enclosed by the
object’s boundary representation. This mapping is usually not invertible, that is, given only the finite
point set of a spatial object, we are not able to uniquely derive its original boundary. As an example,
Figure 1 shows three different boundary representations of regions enclosing the same point set. If
we assume a very high resolution of Ω, that is, a very large n, the perturbations resulting from this
step become neglectible. We can then accept these slight perturbations and consider all spatial objects
with the same finite point set as being equal.

Figure 1: An example of three different regions with the same finite point set.

3.2 Point Set Topology and the Deficiencies of Digital Topology

In the Euclidean space, point set topology (Gaal, 1964) has turned out to be an appropriate theory to
characterize topological relationships between spatial objects. Therefore, we would like to transfer
its well-known and desirable properties to an appropriate finite topology. The starting point of point
set topology is the notion of a topological space. Let X be a set and T 
 2X be a subset of the power
set of X . The pair � X � T � is called a topological space if the axioms (i) X � T ��� � T , (ii) U �
T � V � T  U � V � T , and (iii) U 
 T  � A � U A � T are satisfied. T is called a topology for
X . The elements of T are called open sets, their complements in X closed sets. Point set topology
mainly considers infinite point sets having the property that in an arbitrarily small neighborhood of a
point infinitely many other such points exist. This contradicts the nature of a discrete grid-based point
whose neighborhood contains at most a finite number of other points. Additionally, point set topology



distinguishes different parts of a point set, namely its boundary ∂A, its interior A � , and its exterior
A � , which are pairwise disjoint. The union of A � and ∂A corresponds to the closure A of A. In

� 2 the
Jordan Curve Theorem (Gaal, 1964) is valid which states that a simple closed and continuous curve
divides the Euclidean plane into two connected components, the interior and the exterior. If a point is
removed from the curve, then the remainder of the plane becomes connected.

Digital topology (Kong et al., 1989) is the study of the topological properties of discrete images and is
therefore a possible candidate for modeling topological properties of crisp and fuzzy discrete spatial
objects. But the following short summary reveals its fundamental deficiences on a discrete domain
compared to point set topology on a continuous domain. The underlying space of digital topology
is the digital plane � 2. Let S � � 2. The points in S are then called black points, and the points in� 2 � S are termed white points. Two main kinds of neighborhoods can be distinguished between grid
points. The 4-neighbors of a point are its four horizontal and vertical neighbors. The 8-neighbors of a
point are its four horizontal and vertical neighbors together with its four diagonal neighbors. A 4-path
(8-path) between any two points p � q � S is a sequence of points p � p1 ����� � � pn � q with pi � S such
that pi is a 4-neighbor (8-neighbor) of pi � 1 � 1 � i � n. A path is called simple if each of its points
is exactly once in the path. A set S is 4-connected (8-connected) if for every pair of points p � q of
S there is a 4-path (8-path) in S from p to q. A 4-component (8-component) of a set S is a greatest
4-connected (8-connected) subset of S.

The connectivity paradox (Kong et al., 1989) illustrates a possible “topological paradox” and shows
that the Jordan Curve Theorem is neither valid for 4-neighborhood nor for 8-neighborhood. If in
Figure 2a 8-neighborhood is used for all pairs of points, then the black points form a discrete analog
of a Jordan curve (simple closed path) but they do not separate the white points. The situation is not
better for 4-neighborhood. The black points in Figure 2b determine a 4-connected simple closed path
but there exist three 4-connected components for the remaining white points. Thus a digital version
of the Jordan Curve Theorem holds in neither case. Moreover, if in Figure 2a 4-neighborhood is used
for all pairs of points, then the black points are completely disconnected but still separate the set of
white points into two components. If 4-neighborhood is used for all pairs of points and we have a
4-connected simple closed path like in Figure 2c, then the white points remain separated if we remove
a corner (circled point) from the path.

(b) (c)(a)

Figure 2: Examples of connectivity paradoxes.

The problem of digital topology is that it does not refer to the definition of a topological space. Hence,
it is impossible to transfer important topological notions like open set, open neighborhood, continuity,
and many others, to a two-dimensional grid-based domain. Another drawback is that boundaries are
two-dimensional structures, a fact that does not correspond to our expectation of spatial reality.

3.3 The Unification Step: Grid Partitions

The deficiencies of digital topology can be remedied if we return to classical topology. Then a solu-
tion comprises two main aspects: first, we form unit areas which relate to the regions between four



adjacent grid points and which contain all and only their interior and boundary points. This measure
ensures the existence of an underlying topological space and the avoidance of geometric anomalies.
The consequence is that the intersection of two unit areas is either empty (if they are disjoint), or a
zero-dimensional point (if they meet at a corner), or a one-dimensional unit segment (if they share a
unit segment), or a two-dimensional unit area (if they are identical). Hence, second, we have to con-
sider the digital plane as a structure consisting of elements of different dimensions. Such a structure
is well-known in algebraic topology as a cellular complex (Croom, 1978) and has already been used
in spatial data modeling (for example, (Egenhofer et al., 1989; Frank et al., 1986)) for decomposing
space into a collection of irregular geometric shapes.

We briefly discuss some of the most important definitions. A homeomorphism (Croom, 1978) between
two spatial objects is an invertible function from one object to another such that both the function and
its inverse are continuous. This essentially means that there is a mapping of the points in the first
object to the points in the second one (and vice versa) that preserves the concept of proximity. The
closed n-disc with center x and radius ε � IR � is the set of points in the n-dimensional Euclidean space
with a distance from x less than or equal to ε. A closed n-cell is any spatial object homeomorphic (that
is, topologically equivalent) to the closed n-disc. The surface of the closed � n � 1 � -disc with radius
ε describes all points at a distance of exactly ε and is called the n-sphere. The boundary of an n-cell
is that part of the n-cell mapped onto by the � n � 1 � -sphere by any homeomorphism. The interior of
an n-cell is that part of its n

�
1-cells that do not belong to the boundary. An open n-cell is a closed

n-cell without boundary. Examples of 0-cells are points, examples of 1-cells are continuous curves
and straight segments, and examples of 2-cells are circles, triangles, and polygons. The boundary of a
triangle, for example, consists of its three bounding straight segments. The boundary of each segment
contains its two end points. All k-cells of an n-cell for 0 � k � n are called faces of the n-cell. A
k-cell is said to bound an n-cell with 0 � k � n if the k-cell is a face of the n-cell.

An n-dimensional cellular complex (n-complex, n-cell complex) is a collection C of n-cells such that
(i) C contains all faces of all elements of C (called completeness of inclusion in (Frank et al., 1986)),
and (ii) the intersection of two cells in C is either empty or a face of both cells (called completeness
of incidence in (Frank et al., 1986)). These two conditions correspond to the definition of a (finite)
topological space so that a cellular complex is a finite topological space. From a data type point
of view, this means that cellular complexes are closed under the set operations union, intersection,
difference, and complement1. An n-complex of special interest is the punctured cell consisting of an
n-cell from which a smaller n-cell has been cut out.

Actually, we return to the vector model of spatial databases where we can distinguish one-, zero-, and
two-dimensional spatial elements, too. In our case we use cells and cell complexes to obtain a regular
cellular decomposition of the plane which we call a grid partition. The grid partition restricts the
set of possible structures in

� 2 to collections of regularly shaped grid units. This measure transfers
the topological properties of

� 2 to the grid partition since the grid partition is embedded into the
continuous Euclidean plane being a topological space. Hence, the grid partition turns out to be able
to replace the image (or raster) model of � 2.

We now define the notion of a grid unit as the central component of a grid partition. Let q � � x � y ���� 2, and let ν be a normalization function with ν � � x � y � � � � x � 1
2 � y � 1

2 � . We extend ν to subsets
A 
 � 2 by ν � A � � �

ν � q ��� q � A � . Moreover, for a point p � � i � j � � Ω with i � j �� � �
n � n � we define

p0 � i � j � � � i � 1
2 � j

� 1
2 � � p1 � i � j � � � i � 1

2 � j
� 1

2 � � p2 � i � j � � � i � 1
2 � j � 1

2 � � and p3 � i � j � � � i � 1
2 � j � 1

2 � .
A grid unit for a point p � � i � j � � Ω is the triple G � p � � � C � p � � E � p � � V � p � � such that

(i) C � p � � �
ν ��� i � 1

2 � i � 1
2 �	� � j

� 1
2 � j � 1

2 � � �
(ii) E � p � � �

ν ��� pt � i � j � � p 
 t � 1 � mod 4 � i � j � � ��� 0 � t � 3 �
1An interesting observation is that a realm (G üting et al., 1993; Schneider, 1997) also forms a cellular complex and that

it hence is a finite topological space.



(iii) V � p � � �
ν � pt � i � j � � � 0 � t � 3 �

Since the points pt � i � j � are not elements of Ω and thus not representable in our discrete domain, the
function ν performs a homeomorphic translation operation to representable coordinates in Ω. Hence,
each point � i � j � is mapped to the grid unit (unit square) G � � i � j � � with the left lower bound � i � j � and
the right upper bound � i � 1 � j � 1 � . A grid unit consists of three parts: C � p � contains its axis-parallel,
open quadrangle of unit length 1 (called unit area) as a 2-cell and is modeled as a singelton set. To
denote the point set of this 2-cell we need a further notation. Let A � B be sets and f : A � P � B � be
a function. If we are sure that, for example, f � a � yields a singleton set, we write f ! � a � to denote
this single element, that is, f � a � � �

b �  f ! � a � � b. Now we can express the point set of C � p �
as points � C � p � � : � C! � p � . E � p � contains its four axis-parallel, open unit segments (called edges) as

(b)(a)

n = 2

-2 -1 0 1 2
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Figure 3: A grid unit as a 2-cell (a) and a grid partition as a 2-cell complex (b).

1-cells, and its point set is points � E � p � � : � � S � E 
 p � S. V � p � contains its four corners (called points
or vertices) as 0-cells, and its point set is points � V � p � � : � V � p � . We have deliberately defined that
every k-cell is open and does hence not contain its boundary, that is, points � C � p � � � points � E � p � � �
points � V � p � � � � . Thus, each point of G � p � belongs either to a 0-cell, a 1-cell, or a 2-cell. The
point set points � C � p � ��� points � E � p � ��� points � V � p � � describes the complete point set of the grid
unit. Figure 3a shows the structure of a grid unit as a cellular complex. The grid partition2 over Ω is
the set G � Ω � � �

G � p ��� p � Ω � . Moreover, we define C � Ω � � �
C � p ��� p � Ω � , E � Ω � � �

E � p ��� p � Ω � ,
and V � Ω � � �

V � p ��� p � Ω � . An analogous definition holds for G � � 2� . Figure 3b shows an example
of a grid partition as a cellular complex.

In summary one can say that in a two-stage process we have substituted the Euclidean plane
� 2 for

the digital plane � 2 and the latter due to topological weaknesses for the grid partition G � � 2� . The
result is a regular cellular decomposition of

� 2 (or a regular realm in the sense of (Güting et al., 1995;
Schneider, 1997)), which is also discrete like � 2, but moreover preserves the topological features of� 2. In image modeling the 2-cells of G � � 2 � correspond to pixels. We have here the problem that
0-cells and 1-cells are not realized in hardware devices like monitor screens and image memories, but
grid partitions can at least serve as a conceptual model for topologically consistent pictures in image
processing. In spatial (that is, vector) modeling, the conceptual extensions are realizable without
difficulties.

4 FINITE RESOLUTION CRISP AND FUZZY REGIONS

In this section we in a very general way define a spatial data type for crisp and fuzzy region objects
as parts of the discrete geometric domain G � Ω � . Generality here especially implies that the data type

2The notion of grid partition differs from the notion of spatial partition (map, coverage) given, for example, in (Erwig
et al., 1997a). In a spatial partition, boundaries of adjacent areas with the same label are eliminated, and the areas are
merged together.



is closed under the geometric operations union, intersection, and difference (as well as under other
spatial operations). This means, in particular, that a region may have holes and that it may consist of
several components.

Section 4.1 introduces some concepts of fuzzy set theory as far as they are relevant in this context.
Section 4.2 introduces crisp and fuzzy regions. It turns out that the crisp region type is a special
instance of the fuzzy region type.

4.1 Fuzzy Sets and Discrete Membership Functions

Fuzzy set theory (Zadeh, 1965) is an extension and generalization of Boolean set theory. Let X be
a classical (crisp) set of objects, called the universe (of discourse). Membership in a classical subset
A of X can then be described by the characteristic function χA : X � �

0 � 1 � such that for all x � X
holds χA � x � � 1 if and only if x � A and χA � x � � 0 otherwise. This function can be generalized such
that all elements of X are mapped to the real interval [0,1] indicating the degree of membership of
these elements in the set in question. We call µÃ : X � � 0 � 1� the membership function of Ã, and the
set Ã � � � x � µÃ � x � ��� x � X � is called a fuzzy set in X . Elements x � X that do (not) belong to Ã get the
membership value µÃ � x � � 1 � 0 � . We also allow the notations x̃ : � � x � µÃ � x � � � Ã and µ � x̃ � : � µÃ � x � .
Regarding the set operations and the set inclusion for fuzzy sets we follow the definitions in (Zadeh,
1965). Let Ã and B̃ be fuzzy sets in X . Then

(i) � Ã � � � x � µ � Ã � x � � � x � X � µ � Ã � x � � 1
�

µÃ � x � �
(ii) Ã 
 B̃ ��� x � X : µÃ � x � � µB̃ � x �

(iii) Ã � B̃ � � � x � µÃ � B̃ � x � � � x � X � µÃ � B̃ � x � � min � µÃ � x � � µB̃ � x � � �
(iv) Ã � B̃ � � � x � µÃ � B̃ � x � � � x � X � µÃ � B̃ � x � � max � µÃ � x � � µB̃ � x � � �
(v) Ã

�
B̃ � Ã ��� B̃

A [strict] α-cut or [strict] α-level set of a fuzzy set Ã for a specified value α is the crisp set Aα � A 	α � ��
x � X � µÃ � x ��
 �� � α � 0 � α � � � � 1 � . The strict α-cut for α � 0 is called support of Ã, i.e.,

supp � Ã � � A 	0. For a fuzzy set Ã and α � β � � 0 � 1 � we obtain X � A0 and α � β  Aα � Aβ. The set
of all levels α � � 0 � 1� that represent distinct α-cuts of a given fuzzy set Ã is called the level set ΛÃ of
Ã: ΛÃ � �

α � � 0 � 1� ��� x � X : µÃ � x � � α � . We also introduce a special notation for subsets of the
power set P � Λ � containing a particular element αk � Λ and being of constrained size: for 1 � k � m
and t � IN we define Λk � t : � �

A � P � Λ � � αk � A � 1 � � A � � t � .
Since we are aiming at finite representations, the definition of a membership function is too general.
The universe of discourse we are interested in is the finite grid partition X � G � Ω � . Since the interval

� 0 � 1� represents an infinite set of membership values, we have to restrict it to a finite and thus repre-
sentable set Λ � �

α1 ������� � αm � for some m � � with 0 � α1 � α2 ������� � αm � 1 � αm � 1. Accordingly,
in our context we have discrete membership functions, and the discrete membership function for any
fuzzy set Ã is here defined as µÃ : � C � Ω ��� E � Ω � � V � Ω � � � P � Λ � . This means that a grid unit is
always associated with a set of membership values, which we here also call labels.

The selection of membership values is not arbitrary for the faces of fuzzy regions due to the topo-
logical interdependence of 0-cells, 1-cells, and 2-cells of the grid units of the grid partition. Another
important aspect motivated by spatial phenomena like air pollution or temperature distributions is that
we are interested in modeling “smooth” or “continuous” transitions within the interiors of regions.
This feature resembles grey values in images which are used to visualize different levels of intensity
of an attribute.



4.2 Formal Definition of Fuzzy Regions

The aim of this section is to develop and formalize our concept of discrete crisp and fuzzy regions. A
detailed classification of fuzzy regions can be found in (Schneider, 1999). Our main interest concerns
a “structured” view of discrete fuzzy regions. We start with the definition of a fuzzy grid unit. For this
purpose we have to appropriately assign labels to its 2-cell, its four 1-cells, and its four 0-cells. The
membership value of a grid unit as a whole is dominated by the 2-cell so that all of its 0- and 1-cells
obtain this value.

A fuzzy grid unit for a point p � Ω and a label
�
αk � is a triple Gk

f � p � � � Ck
f � p � � Ek

f � p � � V k
f � p � � such

that Ck
f � p � � C � p � � Λk � 1, Ek

f � p � � E � p � � Λk � 2, and V k
f � p � � V � p � � Λk � 4 for some 1 � k � m. That

is, the 2-cell of a fuzzy grid unit is marked with a singelton label set, each 1-cell with a set of up to
two labels, and each 0-cell with a set of up to four labels. Note that we also permit α1 � 0 as part of a
label; it indicates the non-existence (of a component) of a fuzzy grid unit. Due to m possible α-labels,
for each point p � Ω we can define m different fuzzy grid units (including a non-existing unit) which
we collect in G f � p � � � m

k � 1
�
Gk

f � p � � . We can also gather all possible 2-cells of a fuzzy grid unit for

a point p in C f � p � � � m
k � 1Ck

f � p � , all possible 1-cells in E f � p � � � m
k � 1 Ek

f � p � , and all possible 0-cells

in V f � p � �	� m
k � 1V k

f � p � . Finally, the set of all fuzzy grid units over Ω is G f � Ω � � � p � Ω G f � p � , the set
of all fuzzy unit areas is C f � Ω � � � p � Ω C f � p � , the set of all fuzzy edges is E f � Ω � � � p � Ω E f � p � , and
the set of all fuzzy vertices is V f � Ω � � � p � Ω V f � p � .
Let u1 � Gk

f � p � � u2 � Gk
f � q � � G f � Ω � for some 1 � k � l � m. We define the following topological

predicates on fuzzy grid units:

� i � u1 and u2 0-meet : � C � p ��� C � q � � � � E � p � � E � q � � �
� V � p � � V � q � �� �

� ii � u1 and u2 1-meet : � C � p ��� C � q � � � � E � p � � E � q � �� �
� V � p � � V � q � �� �

� iii � u1 and u2 are area-disjoint : � C � p � � C � q � � �
� iv � u1 and u2 are edge-disjoint : � C � p � � C � q � � � � E � p ��� E � q � � �

As the definitions show, these predicates are independent of the labels of a fuzzy grid unit. The
predicate 0-meet expresses that both fuzzy grid units have a zero-dimensional vertex in common
while the predicate 1-meet describes that both fuzzy grid units meet in a one-dimensional edge and
its two bounding vertices. The predicate area-disjoint allows both units to share a common edge
together with the two bounding vertices whereas the predicate edge-disjoint only allows them to share
a common vertex.

A fuzzy grid unit complex (an example is given in Figure 4a) is a connected set of fuzzy grid units
c � �

u1 ������� � un � 
 G f � Ω � with ui � Gki
f � pi � � pi � Ω, 1 � ki � m such that

(i) � 1 � i � j � n : ui and u j are area-disjoint

(ii) � 1 � i � n � 1 � j � n � i �� j : ui and u j 1-meet

(iii) The point set ∂ � n
i � 1 � points � C � pi � � � points � E � pi � � � points � V � pi � � � is a simple polygon.

(iv) � 1 � i � j � n : � ui and u j 1-meet � E � pi � � E � p j � � �
e � � V � pi � �

V � p j � � �
q1 � q2 � �  � µ � ẽ � : � µ � C � pi � � � µ � C � p j � � � µ � q̃1 � : � µ � q̃1 � � µ � C � pi � � �

µ � C � p j � � � µ � q̃2 � : � µ � q̃2 � � µ � C � pi � � � µ � C � p j � � �
(v) � 1 � i � j � n : � ui and u j 0-meet � V � pi � � V � p j � � �

q � �  µ � q̃ � : � µ � q̃ � � µ � C � pi � � �
µ � C � p j � � �



(vi) Let c � �
v1 ������� � vt � � G f � Ω ��� c with v j � Gl

f � q j � � q j � Ω � 1 � l � m. � 1 � i � n � 1 �
j � t : � ui and v j 1-meet � E � pi � � E � q j � � �

e � � V � pi � � V � q j � � �
s1 � s2 � �  � µ � ẽ � : �

µ � C � pi � � �
�
α1 � � µ � s̃1 � : � µ � s̃1 � � µ � C � pi � � �

�
α1 � � µ � s̃2 � : � µ � s̃2 � � µ � C � pi � � �

�
α1 � �

(vii) Let c � �
v1 ��� ��� � vt � � G f � Ω ��� c with v j � Gl

f � q j � � q j � Ω � 1 � l � m. � 1 � i � n � 1 �
j � t : � ui and v j 0-meet � V � pi ��� V � q j � � �

s � �  µ � s̃ � : � µ � s̃ � � µ � C � pi � � �
�
α1 � �

Conditions (i) and (ii) formulate the partition character and the connectivity property, respectively.
Condition (iii) prohibits holes in the complex. Condition (iv) applies the label union rule to all
common edges and vertices of neighbored grid units. Each edge has one or two labels. It has two
labels if the labels of the units are different; otherwise it has one label. The bounding vertices of the
edge obtain the labels of the edge additionally to the labels they already have from other bounded
edges; they can have at most four labels. Condition (v) appropriately labels the vertex of two grid
units that 0-meet. Conditions (vi) and (vii) deal with all vertices and edges that bound grid units,
that belong also to the complement of the complex, and that especially carry the label

�
α1 � � �

0 �
indicating their non-belonging to the complex. Edges of this kind have exactly two labels; vertices of
this kind can have up to four labels. We call conditions (iv) to (vii) label correction.

(b)(a) (c)

h

c c h\ { }

Figure 4: An example of a fuzzy grid complex is shown in (a). Adding the dotted grid unit would
invalidate the complex. Four faces are shown in (b). The example in (c) shows a simple situation
where c and h are complexes but c � � h � is not a fuzzy face.

Let CO f � Ω � � �
c 
 G f � Ω ��� c is a fuzzy grid unit complex � , and let c1 � �

u1 ������� � un � , c2 ��
v1 � ����� � vt � � CO f � Ω � with ui � Gki

f � pi � � pi � Ω, and v j � G
l j

f � q j � � q j � Ω � 1 � ki � l j � m. We de-
fine the following two predicates:

� i � c1 and c2 are edge-disjoint : � � 1 � i � n � 1 � j � t :
ui and v j are edge-disjoint

� ii � c1edge-inside c2 : � � 1 � i � n :
� � 1 � j � t : pi � q j � µ!

ui
� C � pi � � � µ!

v j
� C � q j � � � �

� � ẽ � Eki
f � pi � : α1 � 0 �� µ � ẽ � �

The predicate edge-disjoint implies that two fuzzy grid unit complexes may only share single vertices
but no edges. Otherwise, we could merge them together into a single fuzzy grid unit complex. The
predicate edge-inside first checks whether each grid unit of c1 is contained in c2 and whether the label
of the 2-cell of c1 is not greater than the label of the 2-cell of c2. A second condition additionally
requires that the edges of all fuzzy grid units of c1 are not labeled with 0. This, in particular, means
that the vertices of the grid units of c1 are allowed to have the label 0.

Moreover, this condition identifies the corresponding grid units of c1 in c2 and tests whether c2’s
edges contain the label α1. If this is not the case, then we know that c1 lies properly in c2, otherwise
c1 contains at least one grid unit lying on the “thick boundary” of a grid unit in c2.



A fuzzy face f (see Figure 4b) is a pair � c � H � with c � CO f � Ω � � H � �
h1 � ����� � hn � with hi � CO f � Ω �

such that the following conditions hold (let U � H � � � 1 � i � n hi, let p � q � Ω � 1 � k � l � m, and let U f � f �
denote the set of all grid units of f ):

(i) � u � U f � H � : u � Gk
f � p �  µ!

u � C � p � � � αm � 1 (or: k � m)

(ii) � u � U f � H � � v � c : � u � Gk
f � p � � v � Gl

f � q � �  � p � q � µ!
v � C � q � � � µ!

u � C � p � �
(iii) � 1 � i � n : hi edge-inside c

(iv) � 1 � i � j � n : hi and h j are edge-disjoint

(v) Each fuzzy grid unit complex is either equal to c or to one of the elements in H (that is,
no other fuzzy grid unit complex can be formed from the units of f )

(vi) U f � f � � c � U f � H �
(vii) � u � U f � f � � v � U f � f � � u �� v : u and v 1-meet

Conditions (i) and (ii) show the problem of defining a concept of “fuzzy holes” (see also the discussion
in (Schneider, 1999)). In fact, there are only crisp holes, since only they can express parts enclosed
by a fuzzy grid unit complex and do definitely not lie within the interior of c. We therefore have to
require (conceptually) that the units composing the holes are crisp in c, too. Otherwise, condition
(iii) would not work which tests whether all holes are edge-inside c. A hole is only allowed to share
vertices and not edges with the exterior of c; otherwise we would form a ”bay” in c, and we should
have omitted the hole unit from the structure definition of c before. Condition (iv) requires that any
two holes share at most vertices and not edges; otherwise we could merge them together into one hole.
Condition (v) ensures uniqueness of representation, that is, there are no two different interpretations
of a set of fuzzy grid units as sets of fuzzy faces. Condition (vi) describes the set of units belonging to
f . Unfortunately, the set difference can yield a collection of fuzzy grid units which is not connected
(see Figure 4c). The connectivity property is required in condition (vii).

Let Ff � Ω � denote the set of all fuzzy faces over Ω, and let f � � f0 � F � � g � � g0 � G ��� Ff � Ω � . We then
define the predicate:

f and g are edge-disjoint : � f0 and g0 are edge-disjoint �
� g � G : f0 edge-inside g � � f � F : g0 edge-inside f

The “structured view” of a fuzzy spatial data type for discrete fuzzy regions called fregion is based on
fuzzy faces and is defined as follows:

fregion � �
F 
 Ff � Ω � � � f � g � F : f and g are edge-disjoint�

The “flat view” emphasizes fuzzy grid units as the basic component of fuzzy regions:

fregion � �
U 
 G f � Ω � � � F 
 Ff � Ω � : U � �

f � F

U f � f � �

Given F � fregion, let U f � F � �	� f � F U f � f � be the set of all fuzzy grid units of F . We can then simply
define the type region for discrete crisp regions as:

region � �
F � fregion � � u � Gk

f � p ��� U f � F � � p � V � Ω � � 1 � k � m : µ!
u � C � p � � � 1 �

Last but not least, we can give a definition for a special subtype of discrete fuzzy regions. This type
called sfregion (for smooth fuzzy regions) takes into account “smooth” (that is, gradual) transitions
within the interior of a region and models a kind of stepwise continuation (“discrete continuity”):

sfregion � �
F � fregion � � u � Gk

f � p � � v � Gl
f � q � � U f � F � � p � q � V � Ω � � 1 � k � l � m :

u and v 1-meet  � k � l � � 1 �



This means that two adjacent grid units have either the same label or two neighbored labels in the
ordered sequence of labels of Λ. This strategy models stepwise continuation. Figure 5 shows a
schematic example.

1 1 2 3 2

23221

2 3 3 3 2

12343

4 5 4 3 2

Figure 5: An example of the labeling strategy in a smooth fuzzy region. The label i stands for αi.

Note that the grid units of a fuzzy region that carry the same label or a subcollection of labels form a
subregion of the fuzzy region.

Obviously, region � sfregion � fregion holds.

5 GEOMETRIC UNION, INTERSECTION, AND DIFFERENCE

We will now define the three geometric operations union f , intersectionf , and difference f which all
have the signature fregion � fregion � fregion and whose definition is based on the flat view. In case
of union f we gather all grid units contained in the two fuzzy regions, label common 2-cells of the
grid units with the maximum membership value, and adjust the label sets of bounding fuzzy vertices
and edges according to the label correction mechanism. Let F1 � F2 � F � fregion. The union operation
is then defined on the basis of the union operation on fuzzy sets, and we obtain F � union f � F1 � F2 �
such that

� i � � p � Ω � 1 � k � l � m :

� � � s � Gk
f � p ��� U f � F1 � � � t � Gl

f � p ��� U f � F2 � �  � u � Gmax 
 k � l �
f � p � � U f � F � � �

� � � s � Gk
f � p ��� U f � F1 � �

�
t � Gl

f � p ��� U f � F2 � �  � u � Gk
f � p ��� U f � F � � �

� � �
s � Gk

f � p � � U f � F1 � � � t � Gl
f � p ��� U f � F2 � �  � u � Gl

f � p ��� U f � F � �
� ii � Label correction applied to U f � F � �

If F1 and F2 have a fuzzy grid unit u in common, u is associated in F with the maximum membership
value of both units. Correspondingly, the operation intersection f � F1 � F2 � rests on the intersection of
fuzzy sets und assigns the minimum membership value to fuzzy grid units that are part of both regions.
Condition (i) from above has to be replaced with

� i � � p � Ω � 1 � k � l � m :

� � � s � Gk
f � p � � U f � F1 � � � t � Gl

f � p ��� U f � F2 � �  � u � Gmin 
 k � l �
f � p � � U f � F � �

The meaning of the operation difference f is not defined with the aid of the difference on fuzzy sets
(that is, P � Q

�� P ��� Q), since the right side of the inequality does not make great sense in the spatial
context. We replace condition (i) from above with

� i � � p � Ω � 1 � k � l � m :
� � s � Gk

f � p ��� U f � F1 � � � t � Gl
f � p � � U f � F2 � � k � l � 

� � u � Gw
f � p � � U f � F � � w � min

�
v � � 2 ������� � m � � αv 
 αk

�
αl �



The idea is that the membership value of a unit area is diminished (if possible) by another unit area
having the same location. In the crisp case this leads to a total elimination of the first unit area and in
the fuzzy case to a partial elimination of the first unit area. E � F � and V � F � are defined as for union f .

6 TOPOLOGICAL PREDICATES

In this section we deal with topological predicates for crisp and fuzzy spatial objects. Predicates
computing topological relationships between spatial objects are very important for spatial databases,
GIS, and image databases. In particular, they are needed in spatial query languages where they are
employed as part of a filter condition in a query. For the Euclidean space, topological relationships
have been studied very intensively. An important approach rests on the so-called 9-intersection model
(Egenhofer et al., 1989; Egenhofer, 1989) from which a canonical collection of topological relation-
ships can be derived for each combination of spatial types. The model is based on the nine possible
intersections of boundary (∂A), interior (A � ), and exterior (A

�
) of a spatial object with the correspond-

ing components of another object. Each intersection is tested with regard to the topologically invariant
criteria of emptiness and non-emptiness. This can be expressed for two spatial objects A and B by
evaluating the following matrix:��

∂A � ∂B
�� � ∂A � B � �� � ∂A � B

� �� �
A � � ∂B

�� � A � � B � �� � A � � B
� �� �

A
� � ∂B

�� � A
� � B � �� � A

� � B
� �� �

��

For this matrix 92 � 81 different configurations are possible from which only a certain subset makes
sense depending on the combination of spatial objects just considered. In this paper we will only
deal with regions. A restriction of the 9-intersection model is that the regions considered must be
homeomorphic to the closed disc, that is, they must be connected and are not allowed to have holes.
We call this subtype of regions region’, and if we speak of regions in this section, we relate to them
in the restricted sense just described. For two regions, eight meaningful configurations have been
identified which lead to the eight predicates called disjoint, meet, overlap, equal, inside, contains,
covers, and coveredBy. Each predicate is associated with a unique intersection matrix so that all
predicates are mutually exclusive and complete with regard to the topologically invariant criteria of
emptiness and non-emptiness:��

0 0 1
0 0 1
1 1 1

��
disjoint

��
1 0 1
0 0 1
1 1 1

��
meet

��
1 1 1
1 1 1
1 1 1

��
overlap

��
1 0 0
0 1 0
0 0 1

��
equal��

0 1 0
0 1 0
1 1 1

��
inside

��
0 0 1
1 1 1
0 0 1

��
contains

��
1 0 1
1 1 1
0 0 1

��
covers

��
1 1 0
0 1 0
1 1 1

��
coveredBy

Since our crisp and fuzzy spatial objects are part of the grid partition and since the grid partition is
embedded into the Euclidean space and is thus a topological space, the spatial objects (and the grid
partition) enjoy the topological properties of

� 2. Hence, it is permissible to apply the 9-intersection
model to discrete crisp and fuzzy spatial objects. Unfortunately, we do not have, so far, concepts of
boundary, interior, and exterior in our model. Consequently, we have to investigate in which manner
fuzzy unit areas, edges, and vertices contribute to these three topological concepts.

Let F � fregion. We have already defined U f � F � as the set of all fuzzy grid units of F . Moreover,
we define C f � F � � �

c̃ � C f � Ω ��� � u � Gk
f � p � � U f � F � � p � Ω � 1 � k � m : c̃ � Ck

f � p � � as the set of



all fuzzy unit areas, E f � F � � �
ẽ � E f � Ω ��� � u � U f � F � : ẽ bounds u � as the set of all fuzzy edges and

V f � F � � �
p̃ � V f � Ω � � � u � U f � F � : p̃ bounds u � as the set of all fuzzy points of F. Restricting now

F to exclusively crisp regions (that is, F � region’), we obtain crisp unit areas, edges, and vertices3

carrying the label
�
1 � . We specify how interior, boundary, and exterior of F can be expressed by

them.

C � ∂F � � � C � F � � � C � F � C � F � � � C � Ω ��� C � F �
E � ∂F � � �

e � E � F ��� 0 � µ � e � � E � F � � � E � F ��� E � ∂F � E � F � � � E � Ω ��� E � F �
V � ∂F � � �

p � V � F � � 0 � µ � p � � V � F � � � V � F � � V � ∂F � V � F � � � V � Ω ��� V � F �

This enables us now to denote the three topological sets of a crisp region F occurring in the intersec-
tion matrix as:

∂F � C � ∂F � � E � ∂F � � V � ∂F �
F � � C � F � � � E � F � � � V � F � �
F

� � C � F � � � E � F � � � V � F � �

These sets can now be used to compute the intersection sets in the matrix. We must, of course, pay
attention to the fact that only sets of compatible types can be combined. For example, the interior-
interior intersection between two regions F and G can and must be limited to the following computa-
tion:

F � � G � � � C � F � � � C � G � � � � � E � F � ��� E � G � � � � � V � F � � � V � G � � �

This amounts to 27 intersection sets that apparently have to be calculated. But this number can be
reduced to nine if we look at the possible dimensions of the entries in the intersection matrix. The
observation (with one exception) is that the dimension of the intersection of two spatial components
having dimension n and m, respectively, is equal to min � n � m � , or the intersection is empty. The
intersection of two open areas (interior or exterior) is two-dimensional or empty. This leads to four
cases. The intersection of a boundary with an open area (interior or exterior) is one-dimensional or
empty. This leads also to four cases. An exception is the boundary-boundary intersection which can
have a one-dimensional (common edges) or a zero-dimensional (common vertices) result, or which
can be empty. If this intersection has common edges, then this intersection has also common vertices,
namely at least those which bound the intersecting edges. If the dimension of the intersection is
zero, it is obvious that the intersection has no common edges. Hence, it must have common one-
dimensional vertices. In summary, we can pose the following intersection matrix for discrete crisp
regions:

∂G G � G
�

∂F
F �
F

�

��
V � ∂F � � V � ∂G �
E � F � ��� E � ∂G �
E � F � � � E � ∂G �

E � ∂F ��� E � G � �
C � F � ��� C � G � �
C � F � ��� C � G � �

E � ∂F � � E � G � �
C � F � ��� C � G � �
C � F � ��� C � G � �

��

This intersection matrix can be the basis for a treatment of topological relationships between discrete
fuzzy regions. The restriction to objects of type region’ also leads to a restriction of fuzzy regions in
the sense that we can here only permit simple fuzzy regions. A simple fuzzy region is a region that
is α-connected and where each α-level region (see definition of an α-set in Section 4.1, (Schneider,
1999)) is an element of type region’. A fuzzy region is called α-connected if all its α-level regions Fαi

for αi � Λ are simple crisp regions, that is, elements of region’. Since αi � αi � 1, we obtain Fαi � Fαi � 1

3Hence, we can omit the index f in C f
�
F ��� E f

�
F ��� Vf

�
F � in the following.



for 1 � i � n, that is, the α-level regions are nested. This describes some kind of a “concentric” model
of a fuzzy region with its core in the center and more vague parts in the core’s environment. With
increasing distance from the center the degree of membership decreases.

The remaining question now is how to employ the α-level regions for determining the topological
relationships between two simple fuzzy regions. We use the concept of basic probability assignment
(Dubois et al., 1987) for this purpose. A basic probability assignment m � Fαi � can be attached to each
α-level region Fαi and can be interpreted as the probability that Fαi is the “true” representative of
F . It is defined as m � Fαi � � αi

�
αi � 1 for 1 � i � n with α1 � 0 and αn � 1. It is easy to see that

∑1 � i � n m � Fαi � � αn
�

α1 � 1
�

0 � 1.

Let τp � F � G � be the value that represents a relationship p between two simple fuzzy regions F and G.
Based on the work in (Dubois et al., 1987) the relationship p between F and G can be determined by

τp � F � G � �
n

∑
i � 2

n

∑
j � 2

m � Fαi � � m � Gα j � � τp � Fαi � Gα j �

where τp � Fαi � Gα j � �
�
0 � 1 � checks the validity of predicate p for two simple crisp α-level regions Fαi

and Gα j . This formula is equivalent to:

τp � F � G � �
n

∑
i � 2

n

∑
j � 2
� αi

�
αi � 1 � � � α j

�
α j � 1 � � τp � Fαi � Gα j �

If p is one of our eight topological predicates out of
�
disjoint, meet, overlap, equal, inside, contains,

covers, coveredBy � , we can compute the degree of the corresponding topological relationship between
two simple fuzzy regions, that is, 0 � τp � F � G � � 1.

7 CONCLUSIONS

This paper lays the conceptual and formal foundation for the treatment of regions blurred by the
feature of fuzziness and defined over a discrete geometric domain. The belief that simply finite point
sets are sufficient to appropriately model discrete regions has turned out to be a fallacy. Grid partitions
are an appropriate geometric domain for discrete crisp and fuzzy spatial objects since they distinguish
different components of space, each component having different dimension. The embedding of grid
partitions into the Euclidean space as a topological space enables us to reason about topological
relationships between discrete fuzzy regions with the aid of the 9-intersection model.

In the future the goal is to develop a finite resolution fuzzy spatial algebra including also fuzzy points
and fuzzy lines and also a comprehensive set of operations. Another issue will be how to implement
this type system.
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