

Genomics Algebra: A New, Integrating Data Model, Language,
and Tool for Processing and Querying Genomic Information

Joachim Hammer and Markus Schneider

Department of Computer & Information Science & Engineering
University of Florida

Gainesville, FL 32611-6120, U.S.A.
{jhammer,mschneid}@cise.ufl.edu

Abstract
The dramatic increase of mostly semi-structured
genomic data, their heterogeneity and high
variety, and the increasing complexity of
biological applications and methods mean that
many and very important challenges in biology
are now challenges in computing and here
especially in databases. In contrast to the many
query-driven approaches advocated in the
literature, we propose a new integrating approach
that is based on two fundamental pillars. The
Genomics Algebra provides an extensible set of
high-level genomic data types (GDTs) (e.g.,
genome, gene, chromosome, protein, nucleotide)
together with a comprehensive collection of
appropriate genomic functions (e.g., translate,
transcribe, decode). The Unifying Database
allows us to manage the semi-structured contents
of publicly available genomic repositories and to
transfer these data into GDT values. These
values then serve as arguments of Genomics
Algebra operations, which can be embedded into
a DBMS query language.

1. Introduction
In the past decade, the rapid progress of genome projects
has led to a revolution in the life sciences causing a large
and exponentially increasing accumulation of information
in molecular biology and an emergence of new and
challenging applications. The flood of genomic data, their
high variety and heterogeneity, their semi-structured
nature as well as the increasing complexity of biological

applications and methods mean that many and very
important challenges in biology are now challenges in
computing and here especially in databases. This
statement is underpinned by the fact that millions of
nucleic acid sequences with billions of bases have been
deposited in the well-known persistent genomic
repositories EMBL, GenBank, and DDBJ. Both
SwissProt and PIR form the basis of annotated protein
sequence repositories together with TrEMBL and
GenPept, which contain computer-translated sequence
entries from EMBL and GenBank. In addition, hundreds
of specialized repositories have been derived from the
above primary sequence repositories. Information from
them can only be retrieved by computational means.

The indispensable and inherently integrative discipline
of bioinformatics has established itself as the application
of computing and mathematics to the management,
analysis, and understanding of the rapidly expanding
amount of biological information to solve biological
questions. Consequently, research projects in this area
must have and indeed have a highly interdisciplinary
character. Biologists provide their expertise in the
different genomic application areas and serve as domain
experts for input and validation. Computer scientists
contribute their knowledge about the management of huge
data volumes and about sophisticated data structures and
algorithms. Mathematicians provide specialized analysis
methods based, e.g., on statistical concepts.

We have deliberately avoided the term ‘genomic
database’ and replaced it by the term ‘genomic repository’
since many of the so-called genomic ‘databases’ are
simply collections of flat files or accumulations of Web
pages and do not have the beneficial features of real
databases in the computer science sense. Attempts to
combine these heterogeneous and largely semi-structured
repositories have been predominantly based on federated
or query-driven approaches leading to complex
middleware tiers between the end user application and the
genomic repositories.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 2003 CIDR Conference

This position paper propagates the increased and
integrative employment of current database technology as

well as appropriate innovations for the treatment of non-
standard data to cope with the large amounts of genomic
data. In a sense, we advocate a “back to the roots”
strategy of database technology for bioinformatics. This
means that general database functionality should remain
inside the DBMS and not be shifted into the middleware.

The concepts presented in this paper aim at
overcoming the following fundamental challenges: The
deliberate independence, heterogeneity, and limited
interoperability among multiple genomic repositories, the
enforced low-level treatment of biological data imposed
by the genomic repositories, the lack of expressiveness
and limited functionality of current query languages and
proprietary user interfaces, the different formats and the
lack of structure of biological data representations, and
the inability to incorporate owns own, self-generated data.

Our integrating approach, which to our knowledge is
new in bioinformatics and differs substantially from the
integration approaches that can be found in the literature
(see Section 3), rests on two fundamental pillars:
1. Genomics Algebra. This extensible algebra is based

on the conceptual design, implementation, and
database integration of a new, formal data model,
query language, and software tool for representing,
storing, retrieving, querying, and manipulating
genomic information. It provides a set of high-level
genomic data types (GDTs) (e.g., genome, gene,
chromosome, protein, nucleotide) together with a
comprehensive collection of appropriate genomic
operations or functions (e.g., translate, transcribe,
decode). Thus, it can be considered a resource for
biological computation.

2. Unifying Database. Based on latest database
technology, the construction of a unifying and
integrating database allows us to manage the semi-
structured or, in the best case, structured contents of
genomic repositories and to transfer these data into
high-level, structured, and object-based GDT values.
These values then serve as arguments of Genomics
Algebra operations. In its most advanced extension,
the Unifying Database will develop into a global
database comprising the most important or, as a
currently rather unrealistic vision, even all publicly
available genomic repositories.

The main benefits resulting from this approach for the
biologist can be summarized as follows: Instead of a
currently low-level treatment of data in genomic
repositories, the biologist can now express a problem and
obtain query results in biological terms (using high-level
concepts) with the aid of genomic data types and
operations. In addition, the biologist is provided with a
powerful, general, and extensible high-level biological
query language and user interface adapted to his/her
needs. In a long-term view, the biologist is not confronted
any more with hundreds of different genomic repositories
but is equipped with an integrated and consistent working

environment and user interface based on a unifying or
ultimately global database. This Unifying Database allows
the biologist to combine, integrate, and process data from
originally different genomic resources in an easy and
elegant way. Finally, it enables the integration and
processing of self-generated data and their combination
with data stemming from public resources.

2. Requirements of genomic data management
Adequate employment of database technology requires a
deep understanding of the problems of the application
domain. These domain-specific requirements then make it
possible to derive computer science and database relevant
requirements for which solutions have to be found.
Discussions and cooperation with biologists have revealed
the following main problems regarding the information
available in the genomic repositories:

B1. Proliferation of specialized databases coupled with
continuous expansion of established repositories
creates missed opportunities.

B2. Two or more databases may hold additive or
conflicting information.

B3. There is little or no agreement on terminology and
concepts among different groups and consequently
among the repositories they are building.

B4. A familiar data resource will disappear or morph to
a different site.

B5. Query results are unmanageable unless organized
into a customized, project-specific database.

B6. Data records copied from a source become obsolete
and possibly misleading unless updated.

B7. The portal to each data site is a unique interface
forcing scientists to develop customized access and
retrieval methods.

B8. The database schema and data types are unknown to
the user making custom SQL queries impossible.

B9. Biologists do not understand SQL, don’t want to
understand database schemas, and would prefer
constructing queries using familiar biological terms
and operations.

B10. Data in most genomics repositories are noisy, e.g., it
is estimated that 30-60% of sequences in GenBank
are erroneous.

These ten information-related problems (B1-B10)
identified from a biologist’s perspective lead to the
following computer science centric problems (C1-C15).
The identifiers in parentheses serve as cross-references
into the list above.
C1. Multitude and heterogeneity of available genomic

repositories (B1, B2, B3). Finding all appropriate
sites from the more than 300 genomic repositories
available on the Internet for answering a question is
difficult. Many repositories contain related genomic

data but differ with respect to contents, detail,
completeness, data format, and functionality.

C2. Missing standards for genomic data representation
(B1, B2, B3, B7). There is no commonly accepted
way for representing genomic data as evident in the
large number of different formats and
representations in use today.

C3. Multitude of user interfaces (B7). The multitude of
genomic repositories implies a multitude of user
interfaces and ontologies a biologist is forced to
learn and to comprehend.

C4. Quality of user interfaces (B5, B7, B8, B9). In order
to utilize existing user interfaces effectively, the
biologist needs detailed knowledge about computing
and data management since they are often too
system-oriented and not user-friendly enough.

C5. Quality of query languages (B5, B8, B9). SQL is
tailored to answer questions about alphanumerical
data but unsuited for biologists asking biological
questions. Consequently, the biologist should have
access to a biological query language.

C6. Limited functionality of genomic repositories (B2,
B3, B8, B9). The interactions of the biologist with a
genomic repository are limited to the functions
available in the user interface of that repository.
This implies a lack of flexibility and the ability to
ask new types of queries.

C7. Format of query results (B5, B6). The result of a
query against a genomic repository is often
outputted to the computer screen or to a text file and
cannot be used for further computation. It is then left
to the biologist to analyze the results manually.

C8. Incorrectness due to inconsistent and incompatible
data (B1, B2, B3, B6). The existence of different
genomic repositories with respect to the same kind
of biological data leads to the question whether and
where similar or overlapping repositories agree and
disagree with one another.

C9. Uncertainty of data (B2, B6, B10). A very important
but extremely difficult question refers to the
correctness of data stored in genomic repositories.
Due to vague or even lacking biological knowledge
and due to experimental errors, erroneous data in
genomic repositories cannot be excluded.
Frequently, it cannot be decided from two
inconsistent pieces of data, which one is correct and
which one is wrong. In this case, access to both
alternatives should be given.

C10. Combination of data from different genomic
repositories (B2, B8, B9). Currently, data sets from
different, independent genomic repositories cannot
be combined or merged in an easy and meaningful
manner.

C11. Extraction of hidden and creation of new knowledge
(B1, B2, B8, B9). The nature of stored genomic
data, e.g., in flat files, semi-structured records,
makes it difficult to extract hidden information and
to create new knowledge. The extraction of relevant
data from query results and their analysis has to be
performed without much computational support.

C12. Low-level treatment of data (B1, B2, B5, B8, B9).
Genomic data representations and query results are
more or less collections of textual strings and
numerical values and are not expressed in biological
terms such as genes, proteins, and nucleotide
sequences. Operations on these high-level entities
do not exist.

C13. Integration of self-generated data and extensibility
(B5, B6). A biologist generates new biological data
from their own research or experimental work. It is
not possible to store and retrieve this data, to
perform computations with generally known or even
own methods, and to match the data against the
genomic databases. This requires an extensible
database management system, query language, and
user interface.

C14. Integration of new specialty evaluation functions
(B5, B8, B9). The possibility to evaluate data
originally stemming from genomic repositories as
well as self-generated data with publicly available
methods is insufficient. Thus, it must be possible to
create, use, and integrate user-defined functions that
are capable of operating on both kinds of data.

C15. Loss of existing repositories (B4). Due to the high
competition at the bioinformatics market, many
companies disappear and with them the genomic
repositories that were maintained by them. The
company’s valuable knowledge should be preserved.

This detailed problem analysis shows the enormous
complexity of the information-related challenges
biologists and computer scientists are confronted with. It
is our conviction, and we will motivate and explain this in
the following sections, that the combination of Genomics
Algebra and Unifying Database is a solution for all these
problems, even though it raises a number of new,
complicated, and hence challenging issues.

3. Biological database integration
Much research has been conducted to reduce the burden
on the biologist when attempting to access related data
from multiple genomic repositories. One can distinguish
two commonly accepted approaches: (1) query-driven
integration or mediation and (2) data warehousing. In
both approaches, users access the underlying sources
indirectly through an integrated, global schema (view),
which has been constructed either from the local schemas
of the sources or from general knowledge of the domain.

Data
Source n

Data
Source 1

Data
Source 2

Wrapper

Integration System

Interface

Wrapper Wrapper

Source-
level

Middleware

Client-level

Figure 1: Generic integration architecture using the query-
driven approach.

…

In the biological domain, most integration systems are
currently based on the query-driven approach1. SRS [4],
BioNavigator [2], K2/Kleisli [3], TAMBIS [8] and
DiscoveryLink [6] are representatives of this class.
Although they differ greatly in the capabilities they offer,
they can be considered middleware systems, in which the
bulk of the query and result processing takes place in a
different location from where the data is stored. For
example, K2/Kleisli, DiscoveryLink, and TAMBIS use
source-specific data drivers (wrappers) for extracting the
data from underlying data sources (e.g., GenBank,
dbEST, SWISS-PROT) including application programs
(e.g., the BLAST family of similarity search
programs[1]). The extracted data is then shipped to the
integration system, where it is represented and processed
using the data model and query language of the
integration system (e.g., the relational model and SQL in
TAMBIS, the object-oriented model and OQL in
K2/Kleisli). Biologists access the integration system
through a client interface, which hides many of the
source-specific details and heterogeneities. The query-
driven approach to accessing multiple sources is depicted
in Figure 1.

The generic data warehousing architecture (not shown)
looks similar to the one depicted in Figure 1, except for
the addition of a repository (warehouse) in the
middleware layer. This warehouse is used by the
integration system to store (materialize) the integrated
views over the underlying data sources. Instead of
answering queries at the source, the data in the warehouse
is used. This greatly improves performance but requires
complex maintenance procedures to update the warehouse
in light of changes to the sources. Among the integration
systems for biological databases, the only representative
of the data warehousing approach known to us is GUS
(Genomics Unified Schema) [3]. GUS describes a

relational data warehouse in support of organism and
tissue-specific research projects at the University of
Pennsylvania. GUS shares some of its goals and
requirements with the system proposed in this paper.

1 Historically, sharing architectures based on the query-driven
approach have also been termed federated databases.

Despite the continuous advancements in biological
database systems research, we argue that current systems
present biologists with only an incomplete solution to the
growing data management problem they are facing. More
importantly, we share the belief of the authors in [3] that
in those situations where close control over query
performance as well as accuracy and consistency of the
results are important (problem C8 in Section 2), the
query-driven approach is not an option. However, query
performance and correctness are only two aspects of
biological data management. As can be seen in our list of
requirements in Section 2, a suitable representation of
biological data and a powerful and extensible biological
query language capable of dealing with the inherent
uncertainty of the correctness of biological data are
equally important (C2, C4, C6, C9, C12, C14). To our
knowledge, none of the existing systems currently
addresses these requirements.

Independent of the integration approach used, current
systems lack adequate support for biologists, forcing them
to adopt their research methods to fit those imposed by
the data management tools instead of the other way
around. Table 1 summarizes how the integration systems
mentioned above address each of the computer science
issues C1-C15. In the next sections, we outline our
proposal for a genomic data warehouse and a powerful
analysis component. We believe the combination of the
two greatly enhances the way biologists analyse and
process information including data stored in the existing
genomic repositories.

4. Genomics Algebra
Based on the observations and conclusions made in
Section 3, we pursue an alternative, integrative approach,
which heavily focuses on current database and data
warehouse technologies. The Genomics Algebra (GenAlg)
is the first of two pillars of our approach. It incorporates a
sophisticated, self-contained, and high-level type system
for genomic data together with a comprehensive set of
operations.

4.1 An ontology for molecular biology and
bioinformatics

The first step and precondition for a successful
construction of our Genomics Algebra is the design of an
ontology for molecular biology and bioinformatics. By
ontology, we are referring to “a specification of a
conceptualization.” That is, in general, an ontology is a
description of the concepts and relationships that define
an application domain.

Applied to bioinformatics, an ontology is a
“controlled vocabulary for the description of the

molecular functions, biological processes and cellular
components of gene products.” An obstacle to its unique
definition is that the multitude of heterogeneous and
autonomous genomic repositories has induced
terminological differences (synonyms, aliases, formulae),
syntactic differences (file structure, separators, spelling)
and semantic differences (intra- and interdisciplinary
homonyms). The consequence is that data integration is

impeded by different meanings of identically named
categories, overlapping meanings of different categories,
and conflicting meanings of different categories. Naming
conventions of data objects, object identifier codes, and
record labels differ between databases and do not follow a
unified scheme. Even the meaning of important high-level
concepts (e.g., the notion of gene or protein function) that
are fundamental to molecular biology is ambiguous.

Table 1: Analysis of data management capabilities of existing integration systems with respect to the requirements outlined in Sec. 2.

 SRS BioNavigator K2/Kleisli DiscoveryLink TAMBIS GUS

C1
User shielded from
source details

User shielded from
source details

User shielded from
source details

User shielded from
source details

User shielded from
source details

User shielded from
source details

C2 HTML HTML Global schema using
object-oriented model

Global schema using
relational model

Global schema
using description
logic

GUS schema based
on relational model;
OO views

C3 Single-access point Single-access point Single-access point Single-access point Single-access point Single-access point
C4 Simple to use visual

interface
Simple to use visual
interface

Not a user-level
interface

Requires knowledge of
SQL

Simple to use visual
interface

Requires knowledge
of SQL

C5 Limited query
capability

Not query oriented Comprehensive query
capability

Comprehensive query
capability

Comprehensive
query capability

Comprehensive
query capability

C6 No new operations No new operations New operations on
integrated view data

New operations on
integrated view data

New operations on
integrated view data

New operations
defined on
warehouse data

C7 No re-organization
of source data

No re-organization of
source data

Reorganization of result
possible

Reorganization of result
possible

Reorganization of
result possible

Reorganization of
result possible

C8 No reconciliation of
results

No reconciliation of
results

No reconciliation of
results

No reconciliation of
results

Result reconciliation
supported

Data in warehouse
is reconciled and
cleansed

C9 No provision for
dealing with
uncertainty in data

No provision for
dealing with
uncertainty in data

No provision for dealing
with uncertainty in data

No provision for dealing
with uncertainty in data

No provision for
dealing with
uncertainty in data

No provision for
dealing with
uncertainty in data

C10 Results not
integrated; sources
must be Web-
enabled

Results not integrated;
sources must be Web-
enabled

Results integrated
using global schema;
source wrapper needed

Results integrated
using global schema;
source wrapper needed

Results integrated
using global
schema; source
wrapper needed

Query results are
integrated

C11 Not supported Not supported Not supported Not supported Not supported Annotations
supported

C12 Not supported Not supported Not supported Not supported Not supported Not supported
C13 Not supported Not supported Not supported Not supported Not supported Supported
C14 Not supported Not supported Not supported Not supported Not supported Not supported
C15 No archival

functionality
No archival
functionality

No archival functionality No archival functionality No archival
functionality

Archiving of data
supported

If the user queries a database with such an ambiguous
term, until now (s)he has full responsibility to verify the
semantic congruence between what (s)he asked for and
what the database returned. An ontology helps here to
establish a standardised, formally and coherently defined
nomenclature in molecular biology. Each technical term
has to be associated with a unique semantics that should
be accepted by the biological community. If this is not
possible, because different meanings or interpretations are
attached to the same term but in different biological
contexts, then the only solution is to coin a new,
appropriate, and unique term for each context. Uniqueness
of a term is an essential requirement to be able to map
concepts into the Genomics Algebra.

Consequently, one of our current research efforts and
challenges is to develop a comprehensive ontology, which
defines the terminology, data objects and operations

including their semantics that underlie genome
sequencing. Since there has been much effort in defining
ontologies for various bioinformatics projects [7], for
example, Eccocyc, Pasta, Gene Ontology Consortium, we
are about to study and compare these and other existing
contributions in this field when defining our ontology.
Therefore, besides an important contribution in itself, a
comprehensive ontology forms the starting point for the
development of our Genomics Algebra. In total, this goal
especially contributes to a solution of the problems C1,
C2, C3, C5, C8, C9, C11, and C12. Besides developing
such a genomic ontology, a challenge is to devise an
appropriate formalism for its unique specification.

4.2 The algebra

In a sense, the Genomics Algebra as the second step is the
derived, formal, and executable instantiation of the

resulting genomic ontology. Entity types and functions in
the ontology are represented directly using the appropriate
data types and operations supported by our Genomics
Algebra. This algebra2 has to satisfy two main tasks. First,
it has to serve as interface between biologists, who use
this interface, and computer scientists, who implement it.
An essential feature of the algebra is that it incorporates
high-level biological terminology and concepts. Hence, it
is not based on the low-level concepts provided by
database technology. Second, as a result, this high-level,
domain-specific algebra will greatly facilitate the
interactions of biologists with genomic information stored
in our Unifying Database (see Section 5) and
incorporating at least the knowledge of the genome
repositories. This is much like the invention of the 3-tier
architecture and how the resulting data independence
simplified database operations in relational databases. To
our knowledge, no such algebra currently exists in the
field of bioinformatics. The main impact of this goal is in
solving the problems C2 to C4 and C6 to C14. This
requires close coordination between domain experts from
biology, who have to identify and select useful data types,
relevant operations, and their semantics, and computer
scientists, whose task it is to formalize and implement the
algebra.

In order to explain the notion of algebra, we start with
the concept of a many-sorted signature, which consists of
two sets of symbols called sorts (or types) and operators.
Operators are annotated with strings of sorts. For instance,
the symbols string, integer, and char may be sorts and
concatstring string string and getcharstring integer char two operators.
The annotation with sorts defines the functionality of the
operator, which in a more conventional way is usually
written as concat : string × string → string and getchar :
string × integer → char. To assign semantics to a
signature, one must assign a (carrier) set to each sort and
a function to each operator. Each function has domains
and a codomain according to the string of sorts of the
operator. Such a collection of sets and functions forms a
many-sorted algebra. Hence, a signature describes the
syntactic aspect of an algebra by associating with each
sort the name of a set of the algebra and with each
operator the name of a function. A signature especially
defines a set of terms such as
getchar(concat(“Genomics”, “Algebra”), 10). The sort of
a term is the result sort of its outermost operator, which is
char in our example.

Our Genomics Algebra is a domain-specific, many-
sorted algebra incorporating a type system for biological
data. Its sorts, operators, carrier sets, and functions will be
derived from the genomic ontology developed in the first
step. The sorts are called genomic data types (GDTs) and

2 The following algebraic model expresses our object-based
understanding of the genomics domain. The realization of this
model, e.g., using an object-oriented approach, is irrelevant in
this context.

the operators genomic operations. To illustrate the
concept, we assume the following, very simplified
signature, which is part of our algebra:

 sorts
 gene, primaryTranscript, mRNA, protein
 ops
 transcribe: gene → primaryTranscript
 splice: primaryTranscript → mRNA
 translate: mRNA → protein

This “mini algebra” contains four sorts or genomic data
types for genes, primary transcript, messenger RNA, and
protein as well as three operators transcribe, which for a
given gene returns its primary transcript, splice, which for
a given primary transcript identifies its messenger RNA,
and translate, which for a given messenger RNA
determines the corresponding protein. We can assume that
these sorts and operators have been derived from our
genomic ontology. Hence, the high-level nomenclature of
our genomic ontology is directly reflected in our algebra.
The algebra now allows us to (at least) syntactically
combine different operations by (function) composition.
For instance, given a gene g, we can syntactically
construct the term translate(splice(transcribe(g))), which
yields the protein determined by g. For the semantic
problems of this term, see below.

Obviously, our mini algebra is incomplete. It is our
conviction that finding a “complete” set of GDTs and
genomic operations (what does “completeness” mean in
this context?) is impossible, since new biological
applications can induce new data types or new operations
for already existing data types. Therefore, we pursue an
extensible approach, i.e., if required, the Genomics
Algebra can be extended by new sorts and operations. In
particular, we can combine new sorts with sorts already
present in the algebra, which leads to new operations. In
other words, we can combine information stemming
originally from different genomic repositories. Our hope
is to be able to identify new, powerful, and fundamental
genomic operations that nobody has considered so far.

From a software point of view, the Genomics Algebra
is an extensible, self-contained software package and tool
providing a collection of genomic data types and
operations for biological computation. It is principally
independent of a database system and can be used as a
software library by a stand-alone application program.
Thus, we also denote it as kernel algebra.

This kernel algebra develops its full expressiveness
and usability if it is designed and integrated as a
collection of abstract data types (ADTs) into the type
system and query language of a database system (Section
6) [11]. ADTs encapsulate their implementation and thus
hide it from the user or another software component like
the DBMS. From a modelling perspective, the DBMS
data model and the application-specific algebra or type
system are separated. This enables the software developer

to focus on the application-specific aspects embedded in
the algebra. Consequently, this procedure supports
modularity and conceptual clarity and also permits the
reusability of an algebra for different DBMS data models.
It requires extensibility mechanisms at the type system
level in particular and at all levels of the architecture of a
DBMS in general, starting from user interface extensions
down to new, external representation and index structures.
From an implementation point of view, ADTs support
modularity, information hiding, and the exchange of
implementations. Simple and inefficient implementation
parts can then be replaced by more sophisticated ones
without changing the interface, that is, the signature of
algebra operations.

4.3 Research challenges

We have already addressed two main research challenges,
namely the design of the genomic ontology and the
derivation of the signature of the Genomics Algebra from
it. This leads us to the third main challenge, which is to
give a formal definition of the genomic data types and
operations, i.e., to specify their semantics, in terms that
can be transferred to computer science and especially to
database technology. A serious obstacle to the
construction of the Genomics Algebra is the biologists’
vague or even lacking knowledge about genomic
processes. Biological results are inherently uncertain and
never guaranteed (in contrast to the results of the
application domains mentioned above) but always
attached with some degree of uncertainty. For instance, it
is known that the splice operation takes a primary
Transcript and produces a messenger RNA, i.e., the effect
of splicing (the “what”?) is clear since the cell
demonstrates this observable biological function all the
time. But it is unknown how the cell performs
(“computes”) this function. Transferred to our Genomics
Algebra, this means that the signature of the splice
operation is known with domain and codomain as shown
in Section 4.2. We can even define the semantics of the
operation in a denotational way. However, we cannot
determine its operational semantics in the form of an
algorithm and thus not implement it directly. A way out of
this “dilemma” can be to map the procedure that
biologists use in their everyday work to elude the problem
or to compute an approximated solution for the problem.
This inherent feature of uncertainty due to lacking
knowledge must be appropriately reflected in the
Genomics Algebra in order not to pretend correct results,
which actually are vague or error-prone. The challenging
issue is how this can be done in the best way.

The fourth main challenge is to implement the
Genomics Algebra. This includes the design of
sophisticated data structures for the genomic data types
and efficient algorithms for the genomic operations. We
discuss two important aspects here. A first aspect is that
algorithms for different operations processing the same

kind of data usually prefer different internal data
representations in order to be as efficient as possible. In
contrast to traditional work on algorithms, the focus is
here not on finding the most efficient algorithm for each
single problem (operation) together with a corresponding
sophisticated data structure, but rather on considering the
Genomics Algebra as a whole and on reconciling the
various requirements posed by different algorithms within
a single data structure for each genomic data type.
Otherwise, the consequence would be enormous
conversion costs between different data structures in main
memory for the same data type. A second aspect is that
the implementation is intended for use in a database
system. Consequently, representations for genomic data
types should not employ pointer data structures in main
memory but be embedded into compact storage areas
which can be efficiently transferred between main
memory and disk. This avoids unnecessary and high costs
for packing main memory data and unpacking external
data.

5. Unifying Database
The Unifying Database is the second pillar of our
integrating approach. By Unifying Database, we are
referring to a data warehouse, which integrates data from
multiple genomic repositories. We have chosen the data
warehousing approach to take advantage of the many
benefits it provides, including superior query processing
performance in multi-source environments, the ability to
maintain and annotate extracted source data after it has
been cleansed, reconciled and corrected, and the option to
preserve historical data from those repositories that do not
archive their contents. Equally important, the Unifying
Database is also the persistent storage manager for the
Genomics Algebra.

5.1 Component overview

The component most visible to the user is the integrated
schema. We distinguish between the portions of the
schema that house the restructured and integrated external
data (i.e., the entities that store the genomic data brought
in from the sources) and which is publicly available to
every user, and those that contain the user data (i.e. the
entities that store user-created data including annotations),
which may be private. The schema containing the external
data is read-only to facilitate maintenance of the
warehouse; user-owned entities are updateable by their
owners. Separating between user and public space
provides privacy but does not exclude sharing of data
between users, which can be controlled via the standard
database access control mechanism. Since all information
is integrated in one database using the same formats and
representation, cross-referencing, linking, and querying
can be done using the declarative database language
provided by the underlying database management system
(DBMS), which has been extended by powerful

operations specific to the characteristics of the genomic
data (see Section 6.3). However, users do not interact
directly with the database language; instead, they use the
commands provided by the Genomics Algebra, which
may be embedded in a graphical user interface.

Conceptually, the Unifying Database may be
implemented using any DBMS as long as it is extensible.
By extensible we are referring to the capability to extend
the type system and query language of the database with
user-defined data types. For example, all of the object-
relational and most object-based database management
systems are extensible. We have more to say on the
integration of the Genomics Algebra with the DBMS
hosting the Unifying Database in Section 6. We believe
our integration of the Genomics Algebra with the
Unifying Database represents a dramatic improvement
over current technologies (e.g., a query-driven integration
system connected to BLAST sources) and will cause a
fundamental change in the way biologists will conduct
sequence analysis.

Conceptually, the component responsible for loading
the Unifying Database and making sure its contents are
up-to-date is referred to as ETL (Extract-Transform-
Load). In our system architecture, ETL comprises four
separate activities:

1. Monitoring the data sources and detecting
changes to their contents. This is done by the
source monitors.

2. Extracting relevant new or changed data from the
sources and restructuring the data into the
corresponding types provided by the Genomics
Algebra. This is done by the sources wrappers.

3. Merging related data items and removing
inconsistencies before the data is loaded into the
Unifying Database. This is done by the
warehouse integrator.

4. Loading the cleaned and integrated data into the
unifying database. This is done by the loader.

A conceptual overview of the Unifying Database is
depicted in Figure 3 in Section 6. As we can see from the
figure, the ETL component interfaces with a DBMS-
specific adapter instead of the DBMS directly. This
adapter, which implements the interface between database
engine and Genomics Algebra, is the only component that
has knowledge about the types and operations of the
Genomics Algebra as well as how they are implemented
and stored in the DBMS. The adapter is discussed in more
detail in the next section.

Although much has been written and documented
about building data warehouses for different applications
including the GUS warehouse for biological data at the
University of Pennsylvania [3], we briefly highlight the
challenges that we face during the development of the
Unifying Database.

5.2 Research challenges

We have identified the following challenges, which are
directly related to implementing the components
described above:

1. How do we best design the integrated schema so
that it can accommodate data from a variety of
genomic repositories?

2. How do we automate the detection of changes in
the data sources?

3. How do we integrate related data from multiple
sources in the Unifying Database?

4. How do we automate the maintenance of the
Unifying Database?

Design of the integrated schema
There are two seemingly contradictory goals when
designing the schema that defines the unifying database.
On one hand, the schema should reflect the informational
needs of the biologists, and should therefore be defined in
terms of a global, biologist-centric view of the data (top-
down design). On the other hand, the schema should also
be capable of representing the union of the entities stored
in the underlying sources (bottom-up design). We use a
bottom-up approach by designing an integrated schema
for the unifying database that contains the most important
entities from all of the underlying repositories; which
entities are considered important will be determined in
discussions with the collaborating biologists. However,
using a bottom-up approach does not imply a direct
mapping between source objects and target schema.
Given the wealth of data objects in the genomic
repositories, a one-to-one mapping would result in a
warehouse schema that is as unmanageable and inefficient
as the source schemas it is trying to replace (e.g., GUS
contains over 180 tables to store data from five
repositories). Instead, we aim for a schema that combines
and restructures the original data to obtain the best
possible query performance while providing its users with
an easy-to-use view of the data. If desired, each user can
further customize the schema to his individual needs.

Schema design will likely be an iterative process,
aiming to first create a schema that contains all of the
nucleotide data, which will later be extended by new
tables storing protein data, and so forth. This iterative
process is possible since there is little overlap among the
repositories containing different types of genomic data;
furthermore, this type of schema evolution will mainly
result in new entities being added instead of existing ones
being removed or updated.

Change detection
The type of change detection algorithm used by the source
monitor depends largely on the information source
capability and the data representation. Figure 2 classifies
the types of change detection for common sources and

data representations, where the abscissa denotes four
different source types (explained below), and different
data representations occur along the ordinate. A third
dimension (degree of cooperation of the underlying
source) is omitted for simplicity since source capability
and degree of cooperation are related.

Source
Type

Data

Hierarchical

Flat file

Relational

QueryableActive

Database
Trigger

N/A

Program
Trigger

Inspect
Log

Snaphot
Differential

Inspect
Log N/A LCS

Inspect
Log

Edit
Sequence

N/A

Edit
Sequence

Non-queryableLogged

Figure 2. Classification of data sources using data
representation and capability of the source management system
as the defining characteristics. The grid identifies several
proposed approaches to change detection. Shaded squares
denote areas of particular interest to our project.

In Figure 2, relational refers to the familiar row/column
representation used by the relational data model, flat file
refers to any kind of unstructured information (e.g., text
document), and hierarchical refers to a data
representation that exhibits nesting of elements such as
the tree and graph structures or data typically represented
in an object model. Since most of the genomic data
sources use either a flat file format (e.g., GenBank) or a
hierarchical format (e.g., AceDB), we focus our
investigation mainly on the upper two rows in the graph.

Active data sources provide active capabilities such
that notifications of interesting changes can be
programmed to occur automatically. Active capabilities
are primarily found in relational systems (e.g., database
triggers). However, some of the non-relational genomic
data sources (e.g., SWISS-PROT) are now beginning to
offer push capabilities, which will notify requesting users
when relevant sequence entries have been made.

Where logged sources maintain a log that can be
queried or inspected, changes can be extracted for
hierarchical, flat file, or relational data. Queryable
sources allow the database monitor to query information
at the source, so periodic polling can be used to detect
changes of interest. Two approaches are possible:
detecting edit sequences for successive snapshots
containing hierarchical data, or computing snapshot
differentials for relational data.

Finally, non-queryable sources do not provide
triggers, logs, or queries. Instead, periodic data dumps

(snapshots) are provided off-line, and changes are
detected by comparing successive snapshots. In the case
of flat files, one can use the “longest common
subsequence” approach, which is used in the UNIX diff
command. For hierarchical data, various diff algorithms
for ordered trees exist. In the case of the ACe databases,
the “acediff” utility will compute minimal changes
between different snapshots. For data sources that export
snapshots in XML, IBMS’s XMLTreeDiff can be used.

Despite the existence of prior existing work, change
detection remains challenging, especially for the shaded
regions in Figure 2. For example, in queryable sources,
performance and semantic issues are associated with the
polling frequency (PF). If the PF is too high, performance
can degrade. Conversely, important changes may not be
detected in a timely manner. A related problem
independent of the change detection algorithm involves
development of appropriate representations for deltas
during transmission and in the warehouse. At the very
least, each delta must be uniquely identifiable and contain
(a) information about the data item to which it belongs
and (b) the a priori and a posteriori data and the time
stamp for when the update became effective.
Data integration
Before the extracted data from the sources can be loaded
into the Unifying Database, one must establish the
relationships among the data items in the source(s) with
the existing data in the Unifying Database to ensure
proper loading. In addition, in case data from more than
one source is loaded, related data items from different
sources must first be identified so that duplicates can be
removed and inconsistencies among related values can be
resolved. This last step is referred to as reconciliation.

The fundamental problem is as follows: How do we
automatically detect relationships among similar entities,
which are represented differently in terms of structure or
terminology? This problem is commonly referred to as the
semantic heterogeneity problem. Being able to find an
efficient solution will allow us to answer the following
important questions that arise during data integration:

• Which source object is related to which entity in
the Unifying Database and how?

• Which data values can be merged, (for example
because they contain complimentary or duplicate
information)?

• Which items are inconsistent?
There has been a wealth of research on finding automated
solutions to the semantic heterogeneity problem. For a
general overview and theoretical perspective on managing
semantic heterogeneities see [5].

Unifying database maintenance
Since the Unifying Database contains information from
existing genomic repositories, its contents must be
refreshed whenever the underlying sources are updated.

Ideally, the Unifying Database should always be perfectly
synchronized with respect to the external sources.
However, given the frequency of updates to most
repositories, this is not realistic. On the other hand, there
is evidence that a less synchronized warehouse is still
useful. For example, SWISS-PROT, which is a curated
version of the protein component of GenBank is updated
on a quarterly basis; yet it is extensively used due to the
high quality of its data. A similar experience has been
documented by the authors in [3], whose GUS warehouse
contents lag those of the data sources by a few months. As
an important variation to existing refresh schemes,
namely to automatically maintain certain pre-defined
consistency levels between sources and warehouse, we
plan to offer a manual refresh option. This allows the
biologist to defer or advance updates depending on the
situation.

Independent of the update frequency, refreshing the
contents of the Unifying Database in an automatic and
efficient manner remains a challenge. Since a warehouse
can be regarded as an integrated “view” over the
underlying sources, updating a warehouse has been
documented in the database literature as the view
maintenance problem. In general, one can always update
the warehouse by reloading the entire contents, i.e., by re-
executing the integration query(s) that produced the
warehouse view. However, this is very expensive, so the
problem is to find a new load procedure (or view query)
that takes as input the updates that have occurred at the
sources and possibly the original source instances or the
existing warehouse contents and updates the warehouse to
produce the new state. When the load procedure can be
formulated without requiring the original source
instances, the warehouse is said to be self-maintainable.

View maintenance has been studied extensively in the
context of relational databases. However, fewer results are
known in the context of object-oriented databases or
semistructured databases. To our knowledge, no work has
been done on recomputing annotations or corrections that
need to be applied to existing data in the warehouse.

6. Interaction between genomics algebra
and unifying database

Both pillars of our approach develop their full power if
they are integrated into a common system architecture. In
the following, we will discuss the system architecture, the
requirements with respect to DBMSs, and appropriate
integration mechanisms.

6.1 System architecture

A conceptual overview of the high-level architecture that
integrates the Genomics Algebra with the Unifying
Database is shown in Figure 3. The Unifying Database is
managed by the DBMS and contains the genomic data,
which comes either from the external sources or is user

generated. The link between the Genomics Algebra and
the Unifying Database is established through the DBMS-
specific adapter. Extracting and integrating data from the
external sources is the job of the extract-transform-load
(ETL) tool shown on the right-hand side of Figure 3.
User-friendly access to the functionality of the Genomics
Algebra is provided by the GUI component depicted in
the top center. In the following, we describe the remaining
components of the architecture and some further aspects
in more detail.

Extensible DBMS

Genomics
Algebra

External Repositories
(e.g, GenBank, NCBI, …)

public space

user
space

user
space

user
space…

GUI

DBMS-specific
Adapter

ETL

…

…

Unifying Database

Figure 3: Integration of the Genomics Algebra with the
Unifying Database through a DBMS-specific adapter.

6.2 Adapters and user-defined data types

Databases must be inherently extensible to be able to
efficiently handle various rich, application-domain-
specific complex data types. The adapter provides a
DBMS-specific coupling mechanism between the ADTs
together with their operations in the Genomics Algebra
and the DBMS managing the Unifying Database. The
ADTs are plugged into the adapter by using the user-
defined data type (UDT) mechanism of the DBMS. UDTs
provide the ability to efficiently define and use new data
types in a database context without having to re-architect
the DBMS. The adapter is registered with the database
management system at which point the UDTs become
add-ons to the type system of the underlying database.

Two kinds of UDTs can be distinguished, namely
object types, whose structure is fully known to the DBMS,
and opaque types whose structure is not. Object types can
only be constructed by means of types the DBMS
provides (e.g., native SQL data types, other object types,
large objects, reference types). They turn out to be too
limited. For our purpose, opaque types are much more
appropriate. They allow us to create new fundamental
data types in the database whose internal and mostly
complex structure is unknown to the DBMS. The database
provides storage for the type instances. User-defined
operators (see also Section 6.3) that access the internal
structure are linked as external methods or external

functions. They as well as the types are implemented, e.g.,
in C, C++, or Java. The benefit of opaque types arises in
cases where there is an external data model and behavior
available like in the case of our Genomics Algebra.

All major database vendors support UDTs and
external functions and provide mechanisms to package
them up for easy installation (e.g., cartridges, extenders,
datablades). A very important feature of the Genomics
Algebra is that it is completely independent of the
software that is used to provide persistence. That is, it can
be integrated with any DBMS (relational, object-
relational, object-oriented), as long as the DBMS is
extensible. The reason is that the genomic data types are
included into the database schema as attribute data types
(like the standard data types real, integer, boolean, etc.).
Tuples in a relational setting or objects in an object-
oriented environment then only serve as containers for
storing genomic values.

6.3 Integration of user-defined operations into SQL3

Typically, databases provide a set of pre-defined
operators to operate on built-in data types. Operators can
be related to arithmetic (e.g., +, -, *, /), comparison (e.g.,
=, <, >), Boolean logic (e.g., not, and, or), etc. From
Section 6.2 we know that the UDT mechanism also
allows us to specify and include user-defined operators as
external functions. For example, it is possible to define a
resembles operator for comparing nucleotide sequences.

User-defined operators can be invoked anywhere
built-in operators can be used, i.e., wherever expressions
may occur. In particular, this means that they can be
included in SQL statements. They can be used in the
argument list of a SELECT clause, the condition of a
WHERE clause, the GROUP BY clause, and the ORDER
BY clause. This ability allows us to integrate all the
powerful operations and predicates of the Genomics
Algebra into the DBMS query language, which, by the
way, need not necessarily be SQL, and to extend the
semantics of the query language in a domain-specific
way. Let us assume the very simplified example of a
predicate contains which takes as input a decoded DNA
fragment and a particular sequence and which returns true
if the fragment contains the specified sequence. Then we
can write an SQL query as

SELECT id
FROM DNAFragments
WHERE contains(fragment, ”ATTGCCATA”)

6.4 User and system interface

For the biologist the quality of the user interface plays an
important role, because it represents the communication

3 The integration approach of our Genomics Algebra with a
relational DBMS and SQL can also be accomplished using an
object-oriented DBMS and query language, such as OQL, for
example.

mechanism between him/her on the one side and the
Genomics Algebra and the Unifying Database on the
other side. Currently, the biologist has to cope with the
multitude, heterogeneity, fixed functionality, and
simplicity of the user interfaces provided by genomic
repositories. Hence, uniformity, flexibility, extensibility,
and the possibility of graphical visualization are important
requirements of a well-designed user interface. Based on
an analysis and comparison of the currently available and
most relevant user interfaces, our goal is to construct such
a graphical user interface (GUI) for our Genomics
Algebra. The aforementioned GUIs suffer from (at least)
two main problems. First, they do not provide database
and query facilities, which is an essential drawback, and
second, their formats are only either HTML, ASN.1 (a
binary format for bioinformatics data), or graphical
output.

Our GUI is to comprise the following main elements:
(1) a biological query language combined with a
graphical output description language, (2) a visual
language for the graphical specification of queries, and
(3) the development of an XML application as a
standardized input/output facility for genomic data.

The extended SQL query language enriched by the
operations of the Genomics Algebra (see Section 6.3) is
not necessarily the appropriate end user query language
for the biologist. Biologists frequently dislike SQL due to
its complexity. For them SQL is solely a database query
language but not apt as a biological query language.
Thus, the issue is here to design such a biological query
language based on the biologists’ needs. A query
formulated in this query language will then be mapped to
the extended SQL of the Unifying Database. A general,
connected question is how the query result should be
displayed. To enable high flexibility of the graphical
output, the idea is to devise a graphical output description
language whose commands can be combined with
expressions of the biological query language.

The textual formulation of a query is frequently
troublesome and only possible for the computationally
experienced biologist. A visual language can help to
provide support for the graphical specification of a query.
The graphical specification is then evaluated and
translated into a textual SQL representation which itself is
executed by the Unifying Database. The design of such a
visual language and the translation process are here the
challenging issues.

As far as system interfaces are concerned, a number of
XML applications exist for genomic data (e.g., GEML [9],
RiboML [10], phyloML [12]). Unfortunately, these are
inappropriate for a representation of the high-level objects
of the Genomics Algebra. Hence, we plan to design our
own XML application, which we name GenAlgXML.

6.5 Genomic index structures and genomic data
optimization

We briefly mention two important research topics which
are currently not the focus of our considerations but which
will become relevant in the future, since they enhance the
performance of the Unifying Database and the Genomics
Algebra. These topics relate to the construction of
genomic index structures and to the design of
optimization techniques for genomic data.

 As we add the ability to store genomic data, a need
arises for indexing these data by using domain-specific,
i.e., genomic, indexing techniques. These should support,
e.g., similarity or substructure search on nucleotide
sequences, or 3D structural comparison of tertiary protein
sequences. The DBMS must then offer a mechanism to
integrate these user-defined index structures.

The development of optimisation techniques for non-
standard data (e.g., spatial, spatio-temporal, fuzzy data)
must currently be regarded as immature due to the
complexity of these data. Nevertheless, optimisation rules
for genomic data, information about the selectivity of
genomic predicates, and cost estimation of access plans
containing genomic operators would enormously increase
the performance of query execution.

7. Vision
We believe our project will cause a fundamental change
in the way biologists analyze genomic data. No longer
will biologists be forced to interact with hundreds of
independent data repositories each with their own
interface. Instead, biologists will work with a unified
database through a single user interface specifically
designed for biologists. Our high-level Genomics Algebra
allows biologists to pose questions using biological terms,
not SQL statements. Managing user data will also become
much simpler for biologists, since his/her data can also be
stored in the Unifying Database and no longer will s/he
have to prepare a custom database for each data
collection. Biologists should, and indeed want to invest
their time being biologists, not computer scientists.

From a computer science perspective, the main
implications consist in obtaining extended knowledge
about the design and implementation of new,
sophisticated data structures and efficient algorithms in
the non-standard application field of biology and
bioinformatics. The Genomics Algebra comprising all
these data structures and algorithms will be made publicly
available so that other groups in the community can study,
improve, and extend it.

From a database perspective, our project leverages
and extends the benefits and possibilities of current
database technology. In particular, we demonstrate the
elegance and expressive power of modeling and
integrating non-standard and extremely complex data by
the concept of abstract data types into databases and query

languages. In addition, our approach is independent of a
specific underlying DBMS data model. That is, the
Genomics Algebra can be embedded in a relational,
object-relational, or object-oriented DBMS as long as it is
equipped with the appropriate extensibility mechanisms.
The separation of DBMS and application-specific type
system demonstrates the generality and flexibility of our
approach. For example, in the future it is possible to
develop algebras for other application domains.

References
[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers,

and D. J. Lipman, "Basic local alignment search
tool," Journal of Molecular Biology, vol. 215, pp.
403-410, 1990.

[2] Bionavigator Inc., "BioNavigator,"
http://www.bionavigator.com.

[3] S. Davidson, J. Crabtree, B. Brunk, J. Schug, V.
Tannen, C. Overton, and C. Stoeckert, "K2/Kleisli
and GUS: Experiments in integrated access to
genomic data sources," IBM Systems Journal, vol.
40, pp. 512-531, 2001.

[4] T. Etzold, A. Ulyanov, and P. Argos, "SRS:
information retrieval system for molecular biology
data banks," Methods Enzymol, vol. 266, pp. 114-
128, 1996.

[5] R. Hull, "Managing Semantic Heterogeneity in
Databases: A Theoretical Perspective," Sixteenth
ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, Tucson, Arizona,
1997.

[6] IBM Corp., "DiscoveryLink,"
http://www.ibm.com/discoverylink.

[7] R. McEntire, P. Karp, N. Abernethy, D. Benton, G.
Helt, M. DeJongh, R. Kent, A. Kosky, S. Lewis, D.
Hodnett, E. Neumann, F. Olken, D. Pathak, P.
Tarczy-Hornoch, L. Toldo, and T. Topaloglou, "An
Evaluation of Ontology Exchange Languages for
Bioinformatics," 2000 Conference on Intelligent
Systems for Molecular Biology, 2000.

[8] N. W. Paton, R. Stevens, P. G. Baker, C. A. Goble,
S. Bechhofer, and A. Brass, "Query processing in
the TAMBIS bioinformatics source integration
system," 11th International Conference on Scientific
and Statistical Databases, 1999.

[9] Rosetta Biosoftware, "The Gene Expression Markup
Language (GEML),"
http://www.rosettabio.com/products/conductor/geml
/default.htm.

[10] Stanford Medical Informatics, "RiboML,"
http://www.smi.stanford.edu/projects/helix/riboml/.

[11] M. Stonebraker, "Inclusion of New Types in
Relational Data Base Systems," 2nd International
Conference On Data Engineering, 1986.

[12] Washington and Lee University, "phyloML,"
http://cs.wlu.edu/~roycet/phyloML/.

http://www.bionavigator.com/
http://www.ibm.com/discoverylink
http://www.rosettabio.com/products/conductor/geml/default.htm
http://www.rosettabio.com/products/conductor/geml/default.htm
http://www.smi.stanford.edu/projects/helix/riboml/
http://cs.wlu.edu/~roycet/phyloML/

	C1

