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Abstract 
The dramatic increase of mostly semi-structured 
genomic data, their heterogeneity and high 
variety, and the increasing complexity of 
biological applications and methods mean that 
many and very important challenges in biology 
are now challenges in computing and here 
especially in databases. In contrast to the many 
query-driven approaches advocated in the 
literature, we propose a new integrating approach 
that is based on two fundamental pillars. The 
Genomics Algebra provides an extensible set of 
high-level genomic data types (GDTs) (e.g., 
genome, gene, chromosome, protein, nucleotide) 
together with a comprehensive collection of 
appropriate genomic functions (e.g., translate, 
transcribe, decode). The Unifying Database 
allows us to manage the semi-structured contents 
of publicly available genomic repositories and to 
transfer these data into GDT values. These 
values then serve as arguments of Genomics 
Algebra operations, which can be embedded into 
a DBMS query language. 

1. Introduction 
In the past decade, the rapid progress of genome projects 
has led to a revolution in the life sciences causing a large 
and exponentially increasing accumulation of information 
in molecular biology and an emergence of new and 
challenging applications. The flood of genomic data, their 
high variety and heterogeneity, their semi-structured 
nature as well as the increasing complexity of biological 

applications and methods mean that many and very 
important challenges in biology are now challenges in 
computing and here especially in databases. This 
statement is underpinned by the fact that millions of 
nucleic acid sequences with billions of bases have been 
deposited in the well-known persistent genomic 
repositories EMBL, GenBank, and DDBJ. Both 
SwissProt and PIR form the basis of annotated protein 
sequence repositories together with TrEMBL and 
GenPept, which contain computer-translated sequence 
entries from EMBL and GenBank. In addition, hundreds 
of specialized repositories have been derived from the 
above primary sequence repositories. Information from 
them can only be retrieved by computational means. 

The indispensable and inherently integrative discipline 
of bioinformatics has established itself as the application 
of computing and mathematics to the management, 
analysis, and understanding of the rapidly expanding 
amount of biological information to solve biological 
questions. Consequently, research projects in this area 
must have and indeed have a highly interdisciplinary 
character. Biologists provide their expertise in the 
different genomic application areas and serve as domain 
experts for input and validation. Computer scientists 
contribute their knowledge about the management of huge 
data volumes and about sophisticated data structures and 
algorithms. Mathematicians provide specialized analysis 
methods based, e.g., on statistical concepts. 

We have deliberately avoided the term ‘genomic 
database’ and replaced it by the term ‘genomic repository’ 
since many of the so-called genomic ‘databases’ are 
simply collections of flat files or accumulations of Web 
pages and do not have the beneficial features of real 
databases in the computer science sense. Attempts to 
combine these heterogeneous and largely semi-structured 
repositories have been predominantly based on federated 
or query-driven approaches leading to complex 
middleware tiers between the end user application and the 
genomic repositories. 
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well as appropriate innovations for the treatment of non-
standard data to cope with the large amounts of genomic 
data. In a sense, we advocate a “back to the roots” 
strategy of database technology for bioinformatics.  This 
means that general database functionality should remain 
inside the DBMS and not be shifted into the middleware. 

The concepts presented in this paper aim at 
overcoming the following fundamental challenges: The 
deliberate independence, heterogeneity, and limited 
interoperability among multiple genomic repositories, the 
enforced low-level treatment of biological data imposed 
by the genomic repositories, the lack of expressiveness 
and limited functionality of current query languages and 
proprietary user interfaces, the different formats and the 
lack of structure of biological data representations, and 
the inability to incorporate owns own, self-generated data. 

Our integrating approach, which to our knowledge is 
new in bioinformatics and differs substantially from the 
integration approaches that can be found in the literature 
(see Section 3), rests on two fundamental pillars: 
1. Genomics Algebra. This extensible algebra is based 

on the conceptual design, implementation, and 
database integration of a new, formal data model, 
query language, and software tool for representing, 
storing, retrieving, querying, and manipulating 
genomic information. It provides a set of high-level 
genomic data types (GDTs) (e.g., genome, gene, 
chromosome, protein, nucleotide) together with a 
comprehensive collection of appropriate genomic 
operations or functions (e.g., translate, transcribe, 
decode). Thus, it can be considered a resource for 
biological computation. 

2. Unifying Database. Based on latest database 
technology, the construction of a unifying and 
integrating database allows us to manage the semi-
structured or, in the best case, structured contents of 
genomic repositories and to transfer these data into 
high-level, structured, and object-based GDT values. 
These values then serve as arguments of Genomics 
Algebra operations. In its most advanced extension, 
the Unifying Database will develop into a global 
database comprising the most important or, as a 
currently rather unrealistic vision, even all publicly 
available genomic repositories. 

The main benefits resulting from this approach for the 
biologist can be summarized as follows: Instead of a 
currently low-level treatment of data in genomic 
repositories, the biologist can now express a problem and 
obtain query results in biological terms (using high-level 
concepts) with the aid of genomic data types and 
operations. In addition, the biologist is provided with a 
powerful, general, and extensible high-level biological 
query language and user interface adapted to his/her 
needs. In a long-term view, the biologist is not confronted 
any more with hundreds of different genomic repositories 
but is equipped with an integrated and consistent working 

environment and user interface based on a unifying or 
ultimately global database. This Unifying Database allows 
the biologist to combine, integrate, and process data from 
originally different genomic resources in an easy and 
elegant way. Finally, it enables the integration and 
processing of self-generated data and their combination 
with data stemming from public resources. 

2. Requirements of genomic data management 
Adequate employment of database technology requires a 
deep understanding of the problems of the application 
domain. These domain-specific requirements then make it 
possible to derive computer science and database relevant 
requirements for which solutions have to be found. 
Discussions and cooperation with biologists have revealed 
the following main problems regarding the information 
available in the genomic repositories: 

B1. Proliferation of specialized databases coupled with 
continuous expansion of established repositories 
creates missed opportunities. 

B2. Two or more databases may hold additive or 
conflicting information.  

B3. There is little or no agreement on terminology and 
concepts among different groups and consequently 
among the repositories they are building. 

B4. A familiar data resource will disappear or morph to 
a different site. 

B5. Query results are unmanageable unless organized 
into a customized, project-specific database. 

B6. Data records copied from a source become obsolete 
and possibly misleading unless updated. 

B7. The portal to each data site is a unique interface 
forcing scientists to develop customized access and 
retrieval methods. 

B8. The database schema and data types are unknown to 
the user making custom SQL queries impossible.  

B9. Biologists do not understand SQL, don’t want to 
understand database schemas, and would prefer 
constructing queries using familiar biological terms 
and operations. 

B10. Data in most genomics repositories are noisy, e.g., it 
is estimated that 30-60% of sequences in GenBank 
are erroneous. 

These ten information-related problems (B1-B10) 
identified from a biologist’s perspective lead to the 
following computer science centric problems (C1-C15). 
The identifiers in parentheses serve as cross-references 
into the list above. 
C1. Multitude and heterogeneity of available genomic 

repositories (B1, B2, B3). Finding all appropriate 
sites from the more than 300 genomic repositories 
available on the Internet for answering a question is 
difficult. Many repositories contain related genomic 



data but differ with respect to contents, detail, 
completeness, data format, and functionality. 

C2. Missing standards for genomic data representation 
(B1, B2, B3, B7). There is no commonly accepted 
way for representing genomic data as evident in the 
large number of different formats and 
representations in use today.  

C3. Multitude of user interfaces (B7). The multitude of 
genomic repositories implies a multitude of user 
interfaces and ontologies a biologist is forced to 
learn and to comprehend. 

C4. Quality of user interfaces (B5, B7, B8, B9). In order 
to utilize existing user interfaces effectively, the 
biologist needs detailed knowledge about computing 
and data management since they are often too 
system-oriented and not user-friendly enough. 

C5. Quality of query languages (B5, B8, B9). SQL is 
tailored to answer questions about alphanumerical 
data but unsuited for biologists asking biological 
questions. Consequently, the biologist should have 
access to a biological query language. 

C6. Limited functionality of genomic repositories (B2, 
B3, B8, B9). The interactions of the biologist with a 
genomic repository are limited to the functions 
available in the user interface of that repository. 
This implies a lack of flexibility and the ability to 
ask new types of queries. 

C7. Format of query results (B5, B6). The result of a 
query against a genomic repository is often 
outputted to the computer screen or to a text file and 
cannot be used for further computation. It is then left 
to the biologist to analyze the results manually. 

C8. Incorrectness due to inconsistent and incompatible 
data (B1, B2, B3, B6). The existence of different 
genomic repositories with respect to the same kind 
of biological data leads to the question whether and 
where similar or overlapping repositories agree and 
disagree with one another. 

C9. Uncertainty of data (B2, B6, B10). A very important 
but extremely difficult question refers to the 
correctness of data stored in genomic repositories. 
Due to vague or even lacking biological knowledge 
and due to experimental errors, erroneous data in 
genomic repositories cannot be excluded. 
Frequently, it cannot be decided from two 
inconsistent pieces of data, which one is correct and 
which one is wrong. In this case, access to both 
alternatives should be given. 

C10. Combination of data from different genomic 
repositories (B2, B8, B9). Currently, data sets from 
different, independent genomic repositories cannot 
be combined or merged in an easy and meaningful 
manner. 

C11. Extraction of hidden and creation of new knowledge 
(B1, B2, B8, B9). The nature of stored genomic 
data, e.g., in flat files, semi-structured records, 
makes it difficult to extract hidden information and 
to create new knowledge. The extraction of relevant 
data from query results and their analysis has to be 
performed without much computational support. 

C12. Low-level treatment of data (B1, B2, B5, B8, B9). 
Genomic data representations and query results are 
more or less collections of textual strings and 
numerical values and are not expressed in biological 
terms such as genes, proteins, and nucleotide 
sequences. Operations on these high-level entities 
do not exist. 

C13. Integration of self-generated data and extensibility 
(B5, B6). A biologist generates new biological data 
from their own research or experimental work. It is 
not possible to store and retrieve this data, to 
perform computations with generally known or even 
own methods, and to match the data against the 
genomic databases. This requires an extensible 
database management system, query language, and 
user interface. 

C14. Integration of new specialty evaluation functions 
(B5, B8, B9). The possibility to evaluate data 
originally stemming from genomic repositories as 
well as self-generated data with publicly available 
methods is insufficient. Thus, it must be possible to 
create, use, and integrate user-defined functions that 
are capable of operating on both kinds of data. 

C15. Loss of existing repositories (B4). Due to the high 
competition at the bioinformatics market, many 
companies disappear and with them the genomic 
repositories that were maintained by them. The 
company’s valuable knowledge should be preserved. 

This detailed problem analysis shows the enormous 
complexity of the information-related challenges 
biologists and computer scientists are confronted with. It 
is our conviction, and we will motivate and explain this in 
the following sections, that the combination of Genomics 
Algebra and Unifying Database is a solution for all these 
problems, even though it raises a number of new, 
complicated, and hence challenging issues. 

3.   Biological database integration 
Much research has been conducted to reduce the burden 
on the biologist when attempting to access related data 
from multiple genomic repositories. One can distinguish 
two commonly accepted approaches: (1) query-driven 
integration or mediation and (2) data warehousing. In 
both approaches, users access the underlying sources 
indirectly through an integrated, global schema (view), 
which has been constructed either from the local schemas 
of the sources or from general knowledge of the domain. 
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In the biological domain, most integration systems are 
currently based on the query-driven approach1. SRS [4], 
BioNavigator [2], K2/Kleisli [3], TAMBIS [8] and 
DiscoveryLink [6] are representatives of this class. 
Although they differ greatly in the capabilities they offer, 
they can be considered middleware systems, in which the 
bulk of the query and result processing takes place in a 
different location from where the data is stored. For 
example, K2/Kleisli, DiscoveryLink, and TAMBIS use 
source-specific data drivers (wrappers) for extracting the 
data from underlying data sources (e.g., GenBank, 
dbEST, SWISS-PROT) including application programs 
(e.g., the BLAST family of similarity search 
programs[1]). The extracted data is then shipped to the 
integration system, where it is represented and processed 
using the data model and query language of the 
integration system (e.g., the relational model and SQL in 
TAMBIS, the object-oriented model and OQL in 
K2/Kleisli). Biologists access the integration system 
through a client interface, which hides many of the 
source-specific details and heterogeneities. The query-
driven approach to accessing multiple sources is depicted 
in Figure 1. 

The generic data warehousing architecture (not shown) 
looks similar to the one depicted in Figure 1, except for 
the addition of a repository (warehouse) in the 
middleware layer. This warehouse is used by the 
integration system to store (materialize) the integrated 
views over the underlying data sources. Instead of 
answering queries at the source, the data in the warehouse 
is used. This greatly improves performance but requires 
complex maintenance procedures to update the warehouse 
in light of changes to the sources. Among the integration 
systems for biological databases, the only representative 
of the data warehousing approach known to us is GUS 
(Genomics Unified Schema) [3]. GUS describes a 

relational data warehouse in support of organism and 
tissue-specific research projects at the University of 
Pennsylvania. GUS shares some of its goals and 
requirements with the system proposed in this paper.  

                                                           
1 Historically, sharing architectures based on the query-driven 
approach have also been termed federated databases. 

Despite the continuous advancements in biological 
database systems research, we argue that current systems 
present biologists with only an incomplete solution to the 
growing data management problem they are facing. More 
importantly, we share the belief of the authors in [3] that 
in those situations where close control over query 
performance as well as accuracy and consistency of the 
results are important (problem C8 in Section 2), the 
query-driven approach is not an option. However, query 
performance and correctness are only two aspects of 
biological data management. As can be seen in our list of 
requirements in Section 2, a suitable representation of 
biological data and a powerful and extensible biological 
query language capable of dealing with the inherent 
uncertainty of the correctness of biological data are 
equally important (C2, C4, C6, C9, C12, C14). To our 
knowledge, none of the existing systems currently 
addresses these requirements. 

Independent of the integration approach used, current 
systems lack adequate support for biologists, forcing them 
to adopt their research methods to fit those imposed by 
the data management tools instead of the other way 
around. Table 1 summarizes how the integration systems 
mentioned above address each of the computer science 
issues C1-C15. In the next sections, we outline our 
proposal for a genomic data warehouse and a powerful 
analysis component. We believe the combination of the 
two greatly enhances the way biologists analyse and 
process information including data stored in the existing 
genomic repositories.  

4. Genomics Algebra 
Based on the observations and conclusions made in 
Section 3, we pursue an alternative, integrative approach, 
which heavily focuses on current database and data 
warehouse technologies. The Genomics Algebra (GenAlg) 
is the first of two pillars of our approach. It incorporates a 
sophisticated, self-contained, and high-level type system 
for genomic data together with a comprehensive set of 
operations. 

4.1 An ontology for molecular biology and 
bioinformatics 

The first step and precondition for a successful 
construction of our Genomics Algebra is the design of an 
ontology for molecular biology and bioinformatics. By 
ontology, we are referring to “a specification of a 
conceptualization.” That is, in general, an ontology is a 
description of the concepts and relationships that define 
an application domain. 

Applied to bioinformatics, an ontology is a 
“controlled vocabulary for the description of the 



molecular functions, biological processes and cellular 
components of gene products.” An obstacle to its unique 
definition is that the multitude of heterogeneous and 
autonomous genomic repositories has induced 
terminological differences (synonyms, aliases, formulae), 
syntactic differences (file structure, separators, spelling) 
and semantic differences (intra- and interdisciplinary 
homonyms). The consequence is that data integration is 

impeded by different meanings of identically named 
categories, overlapping meanings of different categories, 
and conflicting meanings of different categories. Naming 
conventions of data objects, object identifier codes, and 
record labels differ between databases and do not follow a 
unified scheme. Even the meaning of important high-level 
concepts (e.g., the notion of gene or protein function) that 
are fundamental to molecular biology is ambiguous. 

Table 1: Analysis of data management capabilities of existing integration systems with respect to the requirements outlined in Sec. 2. 

 SRS BioNavigator K2/Kleisli DiscoveryLink TAMBIS GUS 

C1 
User shielded from 
source details 

User shielded from 
source details 

User shielded from 
source details 

User shielded from 
source details 

User shielded from 
source details 

User shielded from 
source details 

C2 HTML  HTML Global schema using 
object-oriented model 

Global schema using 
relational model 

Global schema 
using description 
logic 

GUS schema based 
on relational model; 
OO views 

C3 Single-access point Single-access point Single-access point Single-access point Single-access point Single-access point 
C4 Simple to use visual 

interface 
Simple to use visual 
interface 

Not a user-level 
interface 

Requires knowledge of 
SQL 

Simple to use visual 
interface 

Requires knowledge 
of SQL 

C5 Limited query 
capability 

Not query oriented Comprehensive query 
capability 

Comprehensive query 
capability 

Comprehensive 
query capability 

Comprehensive 
query capability 

C6 No new operations No new operations New operations on 
integrated view data 

New operations on 
integrated view data 

New operations on 
integrated view data 

New operations 
defined on 
warehouse data 

C7 No re-organization 
of source data 

No re-organization of 
source data 

Reorganization of result 
possible 

Reorganization of result 
possible 

Reorganization of 
result possible 

Reorganization of 
result possible 

C8 No reconciliation of 
results 

No reconciliation of 
results 

No reconciliation of 
results 

No reconciliation of 
results 

Result reconciliation 
supported 

Data in warehouse 
is reconciled and 
cleansed 

C9 No provision for 
dealing with 
uncertainty in data 

No provision for 
dealing with 
uncertainty in data 

No provision for dealing 
with uncertainty in data 

No provision for dealing 
with uncertainty in data 

No provision for 
dealing with 
uncertainty in data 

No provision for 
dealing with 
uncertainty in data 

C10 Results not 
integrated; sources 
must be Web-
enabled 

Results not integrated; 
sources must be Web-
enabled 

Results integrated 
using global schema; 
source wrapper needed 

Results integrated 
using global schema; 
source wrapper needed 

Results integrated 
using global 
schema; source 
wrapper needed 

Query results are 
integrated 

C11 Not supported Not supported Not supported Not supported Not supported Annotations 
supported 

C12 Not supported Not supported Not supported Not supported Not supported Not supported 
C13 Not supported Not supported Not supported Not supported Not supported Supported 
C14 Not supported Not supported Not supported Not supported Not supported Not supported 
C15 No archival 

functionality 
No archival 
functionality 

No archival functionality No archival functionality No archival 
functionality 

Archiving of data 
supported 

If the user queries a database with such an ambiguous 
term, until now (s)he has full responsibility to verify the 
semantic congruence between what (s)he asked for and 
what the database returned. An ontology helps here to 
establish a standardised, formally and coherently defined 
nomenclature in molecular biology. Each technical term 
has to be associated with a unique semantics that should 
be accepted by the biological community. If this is not 
possible, because different meanings or interpretations are 
attached to the same term but in different biological 
contexts, then the only solution is to coin a new, 
appropriate, and unique term for each context. Uniqueness 
of a term is an essential requirement to be able to map 
concepts into the Genomics Algebra. 

Consequently, one of our current research efforts and 
challenges is to develop a comprehensive ontology, which 
defines the terminology, data objects and operations 

including their semantics that underlie genome 
sequencing. Since there has been much effort in defining 
ontologies for various bioinformatics projects [7], for 
example, Eccocyc, Pasta, Gene Ontology Consortium, we 
are about to study and compare these and other existing 
contributions in this field when defining our ontology. 
Therefore, besides an important contribution in itself, a 
comprehensive ontology forms the starting point for the 
development of our Genomics Algebra. In total, this goal 
especially contributes to a solution of the problems C1, 
C2, C3, C5, C8, C9, C11, and C12. Besides developing 
such a genomic ontology, a challenge is to devise an 
appropriate formalism for its unique specification. 

4.2 The algebra 

In a sense, the Genomics Algebra as the second step is the 
derived, formal, and executable instantiation of the 



resulting genomic ontology. Entity types and functions in 
the ontology are represented directly using the appropriate 
data types and operations supported by our Genomics 
Algebra. This algebra2 has to satisfy two main tasks. First, 
it has to serve as interface between biologists, who use 
this interface, and computer scientists, who implement it. 
An essential feature of the algebra is that it incorporates 
high-level biological terminology and concepts. Hence, it 
is not based on the low-level concepts provided by 
database technology. Second, as a result, this high-level, 
domain-specific algebra will greatly facilitate the 
interactions of biologists with genomic information stored 
in our Unifying Database (see Section 5) and 
incorporating at least the knowledge of the genome 
repositories. This is much like the invention of the 3-tier 
architecture and how the resulting data independence 
simplified database operations in relational databases. To 
our knowledge, no such algebra currently exists in the 
field of bioinformatics. The main impact of this goal is in 
solving the problems C2 to C4 and C6 to C14. This 
requires close coordination between domain experts from 
biology, who have to identify and select useful data types, 
relevant operations, and their semantics, and computer 
scientists, whose task it is to formalize and implement the 
algebra. 

In order to explain the notion of algebra, we start with 
the concept of a many-sorted signature, which consists of 
two sets of symbols called sorts (or types) and operators. 
Operators are annotated with strings of sorts. For instance, 
the symbols string, integer, and char may be sorts and 
concatstring string string and getcharstring integer char two operators. 
The annotation with sorts defines the functionality of the 
operator, which in a more conventional way is usually 
written as concat : string × string → string and getchar : 
string × integer → char. To assign semantics to a 
signature, one must assign a (carrier) set to each sort and 
a function to each operator. Each function has domains 
and a codomain according to the string of sorts of the 
operator. Such a collection of sets and functions forms a 
many-sorted algebra. Hence, a signature describes the 
syntactic aspect of an algebra by associating with each 
sort the name of a set of the algebra and with each 
operator the name of a function. A signature especially 
defines a set of terms such as 
getchar(concat(“Genomics”, “Algebra”), 10). The sort of 
a term is the result sort of its outermost operator, which is 
char in our example. 

Our Genomics Algebra is a domain-specific, many-
sorted algebra incorporating a type system for biological 
data. Its sorts, operators, carrier sets, and functions will be 
derived from the genomic ontology developed in the first 
step. The sorts are called genomic data types (GDTs) and 

                                                           
2 The following algebraic model expresses our object-based 
understanding of the genomics domain. The realization of this 
model, e.g., using an object-oriented approach, is irrelevant in 
this context. 

the operators genomic operations. To illustrate the 
concept, we assume the following, very simplified 
signature, which is part of our algebra: 

 sorts 
 gene, primaryTranscript, mRNA, protein 
 ops 
 transcribe: gene → primaryTranscript 
 splice: primaryTranscript → mRNA 
 translate: mRNA → protein 

This “mini algebra” contains four sorts or genomic data 
types for genes, primary transcript, messenger RNA, and 
protein as well as three operators transcribe, which for a 
given gene returns its primary transcript, splice, which for 
a given primary transcript identifies its messenger RNA, 
and translate, which for a given messenger RNA 
determines the corresponding protein. We can assume that 
these sorts and operators have been derived from our 
genomic ontology. Hence, the high-level nomenclature of 
our genomic ontology is directly reflected in our algebra. 
The algebra now allows us to (at least) syntactically 
combine different operations by (function) composition. 
For instance, given a gene g, we can syntactically 
construct the term translate(splice(transcribe(g))), which 
yields the protein determined by g. For the semantic 
problems of this term, see below. 

Obviously, our mini algebra is incomplete. It is our 
conviction that finding a “complete” set of GDTs and 
genomic operations (what does “completeness” mean in 
this context?) is impossible, since new biological 
applications can induce new data types or new operations 
for already existing data types. Therefore, we pursue an 
extensible approach, i.e., if required, the Genomics 
Algebra can be extended by new sorts and operations. In 
particular, we can combine new sorts with sorts already 
present in the algebra, which leads to new operations. In 
other words, we can combine information stemming 
originally from different genomic repositories. Our hope 
is to be able to identify new, powerful, and fundamental 
genomic operations that nobody has considered so far. 

From a software point of view, the Genomics Algebra 
is an extensible, self-contained software package and tool 
providing a collection of genomic data types and 
operations for biological computation. It is principally 
independent of a database system and can be used as a 
software library by a stand-alone application program. 
Thus, we also denote it as kernel algebra. 

This kernel algebra develops its full expressiveness 
and usability if it is designed and integrated as a 
collection of abstract data types (ADTs) into the type 
system and query language of a database system (Section 
6) [11]. ADTs encapsulate their implementation and thus 
hide it from the user or another software component like 
the DBMS. From a modelling perspective, the DBMS 
data model and the application-specific algebra or type 
system are separated. This enables the software developer 



to focus on the application-specific aspects embedded in 
the algebra. Consequently, this procedure supports 
modularity and conceptual clarity and also permits the 
reusability of an algebra for different DBMS data models. 
It requires extensibility mechanisms at the type system 
level in particular and at all levels of the architecture of a 
DBMS in general, starting from user interface extensions 
down to new, external representation and index structures. 
From an implementation point of view, ADTs support 
modularity, information hiding, and the exchange of 
implementations. Simple and inefficient implementation 
parts can then be replaced by more sophisticated ones 
without changing the interface, that is, the signature of 
algebra operations. 

4.3 Research challenges 

We have already addressed two main research challenges, 
namely the design of the genomic ontology and the 
derivation of the signature of the Genomics Algebra from 
it. This leads us to the third main challenge, which is to 
give a formal definition of the genomic data types and 
operations, i.e., to specify their semantics, in terms that 
can be transferred to computer science and especially to 
database technology. A serious obstacle to the 
construction of the Genomics Algebra is the biologists’ 
vague or even lacking knowledge about genomic 
processes. Biological results are inherently uncertain and 
never guaranteed (in contrast to the results of the 
application domains mentioned above) but always 
attached with some degree of uncertainty. For instance, it 
is known that the splice operation takes a primary 
Transcript and produces a messenger RNA, i.e., the effect 
of splicing (the “what”?) is clear since the cell 
demonstrates this observable biological function all the 
time. But it is unknown how the cell performs 
(“computes”) this function. Transferred to our Genomics 
Algebra, this means that the signature of the splice 
operation is known with domain and codomain as shown 
in Section 4.2. We can even define the semantics of the 
operation in a denotational way. However, we cannot 
determine its operational semantics in the form of an 
algorithm and thus not implement it directly. A way out of 
this “dilemma” can be to map the procedure that 
biologists use in their everyday work to elude the problem 
or to compute an approximated solution for the problem. 
This inherent feature of uncertainty due to lacking 
knowledge must be appropriately reflected in the 
Genomics Algebra in order not to pretend correct results, 
which actually are vague or error-prone. The challenging 
issue is how this can be done in the best way. 

The fourth main challenge is to implement the 
Genomics Algebra. This includes the design of 
sophisticated data structures for the genomic data types 
and efficient algorithms for the genomic operations. We 
discuss two important aspects here. A first aspect is that 
algorithms for different operations processing the same 

kind of data usually prefer different internal data 
representations in order to be as efficient as possible. In 
contrast to traditional work on algorithms, the focus is 
here not on finding the most efficient algorithm for each 
single problem (operation) together with a corresponding 
sophisticated data structure, but rather on considering the 
Genomics Algebra as a whole and on reconciling the 
various requirements posed by different algorithms within 
a single data structure for each genomic data type. 
Otherwise, the consequence would be enormous 
conversion costs between different data structures in main 
memory for the same data type. A second aspect is that 
the implementation is intended for use in a database 
system. Consequently, representations for genomic data 
types should not employ pointer data structures in main 
memory but be embedded into compact storage areas 
which can be efficiently transferred between main 
memory and disk. This avoids unnecessary and high costs 
for packing main memory data and unpacking external 
data. 

5.   Unifying Database 
The Unifying Database is the second pillar of our 
integrating approach. By Unifying Database, we are 
referring to a data warehouse, which integrates data from 
multiple genomic repositories. We have chosen the data 
warehousing approach to take advantage of the many 
benefits it provides, including superior query processing 
performance in multi-source environments, the ability to 
maintain and annotate extracted source data after it has 
been cleansed, reconciled and corrected, and the option to 
preserve historical data from those repositories that do not 
archive their contents. Equally important, the Unifying 
Database is also the persistent storage manager for the 
Genomics Algebra.  

5.1 Component overview 

The component most visible to the user is the integrated 
schema. We distinguish between the portions of the 
schema that house the restructured and integrated external 
data (i.e., the entities that store the genomic data brought 
in from the sources) and which is publicly available to 
every user, and those that contain the user data (i.e. the 
entities that store user-created data including annotations), 
which may be private. The schema containing the external 
data is read-only to facilitate maintenance of the 
warehouse; user-owned entities are updateable by their 
owners. Separating between user and public space 
provides privacy but does not exclude sharing of data 
between users, which can be controlled via the standard 
database access control mechanism. Since all information 
is integrated in one database using the same formats and 
representation, cross-referencing, linking, and querying 
can be done using the declarative database language 
provided by the underlying database management system 
(DBMS), which has been extended by powerful 



operations specific to the characteristics of the genomic 
data (see Section 6.3). However, users do not interact 
directly with the database language; instead, they use the 
commands provided by the Genomics Algebra, which 
may be embedded in a graphical user interface.   

Conceptually, the Unifying Database may be 
implemented using any DBMS as long as it is extensible. 
By extensible we are referring to the capability to extend 
the type system and query language of the database with 
user-defined data types. For example, all of the object-
relational and most object-based database management 
systems are extensible. We have more to say on the 
integration of the Genomics Algebra with the DBMS 
hosting the Unifying Database in Section 6. We believe 
our integration of the Genomics Algebra with the 
Unifying Database represents a dramatic improvement 
over current technologies (e.g., a query-driven integration 
system connected to BLAST sources) and will cause a 
fundamental change in the way biologists will conduct 
sequence analysis. 

Conceptually, the component responsible for loading 
the Unifying Database and making sure its contents are 
up-to-date is referred to as ETL (Extract-Transform-
Load). In our system architecture, ETL comprises four 
separate activities: 

1. Monitoring the data sources and detecting 
changes to their contents. This is done by the 
source monitors.  

2. Extracting relevant new or changed data from the 
sources and restructuring the data into the 
corresponding types provided by the Genomics 
Algebra. This is done by the sources wrappers.  

3. Merging related data items and removing 
inconsistencies before the data is loaded into the 
Unifying Database. This is done by the 
warehouse integrator.  

4. Loading the cleaned and integrated data into the 
unifying database. This is done by the loader.  

A conceptual overview of the Unifying Database is 
depicted in Figure 3 in Section 6. As we can see from the 
figure, the ETL component interfaces with a DBMS-
specific adapter instead of the DBMS directly. This 
adapter, which implements the interface between database 
engine and Genomics Algebra, is the only component that 
has knowledge about the types and operations of the 
Genomics Algebra as well as how they are implemented 
and stored in the DBMS. The adapter is discussed in more 
detail in the next section. 

Although much has been written and documented 
about building data warehouses for different applications 
including the GUS warehouse for biological data at the 
University of Pennsylvania [3], we briefly highlight the 
challenges that we face during the development of the 
Unifying Database. 

5.2 Research challenges 

We have identified the following challenges, which are 
directly related to implementing the components 
described above: 

1. How do we best design the integrated schema so 
that it can accommodate data from a variety of 
genomic repositories? 

2. How do we automate the detection of changes in 
the data sources? 

3. How do we integrate related data from multiple 
sources in the Unifying Database? 

4. How do we automate the maintenance of the 
Unifying Database? 

Design of the integrated schema 
There are two seemingly contradictory goals when 
designing the schema that defines the unifying database. 
On one hand, the schema should reflect the informational 
needs of the biologists, and should therefore be defined in 
terms of a global, biologist-centric view of the data (top-
down design). On the other hand, the schema should also 
be capable of representing the union of the entities stored 
in the underlying sources (bottom-up design). We use a 
bottom-up approach by designing an integrated schema 
for the unifying database that contains the most important 
entities from all of the underlying repositories; which 
entities are considered important will be determined in 
discussions with the collaborating biologists. However, 
using a bottom-up approach does not imply a direct 
mapping between source objects and target schema. 
Given the wealth of data objects in the genomic 
repositories, a one-to-one mapping would result in a 
warehouse schema that is as unmanageable and inefficient 
as the source schemas it is trying to replace (e.g., GUS 
contains over 180 tables to store data from five 
repositories). Instead, we aim for a schema that combines 
and restructures the original data to obtain the best 
possible query performance while providing its users with 
an easy-to-use view of the data. If desired, each user can 
further customize the schema to his individual needs. 

Schema design will likely be an iterative process, 
aiming to first create a schema that contains all of the 
nucleotide data, which will later be extended by new 
tables storing protein data, and so forth. This iterative 
process is possible since there is little overlap among the 
repositories containing different types of genomic data; 
furthermore, this type of schema evolution will mainly 
result in new entities being added instead of existing ones 
being removed or updated. 

Change detection 
The type of change detection algorithm used by the source 
monitor depends largely on the information source 
capability and the data representation. Figure 2 classifies 
the types of change detection for common sources and 



data representations, where the abscissa denotes four 
different source types (explained below), and different 
data representations occur along the ordinate. A third 
dimension (degree of cooperation of the underlying 
source) is omitted for simplicity since source capability 
and degree of cooperation are related. 
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Figure 2. Classification of data sources using data 
representation and capability of the source management system 
as the defining characteristics. The grid identifies several 
proposed approaches to change detection. Shaded squares 
denote areas of particular interest to our project. 

In Figure 2, relational refers to the familiar row/column 
representation used by the relational data model, flat file 
refers to any kind of unstructured information (e.g., text 
document), and hierarchical refers to a data 
representation that exhibits nesting of elements such as 
the tree and graph structures or data typically represented 
in an object model. Since most of the genomic data 
sources use either a flat file format (e.g., GenBank) or a 
hierarchical format (e.g., AceDB), we focus our 
investigation mainly on the upper two rows in the graph. 

Active data sources provide active capabilities such 
that notifications of interesting changes can be 
programmed to occur automatically. Active capabilities 
are primarily found in relational systems (e.g., database 
triggers). However, some of the non-relational genomic 
data sources (e.g., SWISS-PROT) are now beginning to 
offer push capabilities, which will notify requesting users 
when relevant sequence entries have been made.  

Where logged sources maintain a log that can be 
queried or inspected, changes can be extracted for 
hierarchical, flat file, or relational data. Queryable 
sources allow the database monitor to query information 
at the source, so periodic polling can be used to detect 
changes of interest. Two approaches are possible: 
detecting edit sequences for successive snapshots 
containing hierarchical data, or computing snapshot 
differentials for relational data. 

Finally, non-queryable sources do not provide 
triggers, logs, or queries. Instead, periodic data dumps 

(snapshots) are provided off-line, and changes are 
detected by comparing successive snapshots. In the case 
of flat files, one can use the “longest common 
subsequence” approach, which is used in the UNIX diff 
command. For hierarchical data, various diff algorithms 
for ordered trees exist. In the case of the ACe databases, 
the “acediff” utility will compute minimal changes 
between different snapshots. For data sources that export 
snapshots in XML, IBMS’s XMLTreeDiff can be used. 

Despite the existence of prior existing work, change 
detection remains challenging, especially for the shaded 
regions in Figure 2. For example, in queryable sources, 
performance and semantic issues are associated with the 
polling frequency (PF). If the PF is too high, performance 
can degrade. Conversely, important changes may not be 
detected in a timely manner. A related problem 
independent of the change detection algorithm involves 
development of appropriate representations for deltas 
during transmission and in the warehouse. At the very 
least, each delta must be uniquely identifiable and contain 
(a) information about the data item to which it belongs 
and (b) the a priori and a posteriori data and the time 
stamp for when the update became effective. 
Data integration 
Before the extracted data from the sources can be loaded 
into the Unifying Database, one must establish the 
relationships among the data items in the source(s) with 
the existing data in the Unifying Database to ensure 
proper loading. In addition, in case data from more than 
one source is loaded, related data items from different 
sources must first be identified so that duplicates can be 
removed and inconsistencies among related values can be 
resolved. This last step is referred to as reconciliation. 

The fundamental problem is as follows: How do we 
automatically detect relationships among similar entities, 
which are represented differently in terms of structure or 
terminology? This problem is commonly referred to as the 
semantic heterogeneity problem. Being able to find an 
efficient solution will allow us to answer the following 
important questions that arise during data integration: 

• Which source object is related to which entity in 
the Unifying Database and how?  

• Which data values can be merged, (for example 
because they contain complimentary or duplicate 
information)? 

• Which items are inconsistent? 
There has been a wealth of research on finding automated 
solutions to the semantic heterogeneity problem. For a 
general overview and theoretical perspective on managing 
semantic heterogeneities see [5]. 

Unifying database maintenance 
Since the Unifying Database contains information from 
existing genomic repositories, its contents must be 
refreshed whenever the underlying sources are updated. 



Ideally, the Unifying Database should always be perfectly 
synchronized with respect to the external sources. 
However, given the frequency of updates to most 
repositories, this is not realistic. On the other hand, there 
is evidence that a less synchronized warehouse is still 
useful. For example, SWISS-PROT, which is a curated 
version of the protein component of GenBank is updated 
on a quarterly basis; yet it is extensively used due to the 
high quality of its data. A similar experience has been 
documented by the authors in [3], whose GUS warehouse 
contents lag those of the data sources by a few months. As 
an important variation to existing refresh schemes, 
namely to automatically maintain certain pre-defined 
consistency levels between sources and warehouse, we 
plan to offer a manual refresh option. This allows the 
biologist to defer or advance updates depending on the 
situation.  

Independent of the update frequency, refreshing the 
contents of the Unifying Database in an automatic and 
efficient manner remains a challenge. Since a warehouse 
can be regarded as an integrated  “view” over the 
underlying sources, updating a warehouse has been 
documented in the database literature as the view 
maintenance problem. In general, one can always update 
the warehouse by reloading the entire contents, i.e., by re-
executing the integration query(s) that produced the 
warehouse view. However, this is very expensive, so the 
problem is to find a new load procedure (or view query) 
that takes as input the updates that have occurred at the 
sources and possibly the original source instances or the 
existing warehouse contents and updates the warehouse to 
produce the new state. When the load procedure can be 
formulated without requiring the original source 
instances, the warehouse is said to be self-maintainable. 

View maintenance has been studied extensively in the 
context of relational databases. However, fewer results are 
known in the context of object-oriented databases or 
semistructured databases. To our knowledge, no work has 
been done on recomputing annotations or corrections that 
need to be applied to existing data in the warehouse. 

6.   Interaction between genomics algebra 
and unifying database 

Both pillars of our approach develop their full power if 
they are integrated into a common system architecture. In 
the following, we will discuss the system architecture, the 
requirements with respect to DBMSs, and appropriate 
integration mechanisms. 

6.1  System architecture 

A conceptual overview of the high-level architecture that 
integrates the Genomics Algebra with the Unifying 
Database is shown in Figure 3. The Unifying Database is 
managed by the DBMS and contains the genomic data, 
which comes either from the external sources or is user 

generated. The link between the Genomics Algebra and 
the Unifying Database is established through the DBMS-
specific adapter. Extracting and integrating data from the 
external sources is the job of the extract-transform-load 
(ETL) tool shown on the right-hand side of Figure 3. 
User-friendly access to the functionality of the Genomics 
Algebra is provided by the GUI component depicted in 
the top center. In the following, we describe the remaining 
components of the architecture and some further aspects 
in more detail. 

Extensible DBMS

Genomics
Algebra

External Repositories
(e.g, GenBank, NCBI, …)

public space
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space

user
space

user
space… 

GUI

DBMS-specific 
Adapter

ETL

…

…
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Figure 3: Integration of the Genomics Algebra with the 
Unifying Database through a DBMS-specific adapter. 

6.2 Adapters and user-defined data types 

Databases must be inherently extensible to be able to 
efficiently handle various rich, application-domain-
specific complex data types. The adapter provides a 
DBMS-specific coupling mechanism between the ADTs 
together with their operations in the Genomics Algebra 
and the DBMS managing the Unifying Database. The 
ADTs are plugged into the adapter by using the user-
defined data type (UDT) mechanism of the DBMS. UDTs 
provide the ability to efficiently define and use new data 
types in a database context without having to re-architect 
the DBMS. The adapter is registered with the database 
management system at which point the UDTs become 
add-ons to the type system of the underlying database. 

Two kinds of UDTs can be distinguished, namely 
object types, whose structure is fully known to the DBMS, 
and opaque types whose structure is not. Object types can 
only be constructed by means of types the DBMS 
provides (e.g., native SQL data types, other object types, 
large objects, reference types). They turn out to be too 
limited. For our purpose, opaque types are much more 
appropriate. They allow us to create new fundamental 
data types in the database whose internal and mostly 
complex structure is unknown to the DBMS. The database 
provides storage for the type instances. User-defined 
operators (see also Section 6.3) that access the internal 
structure are linked as external methods or external 



functions. They as well as the types are implemented, e.g., 
in C, C++, or Java. The benefit of opaque types arises in 
cases where there is an external data model and behavior 
available like in the case of our Genomics Algebra. 

All major database vendors support UDTs and 
external functions and provide mechanisms to package 
them up for easy installation (e.g., cartridges, extenders, 
datablades). A very important feature of the Genomics 
Algebra is that it is completely independent of the 
software that is used to provide persistence. That is, it can 
be integrated with any DBMS (relational, object-
relational, object-oriented), as long as the DBMS is 
extensible. The reason is that the genomic data types are 
included into the database schema as attribute data types 
(like the standard data types real, integer, boolean, etc.).  
Tuples in a relational setting or objects in an object-
oriented environment then only serve as containers for 
storing genomic values. 

6.3 Integration of user-defined operations into SQL3 

Typically, databases provide a set of pre-defined 
operators to operate on built-in data types. Operators can 
be related to arithmetic (e.g., +, -, *, /), comparison (e.g., 
=, <, >), Boolean logic (e.g., not, and, or), etc. From 
Section 6.2 we know that the UDT mechanism also 
allows us to specify and include user-defined operators as 
external functions. For example, it is possible to define a 
resembles operator for comparing nucleotide sequences. 

User-defined operators can be invoked anywhere 
built-in operators can be used, i.e., wherever expressions 
may occur. In particular, this means that they can be 
included in SQL statements. They can be used in the 
argument list of a SELECT clause, the condition of a 
WHERE clause, the GROUP BY clause, and the ORDER 
BY clause. This ability allows us to integrate all the 
powerful operations and predicates of the Genomics 
Algebra into the DBMS query language, which, by the 
way, need not necessarily be SQL, and to extend the 
semantics of the query language in a domain-specific 
way. Let us assume the very simplified example of a 
predicate contains which takes as input a decoded DNA 
fragment and a particular sequence and which returns true 
if the fragment contains the specified sequence. Then we 
can write an SQL query as 

SELECT id 
FROM DNAFragments 
WHERE contains(fragment, ”ATTGCCATA”) 

6.4 User and system interface 

For the biologist the quality of the user interface plays an 
important role, because it represents the communication 
                                                           
3 The integration approach of our Genomics Algebra with a 
relational DBMS and SQL can also be accomplished using an 
object-oriented DBMS and query language, such as OQL, for 
example. 

mechanism between him/her on the one side and the 
Genomics Algebra and the Unifying Database on the 
other side. Currently, the biologist has to cope with the 
multitude, heterogeneity, fixed functionality, and 
simplicity of the user interfaces provided by genomic 
repositories. Hence, uniformity, flexibility, extensibility, 
and the possibility of graphical visualization are important 
requirements of a well-designed user interface. Based on 
an analysis and comparison of the currently available and 
most relevant user interfaces, our goal is to construct such 
a graphical user interface (GUI) for our Genomics 
Algebra. The aforementioned GUIs suffer from (at least) 
two main problems. First, they do not provide database 
and query facilities, which is an essential drawback, and 
second, their formats are only either HTML, ASN.1 (a 
binary format for bioinformatics data), or graphical 
output.  

Our GUI is to comprise the following main elements: 
(1) a biological query language combined with a 
graphical output description language, (2) a visual 
language for the graphical specification of queries, and 
(3) the development of an XML application as a 
standardized input/output facility for genomic data. 

The extended SQL query language enriched by the 
operations of the Genomics Algebra (see Section 6.3) is 
not necessarily the appropriate end user query language 
for the biologist. Biologists frequently dislike SQL due to 
its complexity. For them SQL is solely a database query 
language but not apt as a biological query language. 
Thus, the issue is here to design such a biological query 
language based on the biologists’ needs. A query 
formulated in this query language will then be mapped to 
the extended SQL of the Unifying Database. A general, 
connected question is how the query result should be 
displayed. To enable high flexibility of the graphical 
output, the idea is to devise a graphical output description 
language whose commands can be combined with 
expressions of the biological query language. 

The textual formulation of a query is frequently 
troublesome and only possible for the computationally 
experienced biologist. A visual language can help to 
provide support for the graphical specification of a query. 
The graphical specification is then evaluated and 
translated into a textual SQL representation which itself is 
executed by the Unifying Database. The design of such a 
visual language and the translation process are here the 
challenging issues. 

As far as system interfaces are concerned, a number of 
XML applications exist for genomic data (e.g., GEML [9], 
RiboML [10], phyloML [12]). Unfortunately, these are 
inappropriate for a representation of the high-level objects 
of the Genomics Algebra. Hence, we plan to design our 
own XML application, which we name GenAlgXML. 



6.5 Genomic index structures and genomic data 
optimization 

We briefly mention two important research topics which 
are currently not the focus of our considerations but which 
will become relevant in the future, since they enhance the 
performance of the Unifying Database and the Genomics 
Algebra. These topics relate to the construction of 
genomic index structures and to the design of 
optimization techniques for genomic data. 

 As we add the ability to store genomic data, a need 
arises for indexing these data by using domain-specific, 
i.e., genomic, indexing techniques. These should support, 
e.g., similarity or substructure search on nucleotide 
sequences, or 3D structural comparison of tertiary protein 
sequences. The DBMS must then offer a mechanism to 
integrate these user-defined index structures. 

The development of optimisation techniques for non-
standard data (e.g., spatial, spatio-temporal, fuzzy data) 
must currently be regarded as immature due to the 
complexity of these data. Nevertheless, optimisation rules 
for genomic data, information about the selectivity of 
genomic predicates, and cost estimation of access plans 
containing genomic operators would enormously increase 
the performance of query execution.  

7.   Vision 
We believe our project will cause a fundamental change 
in the way biologists analyze genomic data. No longer 
will biologists be forced to interact with hundreds of 
independent data repositories each with their own 
interface. Instead, biologists will work with a unified 
database through a single user interface specifically 
designed for biologists. Our high-level Genomics Algebra 
allows biologists to pose questions using biological terms, 
not SQL statements. Managing user data will also become 
much simpler for biologists, since his/her data can also be 
stored in the Unifying Database and no longer will s/he 
have to prepare a custom database for each data 
collection. Biologists should, and indeed want to invest 
their time being biologists, not computer scientists. 

From a computer science perspective, the main 
implications consist in obtaining extended knowledge 
about the design and implementation of new, 
sophisticated data structures and efficient algorithms in 
the non-standard application field of biology and 
bioinformatics. The Genomics Algebra comprising all 
these data structures and algorithms will be made publicly 
available so that other groups in the community can study, 
improve, and extend it. 

From a database perspective, our project leverages 
and extends the benefits and possibilities of current 
database technology. In particular, we demonstrate the 
elegance and expressive power of modeling and 
integrating non-standard and extremely complex data by 
the concept of abstract data types into databases and query 

languages. In addition, our approach is independent of a 
specific underlying DBMS data model. That is, the 
Genomics Algebra can be embedded in a relational, 
object-relational, or object-oriented DBMS as long as it is 
equipped with the appropriate extensibility mechanisms.  
The separation of DBMS and application-specific type 
system demonstrates the generality and flexibility of our 
approach. For example, in the future it is possible to 
develop algebras for other application domains. 
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