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Abstract: In many geographical applications there is a need to model spatial phenom-
ena not simply by sharp objects but rather through indeterminate or vague concepts. To
support such applications we present a model of vague regions which covers and
extends previous approaches. The formal framework is based on a general exact model
of spatial data types. On the one hand, this simplifies the definition of the vague model
since we can build upon already existing theory of spatial data types. On the other hand,
this approach facilitates the migration from exact to vague models. Moreover, exact spa-
tial data types are subsumed as a special case of the presented vague concepts. We
present examples and show how they are represented within our framework. We give a
formal definition of basic operations and predicates which particularly allow a more
fine-grained investigation of spatial situations than in the pure exact case. We also dem-
onstrate the integration of the presented concepts into an SQL-like query language.

1 Introduction

In the literature about spatial database systems and geographical information systems
(GIS) that advocates an entity-oriented view of spatial phenomena, the general opinion
prevails that special data types are necessary to model geometry and to efficiently rep-
resent geometric data in database systems, for example [Eg89, GNT91, GS93, GS95,
Gü88, LN87, OM88, Sc95, SV89]. These data types are commonly denoted asspatial
data types such aspoint, line, or region. We speak ofspatial objects as occurrences of
spatial data types.

So far, spatial data modeling implicitly assumes that the extent and hence the boundary
of spatial objects is precisely determined and universally recognized. This leads exclu-
sively to exact object models. Spatial objects are represented by sharply described
points, lines, and regions in a defined reference frame. Lines link a series of exactly
known coordinates (points), and regions are bounded by exactly defined lines which are
calledboundaries. The properties of the space at the points, along the lines, or within
the regions are given by attributes whose values are assumed to be constant over the
total extent of the objects. Examples are especially man-made spatial objects represent-
ing engineered artifacts (like highways, roads, houses, and bridges) and some predom-
inantly immaterial spatial objects exerting social control (like countries and districts
with their political and administrative boundaries or land parcels with their cadastral
boundaries). We will denote this kind of entities asdeterminate spatial objects.
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Increasingly, researchers are beginning to realize that there are many spatial objects in
reality which do not have sharp boundaries or whose boundaries cannot be precisely
determined. Examples are natural, social, or cultural phenomena like land features with
continuously changing properties (such as population density, soil quality, vegetation),
oceans, biotopes, deserts, an English speaking area, or mountains and valleys. The tran-
sition between a valley and a mountain usually cannot be exactly determined so that the
two spatial objects “valley” and “mountain” cannot be precisely separated and defined.
Frequently, the indeterminacy of spatial objects is associated with temporal changes; for
example, clouds and sandbanks dynamically change their shapes in the course of time.
We will denote this kind of entities asvague or indeterminate spatial objects.

This paper presents an object model for defining vague regions1 which rests on “tradi-
tional” (that is, exact) modeling techniques. This modeling strategy simultaneously
expresses the authors’ opinion that it is unnecessary to begin from scratch when mod-
eling vague spatial objects. On the contrary, it is possible to extend, rather than to
replace, the current theory of spatial database systems and GIS. Furthermore, moving
from an exact to a vague domain does not necessarily invalidate conventional geometry;
it is merely an extension. Consequently, the current exact object models that are
restricted to determinate spatial objects can be considered as simplified special cases of
a richer class of models for general spatial objects. It turns out that this is exactly the
case for the model to be presented.

Section 2 gives a characterization of the various meanings of indeterminacy, discusses
the notion of “boundary”, and presents a classification of the approaches proposed so
far. Section 3 informally introduces the concept of vague regions and motivates the
necessity of vague topological predicates and vague spatial operations. Section 4 for-
malizes these concepts and discusses the problem of adequately defining numerical
operations on vague regions. Section 5 demonstrates an embedding into an SQL-like
query language, and Section 6 draws some conclusions and gives a prospect of future
research activities.

2 Classifying Models for Vague Spatial Objects

A first attempt of a taxonomy of vague spatial objects has been given by Couclelis
[Co96]. She proposes to examine the essence of vague spatial objects from three differ-
ent perspectives: the empirical nature of the object, the mode of observation, and the
user’s purpose. All three perspectives are based on the intuitive meaning of the notion
“boundary”. The nature of the object (for example, whether it is homogeneous or het-
erogeneous, continuous or discontinuous, solid or fluid, fixed or moving) influences
how we become aware of the boundaries and their degree of sharpness. The mode of
observation (given, for example, by scale, resolution, time, error) affects the knowledge
about the position of the boundary. The user’s purpose for which a model is designed
leads to a preference for one model over the other, since different user categories have

1. Concepts for vague points and vague lines are currently not taken into account.
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different requirements and conceptual views. Administrators, for instance, demand pre-
cisely defined objects; scientists, however, strive to integrate the vagueness of bound-
aries into their models.

The entity-oriented view of spatial phenomena, which we will take in this paper, con-
siders spatial objects as conceptual and mathematical abstractions of real-world entities
which can be identified and distinguished from the rest of space. For example, a region
divides space into three parts: one part inside the object, another part on the border of
the object, and the remaining part outside the object. The three parts form a partition of
space, that is, they are mutually exclusive and covering the whole space. Hence, the
notion of a region is intrinsically related to the notion of a boundary, be it sharp or inde-
terminate.

So far, in spatial data modeling boundaries are considered as sharp lines that represent
abrupt changes of spatial phenomena and that describe and thereby distinguish regions
with different characteristic features. The assumption of crisp boundaries harmonizes
very well with the internal representation and processing of spatial objects in a com-
puter which requires precise and unique internal structures. Hence, in the past, there has
been a tendency to force reality into determinate objects. In practice, however, there is
no apparent reason for the whole boundary of a region to be sharp or to have a constant
degree of vagueness. There are a lot of geographical application examples illustrating
that the boundaries of spatial objects can be indeterminate. For instance, boundaries of
geological, soil, and vegetation units (see for example [Al94, Bu96, KV91, LAB96,
WH96]) are often sharp in some places and vague in others; many human concepts like
“the Indian Ocean” are implicitly vague.

The treatment of spatial objects with indeterminate boundaries is especially problem-
atic for the computer scientist who is confronted with the difficulties how to model such
objects in his database system so that they correspond to the user’s intuition, how to
finitely represent them in a computer format, how to develop spatial index structures for
them, and how to draw them. He is accustomed to the abstraction process of simplifying
spatial phenomena of the real world through the concepts of conventional binary logic,
reduction of dimension, and cartographic generalization to precisely defined, simply
structured, and sharply bounded objects of Euclidean geometry like points, lines, and
regions.2

In reality, there are essentially two categories of indeterminate boundaries: sharp
boundaries whose position and shape are unknown or cannot be measured precisely, and
boundaries which are not well-defined or which are useless (for example, between a
mountain and a valley) and where essentially the topological relationship between spa-
tial objects is of interest.

2. Ironically, this abstraction process itself mapping reality onto a mathematical model implicitly
introduces a certain kind of vagueness and imprecision.
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Spatial objects with indeterminate boundaries are difficult to model and are so far not
supported in spatial database systems. According to the two categories of boundaries,
two kinds of vagueness or indeterminacy concerning spatial objects have to be distin-
guished:Uncertainty relates either to a lack of knowledge about the position and shape
of an object with an existing, real border (positional uncertainty) or to the inability of
measuring such an object precisely (measurement uncertainty).Fuzziness is an intrinsic
feature of an object itself and describes the vagueness of an object which certainly has
an extent but which inherently cannot or does not have a precisely definable border.

The subject of modeling spatial vagueness has so far been exclusively treated by geog-
raphers but rather neglected by computer scientists. At least three alternatives are pro-
posed as general design methods:

• fuzzy models [Al94, Ba93, Bu96, Ed94, KV91, LAB96, Us96, Wa94, WHS90]
which are all based on fuzzy set theory and predominantly model fuzziness,

• probabilistic models [Bl84, Bu96, Fi93, Sh93] which are based on probability
theory and predominantly model positional and measurement uncertainty, and

• exact models [CF96, CG96, Sc96] which transfer data models, type systems, and
concepts for spatial objects with sharp boundaries to spatial objects without clear
boundaries and which predominantly model uncertainty but also aspects of fuzz-
iness.

Fuzzy sets were first introduced by Zadeh [Za65] to treat imprecise concepts in a defin-
able way. Fuzzy set theory is an extension or generalization (and not a replacement) of
classical boolean set theory and deals only with fuzziness, not with uncertainty. Fuzzi-
ness is not a probabilistic attribute, in which the grade of membership of an individual
in a set is connected to a given statistically defined probability function. Rather, it is an
admission of the possibility that an individual is a member of a set or that a given state-
ment is true. Examples of fuzzy spatial objects include mountains, valleys, biotopes,
oceans, and many other geographic features which cannot be rigorously bounded by a
sharp line.

Probability theory can be used to represent uncertainty. It defines the grade of member-
ship of an entity in a set by a statistically defined probability function. Examples are the
uncertainty about the spatial extent of particular entities like regions defined by some
property such as temperature, or the water level of a lake.

The main difficulty of fuzzy and probabilistic models is that their use with spatial data
is still a non-trivial application. On the one hand, our current computational technology
does not allow efficient processing of uncertain and fuzzy spatial data. On the other
hand, it is an open problem how to integrate and transform these models into the concept
of spatial data types.

A benefit of the exact object model approach is that existing definitions, techniques,
data structures, algorithms, etc., need not be redeveloped but only modified and
extended, or simply used. The currently proposed exact methods model vague regions
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by using some kind of zone concept, either without holes [CF96, CG96] or with holes
[Sc96]. The central idea is to consider determined zones surrounding the indeterminate
boundaries of a region and expressing its minimal and maximal extension. The zones
serve as a description and separation of the space that certainly belongs to the region
and the space that is certainly outside.

While [CF96] and [CG96] are mainly interested in classifications of topological rela-
tionships between vague regions for which a simple model is assumed, [Sc96] proposes
a model of complex vague regions with vague holes and focusses on their formal defi-
nition. Unfortunately, the three approaches are limited to “concentric” object models
and have problems with geometric closure properties. The model described in this paper
also pursues the exact model approach but is much more general and much simpler than
the approaches suggested so far.

3 What are Vague Regions?

Our goal to base a concept of vague regions on traditional modeling techniques first
necessitates a general exact object model for determinate regions. We will introduce this
model only informally here. A formal definition of this model based on the point set par-
adigm and on point set topology is given in the Appendix. Each alternative model
should fulfill the properties described there. Possible candidates are the models
described in [ECF94, WB93], and the discrete model of the ROSE algebra [GS93,
GS95, Sc95].

A (determinate) region is a set of disjoint, connected areal components possibly with
disjoint holes (see the picture below). This model is very general and closed under
(appropriately defined) geometric union, intersection, difference, and complement
operations. It allows regions to contain holes and islands within holes to any (finite)
level. The requirement of disjointedness is not meant in a strict sense; components of
regions as well as holes of a component may be neighbored in a common boundary line
or in common single boundary points.3 We only require that the employed model satis-
fies the requirements defined in the Appendix.

3. Usually, common boundary lines make no sense, since then adjacent components and adjacent holes,
respectively, could be merged together by eliminating the common boundary parts. For our purposes,
this aspect is not relevant.
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Our concept of vague regions mainly deals with the aspect of uncertainty but also
includes some aspects of fuzziness. Frequently, there is uncertainty about the spatial
extent of phenomena in space, that is, objects can shrink and extend. An example is a
lake whose water level depends on the amount of precipitation or on the degree of evap-
oration and which has thus a minimal and maximal extent. Another example is a map
of natural resources like iron ore. For some areas experts definitely know the existence
of iron ore because of soil samples. For other areas experts are not sure and only assume
the incidence of this mineral. These are the kinds of vague regions we are especially
interested in. On the other hand, our concept is also able to model the aspect of fuzziness
that areal objects have an extent but cannot be bounded by a precise border, for example,
the transition between a mountain and a valley. Continuous changes of features (like air
pollution continuously decreasing from city centers to rural areas) cannot currently be
modeled by this concept (but see Section 5).

A vague region is a pair of disjoint regions. The first region, called the kernel, describes
the determinate part of the vague region, that is, the area which definitely and always
belongs to the vague region. The second region, called the boundary, describes the
vague part of the vague region, that is, the area for which we cannot say with any cer-
tainty whether it or parts of it belong to the vague region or not. Maybe the boundary or
parts of it belong to the vague region, maybe this is not the case. Or we could say that
this is unknown. It is important to notice that boundaries need not necessarily be one-
dimensional structures but can be regions, and that the semantics of the boundary of a
vague region is not fixed by our model but depends on the meaning the application asso-
ciates with it.

The figure below gives an abstract example of a vague region v. The blank areas anno-
tated with v depict kernels, the shaded areas annotated with v denote the boundaries of
the vague region v, and the blank areas that are not annotated describe holes. The exam-
ple demonstrates the complexity of the model. Kernels and boundaries may be adjacent;
they may have holes which themselves can contain a hierarchy of kernels and bound-
aries with holes.

We now briefly present two real life applications and motivate the use of vague regions,
vague topological predicates, and vague spatial operations. Vague concepts offer a
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greater flexibility for modeling properties of spatial phenomena in the real world than
determinate concepts do. Still, vague concepts comprise the modeling power of deter-
minate concepts as a special case.

The first example is taken from the animal kingdom and demonstrates the need of dif-
ferent vague intersects predicates and the use of a vague intersection operation. We
view the living spaces of different animal species and distinguish kernel areas where
they mainly live and boundary areas like peripheral areas or corridors where they in par-
ticular hunt for food or which they cross in order to migrate from one kernel area to
another one. We now consider some relationships of their living spaces and ask:

• Which animals (partially) share their living spaces?
• Which hunters penetrate into the living space of other animals?
• What are the areas where two species can only meet by accident?

For two animal species u and v, the interesting situations for the queries are shown
below. They all relate to different kinds of intersection which amount to three different
kinds of topological predicates (introduced in the next section). The first query asks for
kernel/kernel intersections, the second query for kernel/boundary intersections but not
kernel/kernel intersections, and the third query exclusively for boundary/boundary
intersections. The situation on the left is definitely an intersection. In contrast, the situ-
ation in the middle is a vague intersection which, however, is a stronger case than the
situation on the right. Other examples of topological relationships and their use will be
presented in the next section.

The task to compute the common living spaces of two animal species asks for the inter-
section of two vague regions. The intersection of two kernels is certainly a kernel, and
the intersection of an exterior part with anything else is an exterior part. The open ques-
tion is now the intersection of a kernel with a boundary and the intersection of two
boundaries. Since boundaries are vague, we cannot make a unique statement whether
these intersections belong to the kernel parts or to the boundary parts. It only remains
to regard these intersections as boundary parts.

The second example demonstrates that concentric models like those presented in
[CF96, CG96, Sc96] are captured by our concept. Consider a lake l which has a minimal
water level in dry periods (kernels) and a maximal water level in rainy periods. Dry peri-
ods can entail puddles. Small islands in the lake which are less flooded by water in dry
and more (but never completely) flooded in rainy periods can be modeled through holes
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surrounded by a boundary. If an island like a sandbank can be flooded completely, it
belongs to the boundary part.

4 An Exact Model of Vague Regions

In this section, we give a formal account of vague regions. We first define vague spatial
operations in Section 4.1. After that we define predicates in Section 4.2. There we will
see that a concept, such as inside, is not anymore simply a question of true and false,
but rather needs a vague kind of booleans containing a value like maybe. That is, we
actually employ a three-valued logic as the range of (standard) predicates. Similarly,
numeric operations given in Section 4.3 seem to require a concept of vague numbers
(given, for example, by intervals). Since this entails rather extensive changes to the type
of real numbers and on its operations, we instead define different exact versions of
numeric operations capturing various aspects of vagueness. In general, the problem is
how to integrate vague regions with other types and operations of a data model. We will
pick up this issue again in Section 6.

For the definition of vague regions we make use of a suitable model for determinate
regions as sketched in the previous section. One possible candidate is the point set
model the relevant parts of which are given in the Appendix. We can choose any other
model as long as it offers the following operations (let R denote the type of regions and
IR the set of real numbers):

 : R × R → R (union)
 : R × R → R (intersection)
: R × R → R (difference)

 : R → R (complement)
dist : R × R → IR (minimum distance)
area : R → IR (area)

Moreover, R together with the operations  and  must form a boolean algebra. The
order predicate of the corresponding boolean lattice is then given by r ⊆ s ⇔ r ∪ s = s
(⇔ r ∩ s = r).

We define a vague region v as a pair of disjoint regions (k, b) where k gives the kernel
of v and b denotes the boundary of v. We employ the following notation: vκ = k and
vβ = b. Finally, the exterior, or outside, of v is defined as vε = (k b).

Lake

Island
Sandbank

Puddle l

l
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4.1 Vague Spatial Operations

In order to define operations, such as union, intersection, and difference of two vague
regions u and v, it is helpful to consider the possible relationships between the kernel,
boundary, and outside parts of u and v. We do this by giving a table for each operation
where a column/row labeled by , , or  denotes the kernel, boundary, or outside
part of u/v. Each field of the table denotes a possible combination (that is, intersection)
of kernel, boundary, and outside parts of both objects, and the label in each field speci-
fies whether the corresponding intersection belongs to the kernel, boundary, or outside
part of the operation’s result.

For example, the union of a kernel part with any other part is a kernel part since the
union of two regions asks for membership in either region and since membership is cer-
tain for each kernel part. Likewise, the union of two boundaries or the union of a bound-
ary with the outside should be a boundary, and only the parts of the space which belong
to the outside of both regions contribute to the outside of the union.

On the other hand, the outside of the intersection is given by either region’s outside
because intersection requires membership in both regions. The kernel of the intersection
only contains parts which definitely belong to the kernel of both arguments, and inter-
sections of boundary parts with each other or with kernel parts make up the boundary
of the intersection.

The definition of difference is motivated by the definition of complement. Clearly, the
complement of the kernel should be the outside, and the complement of the outside
should be the kernel, but what about the boundary part? Anything inside the vague part
of an object might or might not belong to the object, so we cannot definitely say that the
complement of the vague part is the outside. Neither can we say that the complement
belongs to the kernel. So the only reasonable definition is to define the complement of
the boundary to be the boundary itself:

Now the result of removing a vague region v from another vague region u can be defined
as the intersection of u with the complement of v. That is, removing a kernel part means
intersection with the outside which always yields outside, and removing anything from
the outside leaves the outside part unaffected. Similarly, removing a boundary means

complement

union intersection
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intersection with the boundary and thus results in a boundary for kernel and boundary
parts, and removing the outside of v (that is, nothing) does not affect any part of u.

Next we formally define these operations simply by using regions operations, that is, we
express the notion of vague regions using well-understood exact regions. Let u and v be
two vague regions. Then we define:

u union v := (uκ vκ, (uβ vβ)  (uκ vκ))
u intersection v := (uκ vκ, (uβ vβ)  (uκ vβ)  (uβ vκ))
u difference v := (uκ  ( vκ), (uβ vβ)  (uκ vβ)  (uβ  ( vκ)))
complement v := ( vκ, vβ)

In the following we use as an abbreviating notation for the intersection of two (determi-
nate) regions simple juxtaposition, and we assign intersection higher associativity than
union and difference. That is, the above definition for u difference v could also be writ-
ten more concisely as (uκ( vκ), uβvβ uκvβ uβ( vκ)).

It is not difficult to check that the definitions realize the behavior specified by the tables
given above. Consider, for example, the union-operation. For w = u union v we have to
show the following three identities:

(1) wκ = uκvκ uκvβ uκvε uβvκ uεvκ

(2) wβ = uβvβ uβvε uεvβ

(3) wε = uεvε

For proving (1) we first observe that  is idempotent. We can therefore duplicate the
first term uκvκ. Then using the fact that  distributes over  we can factorize both uκ

and vκ and obtain:

wκ = (uκ(vκ vβ vε))  (vκ(uκ uβ uε))

Since vκ vβ vε = 1R and uκ uβ uε = 1R and since 1R is the identity of  we get

wκ = (uκ 1R)  (vκ 1R) = uκ vκ,

which is the definition of the kernel part of union. Equation (2) can be shown as follows.
For arbitrary regions r and s we know:

r s = rs r( s)  ( r)s

We can use this identity to rewrite the boundary definition as:

uβvβ uβ( vβ)  ( uβ)vβ  (uκvκ uκ( vκ)  ( uκ)vκ)

difference
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Next we evaluate all complements (note that vβ = vκ vε or vκ = vβ vε):

uβvβ uβ(vκ vε)  (uκ uε)vβ  (uκvκ uκ(vβ vε)  (uβ uε)vκ)),

and apply distributivity of :

uβvβ uβvκ uβvε uκvβ uεvβ  (uκvκ uκvβ uκvε uβvκ uεvκ)

In the resulting term, only uβvκ and uκvβ appear in both parts of the difference; all other
intersections to be subtracted have no effect at all since all intersections are pairwise dis-
joint. Therefore the result is:

uβvβ uβvε uεvβ

which is exactly the condition required for wβ. For the proof of relationship (3), first
note that in a boolean lattice we have for any two regions r and s: 1R s = s, 1R s =
1R, and 1R = r  ( r). Therefore, we know that s = (r  ( r))s = rs  ( r)s, and it
follows that r s = r rs  ( r)s. We also know that r rs = r(1R s) = r, so that r

s = r  ( r)s. Since ( r)s is another way of denoting the difference s r, we get: r
 (s r) = r s. Now we have by definition that

wε = (wκ wβ) = (uκ vκ  ((uβ vβ)  (uκ vκ))) = (uκ vκ uβ vβ)

By commutativity and de Morgan’s law this reduces to:

(uκ uβ)  ( (vκ vβ))

which is by the definition of complement equal to uε vε, the condition required for wε.
The correctness of the other operations is shown in a similar way.

In addition to having the four basic spatial operations on vague regions, it is also some-
times helpful to be able to explicitly deal with their boundary and kernel parts. Thus, we
define the following operations:

boundary(v) := (∅, vβ)
kernel(v) := (vκ, ∅)
invert(v) := (vβ, vκ)

In particular, these operations facilitate the computation with parts of vague regions in
a purely exact way since the vague spatial operations, applied to vague regions with an
empty boundary, behave exactly like the corresponding exact spatial operations. (This
can be easily seen from the definitions.)

4.2 Vague Predicates

One of the most basic relationships that can be observed for two regions is whether they
intersect or not. Many different cases of intersection can be identified leading to special-
ized predicates, like covers or meets, that describe more specific relationships. To define
an intersection predicate for two vague regions u and v it is instructive to look at the pos-
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sible results for the kernel and boundary of w = u intersection v. Surely, we want to say
that u and v intersect if wκ = uκvκ is not empty, that is, if the kernel regions of u and v
overlap. This is true independent from the value of wβ. Likewise, if the regions of uκ

uβ and vκ vβ are disjoint, we can safely say that u and v do not intersect at all. How-
ever, if wκ = 0R and wβ ≠ 0R, we cannot be sure about the intersection of u and v. This
means, we can neither return true nor false, but we rather have to define the predicate to
yield something like maybe or unknown (comparable to NULL-values known from rela-
tional databases).

Therefore, we use a three-valued logic as the range of boolean predicates. The definition
of the logical operators parallels the definition of the operations for vague regions (1, 0,
and ? are used as abbreviations for true, false, and maybe):

Now we return to the definition of vague predicates. For example, the definition of inter-
section is:

 true if uκvκ ≠ 0R


u intersects v =  false if uκvκ uβvβ uκvβ uβvκ = 0R

 maybe otherwise

The maybe-case of intersection can be distinguished further according to whether a ker-
nel/boundary or only a boundary/boundary intersection exists. An example for both sit-
uations is shown below:

We consider the situation depicted on the left to be a stronger indication of intersection
than the situation on the right. Accordingly, we define two predicates, v-intersects
(vague intersection) and w-intersects (weak vague intersection) as follows:

and 1 ? 0

1 1 ? 0

? ? ? 0

0 0 0 0

or 1 ? 0

1 1 1 1

? 1 ? ?

0 1 ? 0

not 1 ? 0

0 ? 1

uκ uβ

vκ

uβvκ

uβ

vκ

vβ

uβvβ

uκ

vague intersection weak vague intersection
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 true if uβvκ uκvβ ≠ 0R and uκvκ = 0R
u v-intersects v = 

 false otherwise

 true if uβvβ ≠ 0R and uβvκ uκvβ uκvκ = 0R
u w-intersects v =

 false otherwise

A special case of intersection is also given when u lies inside v. We can safely say that
u inside v holds if everything of u (that is, kernel and boundary) is inside the kernel of
v. If this is not the case, we cannot simply conclude that u inside v is false since this
requires definite knowledge about a part of u being outside any part of v. In other words,
whenever uκ ⊆ vκ vβ we are not sure about insideness, and we should define u inside
v as maybe:

 true if uκ uβ ⊆ vκ


u inside v =  false if uκ vκ vβ


 maybe otherwise

As we have done for intersection we can discriminate the maybe-case further. If the ker-
nel part of u is completely inside the kernel part of v, then only the boundary of u makes
the decision of insideness vague. This is a stronger indication for the inside relationship
than in the case that also a part of u’s kernel lies in the boundary of v. Some possible
relationships are shown in the following picture:

As indicated by the two situations on the right, the predicate for weak vague inside can
be distinguished further. We do not follow this line, since this leads quickly to an infla-
tion of predicates.

 true if uκ ⊆ vκ and uβ vκ

u v-inside v = 
 false otherwise

 true if uκ ⊆ vκ vβ and uκ vκ

u w-inside v = 
 false otherwise

The complementary predicate for intersects is disjoint, and its definition is obtained by
simply exchanging true and false in the definition of intersects.

⊆

vague inside weak vague inside

vβ

vκ

uβuκ

vβ

uβ
vκ

uκ

vβ

vκ

uβ
uβuκ

uβ uβ

⊆

⊆
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Note that we cannot directly express relationships, such as meets or adjacent, since we
currently have no concept of lines and points in our model. However, we can regard
weak vague intersections as a kind of adjacency as done by [CF96, CG96].

4.3 Vague Numeric Operations

The definition of numeric operations on vague regions must be based on the correspond-
ing functions for regions. Let us consider, for example, the area of a vague region. The
area is at least the area of the kernel part and at most the area of kernel plus boundary.
So the result of the vague area operation could be an interval given by the minimum and
maximum area values. We then, however, have to work with intervals in any further cal-
culations using such an area value. This requires a whole new set of vague arithmetic
operations working with intervals. (The situation is similar to the extension to three-val-
ued logic used for predicates.) So in order to keep things simple we instead define two
operations, min-area and max-area, and can thus keep ordinary numeric operations.

min-area(v) := area (vκ)
max-area(v) := area (vκ vβ)

The definition of the distance between two vague regions u and v is very similar. Again
the distance is a vague value: An upper bound is obtained by the distance between the
kernel parts of u and v, that is, we are sure that the distance is at most the distance
between the kernels. The distance might be smaller, but it is at least as large as the dis-
tance between the maximal extensions of u and v, in other words, the minimum distance
is given by the distance taking kernel and boundary into account.

min-dist (u, v) := dist (uκ uβ, vκ vβ)
max-dist (u, v) := dist (uκ, vκ)

The generalization of area and dist to vague regions is rather straightforward. There are
other useful operations on regions, however, for which a generalization to the vague
case is not quite so simple or even impossible. Consider, for example, the definition of
perimeter. The definition for the exact case is well-known, but what could be the perim-
eter of a vague region? In a first approach one could be tempted to define minimum and
maximum versions similar to the definition of area. This, however, might lead to wrong
results. We have indicated that the boundary region can be thought of (at least in some
applications) as describing possible locations of the region’s contour. But then we can-
not give any upper bound on the length of such a curve. In particular, the contour might
be much longer than the perimeter of the boundary region, for instance:
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Moreover, we cannot simply take the perimeter of the kernel part as the minimal perim-
eter. This can be seen as follows. Usually, holes contribute to the perimeter of a region.
If now, for example, a kernel part of a vague region v contains a hole which is equal to
a boundary part of v, the perimeter of the hole is not counted in the perimeter of the max-
imal possible region.

In this example, the minimal possible region has a perimeter of length(C) + length(c)
whereas the maximal possible region has the minimal possible perimeter of length(C).

Another example is an operation giving the number of connected components for which
the generalization to vague regions heavily depends on the semantics of the boundary
parts. Since regions need not be connected, a “possible regions”-semantics of boundary
parts might well allow several unconnected parts, that is,

Hence, we cannot give an upper bound on the number of components. But, in general,
we cannot even give a non-trivial lower bound either (for example, the number of kernel
components) since kernel components might be connected by boundary regions. Thus
in the example below, the minimal number of components is 1 although there are three
kernel regions.

(If we required, however, that a possible region extending into an adjacent boundary is
connected, we could give a meaningful definition.)

We deliberately have avoided definitions of operations, such as perimeter and number
of components, since we are then not forced to fix a semantics for vague regions. This
means, the semantics can be assumed by each application as required and thus makes
our model more general.

C
c

could be a possible region of
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5 Embedding Vague Regions into Query Languages

In the previous section we have defined operations on vague regions. Next we indicate
how these operations can play a part in a spatial query language. We do not give a full
description of a specific language. We rather assume a relational data model where
tables may contain vague region objects together with a SQL-like query language. For
example, if we want to find out all regions where lack of water is a problem for cultiva-
tion, we can pose the following query:

select region from weather where climate = dry

Here we assume a table weather having a column named region containing vague
region values for various climatic conditions given by the column climate. A similar
query could ask for bad soil regions as a hindrance for cultivation.

Note that the result of both queries is a set of vague regions. If we now want to find out
about regions where cultivation is impossible due to either reason, we ask for the union
of the two region sets. Thus, we first have to cast the sets into single region objects. We
therefore use the built-in aggregation function sum which, when applied to a set of
regions, aggregates this set by repeated application of union (in the sense of fold/reduce
of functional languages). So we can determine regions where cultivation is impossible
by:

(select sum(region) from weather where climate = dry)
union
(select sum(region) from soil where quality = bad)

Pollutions are nowadays a central ecological problem and cause an increasing number
of environmental damages. Important examples are air pollution and oil soiling. Pollu-
tion control institutions, ecological researchers, and geographers, usually use maps for
visualizing the expansion of pollution. We can ask, for example, for inhabitable areas
which are air polluted (where the kernel part of air pollution denotes heavily polluted
areas and the boundary part gives only slightly polluted regions).

select sum(pollution.region) intersection sum(areas.region)
from pollution, areas
where area.use = inhabited and pollution.type = air

Then the kernel part of the result consists of inhabited regions which are heavily pol-
luted, and the boundary consists (a) of slightly polluted inhabited regions, (b) of heavily
polluted regions which are only partially inhabited, and (c) of slightly polluted and par-
tially inhabited regions. If we want to reach all people who live in heavily polluted
areas, we need the kernel of the intersection together with part (b) of the intersection
boundary. How can we get this from the above query? The trick is to force boundary
parts (a) and (c) to be empty by restricting pollution areas to their kernel region:
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select kernel(sum(pollution.region)) intersection sum(areas.region)
from …

A slightly different query is to find out all areas where people are definitely or possibly
endangered by pollution. Of course, we have to use an intersection predicate. More pre-
cisely, we want to find those areas for whichintersects either yieldstrue or maybe. For
this purpose we can prefix any predicate withmaybe which causes the predicate to fail
only if it returnsfalse. (Technicallymaybe turns amaybe value intotrue.) So the query
is:

select areas.name
from pollution, areas
where area.use = inhabitedand

pollution.region maybe intersects areas.region

We could also express the query by using simplyintersects and explicitly adding the
two cases forv-intersects andw-intersects. This would be, of course, much longer and
less clear.

The following example describes a situation which stresses the conflicting interests of
economy and ecology. Assume on the one hand areas of animal species and plants that
are worth being protected (nature reserves and national parks are the kernel regions) and
on the other hand mineral resources the mining of which prospects high profits. An
example for forming a difference of vague regions is a query which asks for mining
areas that do not affect the living space of endangered species.

(select sum(region) from resourceswhere kind = mineral)
difference
(select sum(region) from naturewhere type = endangered)

The kernel of the result describes regions where mining should be allowed. The bound-
ary consists (a) of regions where mineral resources are uncertain and (b) of resource ker-
nels that lie in (non-kernel) regions hosting endangered species. Since national parks are
generally protected by the government, it is especially regions (b) conservationists
should carefully observe. We can determine these regions by:

(select kernel(sum(region)) from resourceswhere kind = mineral)
intersection
(select boundary(sum(region)) from naturewhere type = endangered)

The result is a vague region with an empty kernel and a boundary that just consists of
the intersection of the mineral resource kernel and the endangered nature boundary.

Next we consider an example from biology already mentioned in Section 3. Assume we
are given living spaces of different animal species. The kernel describes places where
they normally live, and the boundary describes regions where they can be found occa-
sionally (for example, to hunt for food or to migrate from one kernel area to another
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through a corridor). First, we can search for pairs of species which share a common liv-
ing space. This asks for regions which have a non-empty intersection kernel:

select A.name, B.name
from animals (A), animals (B)
where A.region intersects B.region

A quite different question, also based on intersection, is whether there are animals that
only sometimes enter the kernel region of other animals, for example, to attack them
(but usually live in different areas). Here, we ask for an empty intersection kernel and a
non-empty boundary/kernel intersection which is exactly the concept of vague intersec-
tion. The above query changes to:

select …
where A.region v-intersects B.region

Finally, we can also ask for animals that only encounter each other in their boundaries.
This would be, for instance, the case for two animal species that are both hunters and
usually avoid contact. The corresponding query is obtained by simply usingw-inter-
sects instead ofv-intersects.

Assume that we are given a map of land areas (kernels) and mixed areas like shores and
banks (boundaries) where the living spaces of animals with their kernel and vague
regions are depicted. We can ask for animals that usually live on land and sometimes
enter the water or for species that never leave their land area. This can be expressed
using the inside predicate. The first example is characterized by an animal’s living space
beingv-inside land:

select name
from animals
where region v-inside (select sum(region) from land)

The second example demands plain (that is, strong)inside.

A quite different example using insideness relates to the historical development of the
Roman Empire, in particular, its expansion. At any moment during this development
there were kernel regions representing the areas currently occupied by the Roman con-
querors and spheres of influence (vague parts) that were under the control of the Roman
Empire but not annexed. If we consider two points in time (t1 < t2) and hence two vague
regionsu andv, we could ask whether any of the occupied areas att1 have been pre-
served tot2. This is the case if the kernel ofu is completely insidev, in other words,
whenu inside v or u v-inside v. If they had to give up kernel regions, this is an example
of u w-inside v.

Let us finally provide some examples for numeric operations. Oil companies are often
interested to determine whether it is worth exploiting a recently discovered oilfield.
Hence, they classify oilfields in areas where the existence of oil was proved by soil sam-
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ples and in areas where the incidence of oil is only assumed. The decision of exploiting
then depends on the guaranteed minimal extensions of the oilfields:

select min-area(region) from oilfields

An example for applying max-area is again pollution where we should be pessimistic
and consider the worst case of all possible polluted regions.

The minimum distance between a forest fire and a region of endangered species indi-
cates where protective measures should be performed first. For another example con-
sider an attacked country that might have secure parts (kernel), battle regions (bound-
ary), and even lost parts (outside). To move from one safe area to another one might con-
sider the risk of such a trip be given by the maximum distance between different regions,
that is, the difference between secure parts.

6 Conclusions and Future Work

We have defined a data model of regions that is capable of describing many different
aspects of vague spatial objects. It is a canonical extension of a determinate region
model which facilitates the treatment of vague and exact regions in one model. In par-
ticular, this allows a smooth migration from already existing models to vague concepts
(at least as far as regions are concerned). Our approach is based on exact spatial model-
ing concepts which allows to build upon existing work and simplifies many definitions.
In particular, we can (re-)use already existing regions implementations to realize vague
regions with only minimal effort.

Of course, the current model is limited in some ways, and we are currently investigating
extensions along several different lines. First, the presented concept of vagueness can
be extended to other spatial objects, such as points and lines. For example, a vague line
could be thought of as consisting of a kernel part given by a set of (unconnected) curves
and a vague part described by a boundary region. An example is a river which may con-
tain fixed segments (determined, for instance, by levees) and a boundary which
describes possible flows that depend on water level or season.

A vague point can be simply given by a vague region (with empty kernel) describing
possible positions of the point. To define such extensions we first have to extend the
basic model of exact regions by lines and points together with operations defined for
them. These can then be used to define vague lines and points. We also should consider
operations concerning objects of different vague types, for example, the intersection of
a vague line with a vague region.

Another direction of extension is the notion of vagueness itself. As yet, there is only one
kind of vagueness, but there are many applications which can be best described by hav-
ing different degrees of vagueness. For example, zones of decreasing pollution or
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regions of different possibilities for certain virus infections. Our model can be easily
extended to deal with this kind of applications by having a set of regions labeled with
different values of a suitable domainD which is subject to certain restrictions. For
example, we need operationsmax andmin to give meaningful extensions of operations
like union andintersection.

Finally, we consider theintegration of vague regions (and their possible extensions)
into other data models. We have already seen how for predicates and numeric operations
the vagueness of regions affects the corresponding domains of booleans and real num-
bers. It is likely that the situation is similar for other domains as well. So the integration
of vague regions into any existing data model and query language might cause some
trouble since it either requires a redefinition of the data types or a redefinition (and
duplication) of operations. That this can be tedious and error-prone has been demon-
strated in the description of numeric operations. Note that the problem of “vague infec-
tion” is not restricted to standard data types. For example, in [EG94, Er94] graphs have
been integrated into a spatial data model. With respect to vague spatial objects, an oper-
ation like subgraph that computes part of a graph according to a possibly spatial pred-
icate should return avague graph. Now, what are vague graphs, and how can all the
graph operations adapted to the vague case? We currently consider the integration an
open problem.
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Appendix

We give a formal definition of the general model for determinate regions that has been
informally described in Section 3. An adequate and general method to formally define
this model is to use the point set paradigm and point set topology. The point set para-
digm expresses that space is composed of infinitely many points and that spatial objects
like areal objects are distinguished subsets of space which are viewed as entities. Point
set topology [Al61, Ar83, Ga64] allows one to distinguish special topological structures
of a point set like its boundary or interior. We start with some basic concepts of point
set topology.

Definition. Let X be a set andT ⊆ 2X be a subset of the power set ofX. The pair (X, T)
is called atopological space, if the following three axioms are satisfied:

(T1) X ∈ T, ∅ ∈ T
(T2) U ∈ T, V ∈ T ⇒ U ∩ V ∈ T
(T3) S ⊆ T ⇒

T is called atopology for X. The elements ofT are calledopen sets, their
complements inX closed sets. The elements ofX are calledpoints.

When no confusion can arise,T is not mentioned, andX denotes a topological space. In
the sequel, letX be a topological space andY ⊆ X.

Definition. The interior of Y, denoted byY°, is the union of all open sets that are
contained inY. Theclosure of Y, denoted by , is the intersection of all closed sets
that containY. Theexterior of Y, denoted byY -, is the union of all open sets that are
not contained inY. The boundary of Y, denoted by∂Y, is the intersection of the
closure ofY and the closure of the complement ofY, that is,∂Y = ∩ .

The relationships between these four topological structures are given by the provable
statements (1)Y° ∩ ∂Y = ∅, (2) Y° ∪ ∂Y = , (3) Y - ∩ ∂Y = ∅, and (4)Y° ∩ Y - = ∅.
Obviously we can concludeX = ∂Y ∪ Y° ∪ Y -.

Since our objective is to model two-dimensional areal objects for spatial applications,
we embed them in the Euclidean space (plane)IR2 as an instance of a topological space4

with metric properties. A problem of applying pure set-theoretic operations to point sets
is that undesired geometric anomalies can arise. These anomalies are avoided by the
concept ofregularity [Ti80].

Definition. Y is called regular closed if Y = .

Intuitively, regular closed sets model areal objects containing their boundaries and
avoid both isolated or dangling line or point features and missing lines and points in the
form of cuts and punctures. Hence, it makes sense to define aregularization function
reg which associates a setY with a regular closed set, as follows:

4. Note that most of the definitions and results in the sequel also hold for general topological spaces.

U T∈
U S∈
∪

Y

Y X Y–

Y

Y°
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reg(Y) :=

An example of regularization is shown below where the set Y consists of areal, point,
and line objects. Some areal objects contain only parts of their boundaries (drawn with
broken lines) and have cuts (drawn with broken lines) and punctures. The regularization
process eliminates point and line features, cuts and punctures, and includes the missing
boundary parts of the areal objects.

The union of a finite number of regular closed sets is regular closed. The intersection
and difference of regular closed sets are not necessarily regular closed. Hence, we intro-
duce regular set operations that preserve regularity.

Definition. Let A, B be regular closed sets, and let ¬A denote the (set-theoretic)
complement IR2 − A of A. Then

(i) A ∪r B := reg(A ∪ B) = A ∪ B
(ii) A ∩r B := reg(A ∩ B)
(iii) A −r B := reg(A − B)
(iv) ¬rA := reg(¬A)

It is obvious that the subspace RCS of regular closed sets together with the regular set
operations is a topological space. Regular closed sets and regular set operations express
a natural formalization of the dimension-preserving property taken for granted by many
spatial type systems and geometric algorithms. The following important theorem holds:

Theorem. RCS with the set-theoretic order relation ⊆ is a Boolean lattice.

This implies that (i) (RCS, ⊆) is a partially ordered set, (ii) every pair A, B of elements
of RCS has a least upper bound A ∪r B and a greatest lower bound A ∩r B, (iii) (RCS,
⊆) has a maximal element 1r := IR2 (identity of ∩r) and a minimal element 0r := ∅
(identity of ∪r), (iv) algebraic laws like idempotence, commutativity, associativity, and
distributivity hold for ∪r and ∩r, (v) (RCS, ⊆) is a complementary lattice, that is, ∀ A
∈ RCS : A ∩r ¬rA = 0r and A ∪r ¬rA = 1r.

Definition. A region is a regular closed set.

Definition. The type R consists of all regions and has the operations , , , and
that are equated with the regular set operations ∪r, ∩r, −r, and ¬r, respectively, and
the elements 1R = 1r and 0R = 0r.

Y°

Y reg(Y)


