
Partition and Conquer

Martin Erwig & Markus Schneider

FernUniversität Hagen, Praktische Informatik IV
D-58084 Hagen, Germany

[martin.erwig | markus.schneider]@fernuni-hagen.de

Abstract. Although maps and partitions are ubiquitous in geographical informa-
tion systems and spatial databases, there is only little work investigating their
foundations. We give a rigorous definition for spatial partitions and propose par-
titions as a generic spatial data type that can be used to model arbitrary maps and
to support spatial analysis. We identify a set of three powerful operations on par-
titions and show that the type of partitions is closed under them. These basic op-
erators are sufficient to express all known application-specific operations. More-
over, many map operations will be considerably generalized in our framework.
We also indicate that partitions can be effectively used as a meta-model to de-
scribe other spatial data types.

1 Introduction

In spatially-oriented disciplines like geography, cartography, and related areas as well
as in computer-assisted systems like geographical information systems (GIS), spatial
database systems, and image database systems, the most fundamental and well-known
metaphor is that of amap. A map is a widely recognized geometric structure; it provides
a powerful concept capable of carrying a large amount of information in visual form. It
can be viewed from two different perspectives: thespace-based approach models a map
as a point set; each point in space represents a coordinate location and is associated with
some properties or attributes. Theobject-based approach advocates the explicit and ex-
act representation of spatial objects as single, self-contained entities. A map is regarded
as a composition of a set of point objects, a set of line objects, and a set of region objects.
Spatial data types for points, lines, regions, etc. have been intensively investigated in the
literature and assessed as appropriate concepts for modeling spatial phenomena (for ex-
ample, [CZ96, Eg89, EG94, Er94, GS95, Gü88, LN87, Sc95]). A main drawback of the
object-based approach is the incapability of modeling topological relationships between
elements of a set of spatial objects.

This paper focuses on a formal treatment ofpartitions as the central element of maps.
The importance of partitions is in particular reflected by the fact that the notion “map”
is frequently used as a synonym for “partition”. A partition is a subdivision of the plane
into pairwise disjointblocks orregions where each region is associated with an attribute,
which can have a simple or even complex structure. It implicitly models topological re-

lationships between the participating regions. First of all, the neighborhood relationship
is of particular interest here where different regions may have common boundaries. This
property is immediately visible on a map. A related aspect is that different regions of a
partition are always disjoint (if we neglect common boundaries), so that a visual repre-
sentation of a partition has a very simple structure and is easy to grasp. Partitions by na-
ture do not model overlap and containment relationships which can be considered for
single and self-contained spatial objects [EF91].

There are numerous examples of partitions in the real world like subdivisions of the
world map into countries, classifications of rural areas according to their agricultural
use (maps arising from classifying space according to some aspect are frequently called
thematic maps orcategorical coverages), or sites in cadastral applications. In geograph-
ically-oriented applications and systems partitions are regarded as the primary tool for
spatial analysis tasks [Be87, Fr87, HSH92, NW79, To90, Va91, FVM97, VE93]. Dis-
tinct features over the same space are to be combined and evaluated under different re-
quirements. Partition-based spatial analysis functions include operations like overlay,
generalization, and reclassification (see Section 2). They all produce a new partition as
a result.

In the literature partitions have been identified as a centralspatial concept [Fr90] to or-
ganize our perception and understanding of space. They correspond to the cognitive ex-
perience and knowledge the human has of areal phenomena in the real world. Humans
cannot perceive overlapping regions but always disjoint decompositions of space. They
can only guess and mentally complete the obscured part of a region (except for translu-
cent regions). Also, if we consider the same space with respect to two different thematic
or cognitive aspects (for example, districts and cereals) modeled as two partitions, their
overlay is a partition again.

All the more it is surprising that a formal definition ofspatial partitions and operations
on them has been neglected. The work on categorical coverages done by Frank, Volta,
and others [FVM97,VE93] focuses on partitions of attribute values alone – spatial op-
erations are completely ignored, in particular, boundaries are not considered which play
an important role in connection with geometric intersection. In categorical coverages,
themes and attribute values are fixed, which means that dynamic extensions or combi-
nations of different partitions are not possible.

In this paper we study partitions thoroughly and give a formal semantics to them and
their operations. We show that partitions can serve as a fundamental and user-friendly
data modeling tool offering a formal and powerful basis for coping with spatial analysis
and cartographical tasks. All application-specific operations proposed so far are covered
and even extended by our approach. Hence, our partition model is in particular interest-
ing for GIS and spatial database systems. In our framework, from a data type and data-
base point of view, a partition is a generic spatial data type which is formalized through
a type constructor. From a general point of view, partitions model collections of objects

(not single objects), or more precisely, collections of objects that are somehow related
together. In particular, partitions are data types for collections of objects with integrated
constraints like topological relationships.

On the one hand, partitions enable us to consider the attributes of single points (space-
based view), on the other hand, they also provide access to collections of points having
equal attributes (object-based view). Thus our model closes the gap between these two
views of areal features. In this sense our framework yields a hybrid model. Unexpect-
edly, some very specific concepts are also covered by partitions; we are, for example,
able to modelvague regions [ES97] and even generalizations thereof on the basis of par-
titions.

Section 2 gives an overview of partitions and application-specific operations in the lit-
erature. In Section 3 we define a general model of spatial partitions. Section 4 identifies
and formalizes three basic and very powerful operations on partitions. In Section 5 we
demonstrate that these operations suffice to express and even generalize the application-
specific operations introduced in Section 2. Section 6 concludes the paper.

2 Previous Work

In this section we give an overview of previous work on partitions and pertaining appli-
cation-specific operations as they have been identified in the geographically-oriented
and computer science literature. The overview will reveal that, surprisingly, formal
models for spatial partitions and formal descriptions of their semantics have not yet
been studied satisfactorily. Expositions on this topic are predominantly based on an in-
formal and intuitive level.

On (spatial) partitions two kinds of partial ordering can be defined, either induced by
refinement or by inclusion [Fr87]. A partitionπ is said to be arefinement of a partition
σ if each region inπ is contained in a region ofσ. With respect to refinement and inclu-
sion partitions form not only a partially ordered set but a lattice. Both lattice structures
are related but distinct: the lattice induced by refinement is one in which the elements
are the partitions, whereas the lattice induced by inclusion consists of single regions or-
dered by the spatial subdivision in regions.

From a data type perspective there have been some unsatisfactory attempts to model
partitions. In [Gü88] a spatial data typearea is introduced to guarantee the disjointed-
ness constraint. Within the framework of an extended relational data model, called the
geo-relational algebra, the set of polygons occurring in a relation as a column of an at-
tribute of typearea has to fulfill the integrity constraint that all polygons are disjoint.
Unfortunately, the maintenance of this property is not supported by the data model, but
it is up to the user’s responsibility. A generic data type (type constructor) for partitions,
calledtessellation, is informally introduced by [HSH92] as a specialized type for sets
of polygons; this type can be parametrized with an attribute of a yet unspecified type.
In [GS95] so-calledrestriction types have been proposed. For a data typed and a binary

predicatep a special setd p of types (called “kind”) is defined; each typed’ in d p de-
scribes a set of values such that for any two distinct elements ofd’ the predicatep holds.
Furthermore, any such typed’ is defined to be asubtype of d which means that all op-
erations defined for typed are also applicable to instances of typed’. If, for example,d
is a type for regions andp is equal to a predicate “disjoint”, we obtain a kind for parti-
tions. In [MC80] partitions (maps) have been recognized as a fundamental geometric
data type which is realized in files. Their whole system GADS (Geographic Analysis
and Display System) is based on this single structure.

Previous approaches to define the semantics of operations on partitions have been based
on a relational [Gü88, SV89] or object-oriented [HSH92] setting. Unfortunately, they
do not formalize the concept of a partition. In [SV89] spatial join, spatial selection, spa-
tial product, and fusion are introduced as spatial auxiliary operators which are then used
to express the application-specific operations on partitions.

For spatial analysis tasks several application-specific operations on partitions have been
identified. The most important operation is theoverlay operation [Be87, Da90, Fr87,
GS95, Gü88, HSH92, KBS91, Sc95, SV89, To90, Va91] which allows to lay two parti-
tions with different attribute categories on top of each other and to combine them
through intersection into a new partition of disjoint regions.1 The attributes from the in-
put partitions are then either distributed to each block in the refined partition or appro-
priately combined to form a new attribute. Two different interpretations of the overlay

1. The dashed boxes in the following figures represent equal reference frames of partitions.

overlay1 overlay2

mechanism are given in the literature. In the first interpretation (overlay1) [GS95, Gü88,
KBS91, Sc95, SV89] only those regions are part of the new partition that result from
intersecting a region of the first partition with a region of the second partition. Since the
plane need not be completely covered by regions, it is possible that a region of one par-
tition does not intersect any region of the other partition. In this case it will not be part
of the new partition. In the second interpretation (overlay2) [HSH92] also those regions
are taken into account that do not intersect any region of the other partition.

The reclassify operation [Be87, Da90, HSH92] retains the geometric structure of the
partition and performs a transformation on the partition attributes. It can be thought of
as a “recoloring” process; each or only a few regions are assigned with a new or modi-
fied attribute. An example is to map the population number of each region to its popu-
lation density.

The fusion operation [CZ96, GS95, HSH92, KBS91, Sc95, SV89], calledmerge in
[KBS91] andgeneralization in [HSH92], is a kind of grouping operation with subse-
quent geometric union. It merges adjacent regions of a partition with respect to partially
identical attributes. An example is a partition depicting districts together with their land
use (left side of the image). The task is to compute the regions with the same land use.
Neighboring districts with the same land use are replaced by a single region, that is,
their common boundary line is erased. District boundaries are not distinguished any
more.

Thecover operation proposed by [SV89] forms the geometric union of all regions of a
partition and yields a partition consisting of one region. Since polygons with holes are
not allowed in [SV89], the input partition must be complete, that is, it must not have
holes. We will drop this restriction. Theclipping operation [SV89] is a special case of
the overlay operation; it computes the intersection of a partition and a given rectangular
window. We will generalize this operation and will allow so-called “unit partitions” as
clipping windows. The regions of a unit partition are associated with a “neutral” at-
tribute which leaves an attribute of the first partition unchanged during an intersection.

Thedifference operation [HSH92] takes two partitions defined over the same attribute
domain and computes the geometric difference of their point sets. All the regions of the
first partition are maintained in the result partition except for those parts that have the
same attributes in both partitions. We will generalize the difference operation in two

fusion

ways. First, we will allow partitions as operands with different attribute domains. Sec-
ond, we can observe that giving priority to the first partition leads to a kind of “weak”
difference. The difference operation gets a stronger interpretation if we allow the second
partition to dominate. This means that the area of the second partition (precisely: its
cover) is subtracted from the area of the first partition. Consider a partition of mineral
resources and a partition of inhabitable areas. Subtracting the second partition from the
first one yields the partition of currently exploitable areas. We will take both interpreta-
tions into account.

The superimposition operation [CZ96, SV89] allows to superimpose the regions of a
partition onto another partition and to cover and erase parts of the other partition.

The window operation [SV89] allows to retrieve those (complete) regions of a partition
whose intersection with a given (rectangular) window is not empty. Windowing is also
applied in queries where the window is defined as a circle with center p and radius r, for
instance, if we ask for all regions whose distance from a given point p is less than r. We
generalize this operation and allow unit partitions instead of rectangles or circles.

The divide operation [CZ96] takes a partition, which consists of one region, and a spa-
tially embedded planar graph as operands and yields a new partition which results from

difference

superimposition

window

the decomposition or splitting of the input partition through the graph structure, as far
as this is possible.

3 A Formal Model of Spatial Partitions

In naive set theory a partition is a complete decomposition of a set S into non-empty,
disjoint subsets {Si | i ∈ I}, called blocks, that is,

(i) ∀i ∈ I: Si ≠ ∅,
(ii) ∪i ∈ I Si = S, and
(iii) ∀i, j ∈ I, i ≠ j: Si ∩ Sj ≠ ∅.

Here, I is just an uninterpreted index set used to name different blocks, that is, I has no
semantically relevant content. Equivalently, a partition can be regarded as a total and
surjective function π : S→ I. Accordingly, one could try to define a spatial partition2

simply as a set-theoretic partition of the plane, that is, as a partition of the set of points
IR2 or as a function π : IR2 → I. There are two observations, however, that motivate a
slightly different definition.

First, from an application point of view, different blocks (or regions) of a spatial parti-
tion are often colored or marked differently. Colors and marks are only examples of
rather arbitrary values, also called labels, that can be assigned to regions. A partition
model should take this into account and should therefore regard point sets together with
the associated values. The set of values that are actually used in a specific partition, say,
A, determines in a certain way the type of the partition. Note that A might be a simple
type, such as IN or {red, green, blue}, or a cartesian product of two or more sets where
labels are actually given by n-tuples of values. This means that spatial partitions of type
A are actually functions π : IR2 → A where A, in contrast to I, contains semantically rel-
evant values. In most cases partitions are defined only partially, that is, there are regions
which have no explicitly assigned labels. (These regions are sometimes considered the
outside of the partition.) To ensure that π is a total function, we assume that each label
type A contains an element ⊥A (called undefined or unknown) and that the outside area
of a partition is labeled by ⊥A. For the cartesian product of two types A and B we let
⊥A×B = (⊥A, ⊥B) (this is like the identification of bottom elements in domain theory),
and for the union of A and B we identify ⊥A, ⊥B, and ⊥A∪B (that is, we take the coa-
lesced sum). If no ambiguities can arise, we sometimes omit the type index and simply
use ⊥.

Second, regions that actually do appear in applications are in most cases not just point
sets, but point sets that are in a certain sense regular. This means that regions typically
do not have isolated points or lines or cuts or punctures. This idea is well modeled by
the topological concept of regular sets as shown by Tilove [Ti80].3 So we would like to

2. In the following we will mostly use the term partition in place of spatial partition.

have regularity for partitions, too; in particular, we require interior regions (that is, re-
gions without their boundary) to be regular open sets. Since points on the boundary can-
not be uniquely assigned to either adjacent region, we cannot simply map them to single
A-values. Instead we map boundary points to the set of values given by the labels of all
adjacent regions. Thus spatial partitions are defined as functions π : IR2 → A ∪ 2A

(with additional constraints). We give the definition in several steps.

Definition 1. A spatial mapping of type A is a total mapping π : IR2 → A ∪ 2A.

The range of a spatial mapping π gives the set of labels actually used in π and is denoted
by range(π).The blocks of a spatial mapping π are point sets that are mapped to the same
value. Formally, the blocks are given by the quotient of IR2 with respect to the equiva-
lence relation ker(π), the kernel of π.

The application of a function f to a set of values A is defined as: f(A) := {f(a) | a ∈ A},
and for convenience we use the following definition of function inverse: for f : X → A
and ∀a ∈ A: f-1(a) := {x ∈ X | f(x) = a}. Note that f-1 applied to a set yields a set of sets.
Now the block for a single label a (or a set s of labels) is simply given by π-1(a) (π-1(s)).
The common label of a block b of π is denoted by π[b], that is, π(b) = {l} ⇒ π[b] = l.

The cardinality of block labels identifies different parts of a partition. In the first place,
we can distinguish between the interior of a partition and its boundary. A region of π is
any block of π that is mapped to a single element of A, and a border of π is given by a
block that is mapped to a set of A-values. The interior of π is the union of all of its re-
gions, and the boundary is given by the union of all of its border blocks:

Definition 2. Let π be a spatial mapping of type A.
(i) ρ(π) := π-1(range(π) ∩ A) (regions)
(ii) β(π) := π-1(range(π) ∩ 2A) (borders)
(iii) ι(π) := ∪r∈ρ(π) r (interior)
(iv) ∂(π) := ∪b∈β(π) b (boundary)

Now we can define a spatial partition by topologically constraining regions to regular
open sets and by semantically constraining boundary labels to those of adjacent regions.

Definition 3. A spatial partition of type A is a spatial mapping π of type A with
(i) ∀r ∈ ρ(π): r is a regular open set, and
(ii) ∀b ∈ β(π): π[b] = {π[r] | r ∈ ρ(π) ∧ b ⊆ r} 3

The set of all spatial partitions of type A is denoted by [A], that is, [A] ⊆ IR2 → A ∪ 2A.

The partition boundary can be viewed as an undirected planar graph. From this point of
view, we can discriminate the cardinality of border labels further: an edge block is

3. For the standard notions of open/closed set and interior/closure of a set A (denoted by Int(A)/
A), see any textbook on topology, such as [Du66]. An open set A is called regular if A = Int(A).
An important property of regular open sets is that they are closed under intersection.

mapped to a two-element A-set and defines border curves between two regions. A vertex
block is mapped to an A-set containing three or more elements; a vertex block is always
a singleton point set and describes locations where three or more regions of a partition
meet.

Definition 4. Let π : [A]. Then
(i) ε(π) := {b ∈ β(π): |π[b]| = 2} (edge blocks)
(ii) ν(π) := {b ∈ β(π): |π[b]| > 2} (vertex blocks)

The distinction between edge and vertex blocks is helpful when describing the behavior
of some of the following operations.

4 Basic Operations on Partitions

As it turns out, there are three basic, yet very powerful, operators on partitions which
suffice to express most of the conceivable application-specific operations.

4.1 Intersection

Given two partitions of types A and B, we consider the partition that results from actu-
ally computing the intersections of all regions: each resulting region is labeled with a
pair of values from A × B, and the values on the boundary are derived from these. Thus
we first determine the regions of the intersection. This can be done by a simple set-in-
tersection of all regions, since ∩ is closed on regular open sets.

ρ∩(π, σ) := {r ∩ s | r ∈ ρ(π), s ∈ ρ(σ)}

Now the interior of the intersection is the union of all these regions:

ι∩(π, σ) := ∪r∈ρ∩(π, σ) r

Next we define the spatial mapping restricted just to the interior: the label of each inte-
rior point is simply given by the pair of labels of the argument partitions.

ι-intersection(π, σ) := {(p, (π(p), σ(p))) | p ∈ ι∩(π, σ)}

Finally, the boundary labels are derived from the labels of all touching regions. We say
that a region r touches a point p if p ∈ r. Now let R := ρ∩(π, σ), I := ι∩(π, σ), and τ :=
ι-intersection(π, σ). Then we have:

intersection : [A] × [B] → [A × B]
intersection(π, σ) := τ ∪ {(p, {τ[r] | r ∈ R ∧ p ∈ r}) | p ∈ IR2 - I}

Figure 1 show two partitions π and σ of type C and R modeling two countries c and d
and mineral resources oil (o) and gas (g). Overlaying these two partitions is actually
equivalent to computing their intersection. In Figure 2 regions colored () denote
oil fields in country c (d) and are labeled by (c, o), respectively, (d, o). The region col-
ored is labeled (d, g) and denotes the gas field in country d (there is no gas field in
country c). Region colors and with labels (⊥C, o) and (⊥C, g) show mineral re-

sources in no man’s land, whereas regions and with labels (c, ⊥R) and (d, ⊥R)
show country parts with unknown mineral resources. Finally, the outside of the inter-
section, that is, the region colored and labeled (⊥C, ⊥R) = ⊥C×R denotes the part of
the no man’s land with unknown mineral resources. In a similar way, we can distinguish
the labels on the resulting partition boundary: for example, pointsx, y, andz have all the
same label {o, ⊥R} underσ and the labelsc, {c, d}, and {d, ⊥C} underπ. In contrast,τ
= intersection(π, σ) maps them to {(c, o), (c, ⊥R)}, {(c, o), (c, ⊥R), (d, o), (d, ⊥R)}, and
{(d, o), (d, ⊥R), (⊥C, o), ⊥C×R}, respectively. For w the original partitions give π(w) =
{ c, d, ⊥C} and σ(w) = o whereasτ(w) = {(c, o), (d, o), (⊥C, o)}.

We have to show that the definition ofintersection is sound, that is, partitions are closed
underintersection:

Lemma 1. If π : [A] andσ : [B], thenintersection(π, σ) : [A × B].

Proof. Let τ = intersection(π, σ) andτ’ := ι-intersection(π, σ). First, it is obvious from
the definition ofintersection thatτ is a total map onIR2 and thatrange(τ) ⊆ (A × B) ∪
2(A × B). It remains to be shown that (i)∀r ∈ ρ(τ): r is a regular open set, and that (ii)
∀b ∈ β(τ): τ[b] = {τ[r] | r ∈ ρ(τ) ∧ b ⊆ r}. Concerning (i) it is clear thatρ(τ) = ρ∩(π, σ)
(which we know to be a set of regular open sets) since onlyτ’ maps to single values and
since the domain ofτ’ is exactlyρ∩(π, σ). Concerning (ii) we have for all border points
p ∈ b: τ(p) = {τ’[r] | r ∈ ρ∩(π, σ) ∧ p ∈ r} = { τ[r] | r ∈ ρ(τ) ∧ p ∈ r} sinceρ∩(π, σ) =

g

o

o

c d

c

x

z

y

w

x

z

y

w

Figure1. Two partitions for countries and mineral resources.

g

o

o

c d

c

x

z

y

w

Figure2. Intersection partition for countries and mineral resources.

ρ(τ) and sinceτ’ equalsτ onρ(τ). Sinceβ(τ) = IR2 - I, we thus have ∀b ∈ β(τ): τ[b] =
{ τ[r] | r ∈ ρ(τ) ∧ b ⊆ r}.

4.2 Relabel

Relabeling a partitionπ of typeA essentially means to apply a functionf : A → B to each
region ofπ. In the simplest case, whenf is injective, the regions ofπ remain the same,
and only the labels change as demanded byf. In general, however, f might map two or
more regions ofπ to the sameB-value, and if some of these regions are adjacent inπ,
the border between them disappears and the regions are fused in the result partition. We
would like to express relabeling simply by applyingf to the value each point has under
π. Then, however, border points might be mapped to singleton sets where we would ex-
pect a single value. Consider, for example, two adjacent regionsr andr’ with π[r] = x
and π[r’] = y. The borderb betweenr and r’ is labeled π[b] = {x, y}. Now if
f(x) = f(y) = z, we haveπ[b] = {z} where we would like to haveπ[b] = z. We can adjust
cases like this by simply applying a functionflat : A ∪ 2A → A ∪ 2A that leaves single
values and sets with two or more elements unchanged and extracts elements from sin-
gleton sets:

 a if l = {a}
flat(l) =

 l otherwise
Now we can easily define relabeling of partitions:

relabel : [A] × (A → B) → [B]
relabel(π, f) := {(p, flat(f(π(p)))) | p ∈ IR2}

Whenever a border label is mapped byflat to a single value, the border and its adjacent
regions are identified and make up a new region containing the union of the border
points and the points of all adjacent regions. This means that border points can become
interior points through relabeling:

ι(relabel(π, f)) ⊇ ι(π) and ∂(relabel(π, f)) ⊆ ∂(π)

As an application consider the task of building a map showing regions of oil fields that
can be exploited by either countryc or d showing a possible conflict betweenc andd.
Such a partition can be defined by applyingrelabel to the intersection ofπ andσ from
above using a function mapping (C × R)-tuples toE = {e, ⊥E} for just coloring exploit-
able oil fields. This function is defined by:

 e if x ∈ {c, d} and y = o
f(x, y) =

 ⊥E otherwise

Thus, the required map is given by the expressionrelabel(intersection(π, σ), f).The re-
sult is shown in Figure 3 as regions colored ; for clarity we have included the bound-
aries of the original partitions.

The pointsp, q, r, ands are mapped byπ, σ, andτ = relabel(intersection(π, σ), f) to the
following values:

Again, we have to show thatrelabel indeed yields proper partitions. We use the follow-
ing results which makes the above mentioned relationships between interior and bound-
ary of a partition and its relabeled version more precise. First, all borders whose labels
are mapped byf to a singleton set are “moved” byflat into the interior. Thus we know:

Lemma 2. Let π : [A] andf : A → B. Then β(relabel(π, f)) = {b ∈ β(π): |f(π[b])| > 1}

Establishing a similar relationship for regions gets a bit more involved. The application
of f induces an equivalence on blocks. Let:

∀r, s ∈ (ρ(π) ∪ β(π)): r~s :⇔ { f(π[r])} = f(π[s]) ∨ f(π[r]) = { f(π[s])}

The relationship ~ collects pairs of regions and borders that are mapped to one identical
value. The equivalence relationr ≡ s is then defined as the reflexive, symmetric, and
transitive closure of ~ (that is,r ≡ s :⇔ (r~s) ∨ (s~r) ∨ (∃t: s ≡ t ∧ t ≡ r)). The equivalence
classes of≡ are maximal sets of adjacent blocks that have the same label. The regions
of relabel are now obtained by taking the unions of blocks of all equivalence classes that
have a single label.

Lemma 3. Let π : [A] andf : A → B. Then
ρ(relabel(π, f)) = {∪r∈s r | s ∈ (ρ(π) ∪ β(π))/≡: flat(f(π[s])) ∈ B}

Now we can show that partitions are closed underrelabel:

Lemma 4. If π : [A] andf : A → B, thenrelabel(π, f) : [B].

Proof. Let σ = relabel(π, f). The fact thatσ is a spatial mapping of typeB follows di-
rectly from the definition.

π σ τ
p c o e
q ⊥C o ⊥E
r { c, d} o e
s { d, ⊥C} { o, ⊥R} { e, ⊥E}

p

s

r

q

Figure3. Reclassification of country/oil map.

We must now show that ∀r ∈ ρ(σ): r is a regular open set. We consider two cases: first,
s = {r} ∈ (ρ(π) ∪ β(π))/≡, that is, r results from a singleton set and thus ∪r∈s r = r. This
can only be the case if r ∈ ρ(π), since for any border b ∈ β(π) that is mapped to a sin-
gleton set, say {c}, at least the adjacent regions will also be mapped to c, and thus the
equivalence class contains more than one element. Then we know from the partition
property of π that r is a regular open set. On the other hand, if r is a union of two or more
sets, the definitions of ~ and ≡ ensure that these are borders and regions of π that are
completely connected. This means that (i) for each border there are at least two adjacent
regions, (ii) for each pair of regions there is an adjacent border, and (iii) for each set of
regions that are adjacent to a point p, {p} is also in r. This implies that the union ∪r∈s r
contains no dangling points or lines and no punctures and cuts which just means that r
is a regular open set.

Next we must show that ∀b ∈ β(σ): σ[b] = {σ[r] | r ∈ ρ(σ) ∧ b ⊆ r}. If f is injective, σ
is identical to π up to a “renaming” of labels which means that the above property fol-
lows directly from the same property of π. If f is not injective, we consider two cases:
(i) b ∈ ε(π). Let π[b] = {x, y}, and assume {r, r’} are the adjacent regions. W.l.o.g. let
π(r) = x and π(r’) = y. Now if f(x) = z≠ z’ = f(y), b remains an edge border with adjacent
regions r and r’, that is, b ∈ ε(σ), and we have: σ[b] = {z, z’} = {σ[r] | r ∈ ρ(σ) ∧ b ⊆ r}.
If, on the other hand, f(x) = z = f(y), the points in b are mapped to the single value z
(caused by the application of flat), and thus b is merged with r and r’ (which are also
mapped to z) into a single region. (ii) b = {p} ∈ ν(π). Consider any subset of labels
l ⊆ π[b] that is mapped by f to the same value z. It is clear that each region r that touches
p with π[r] ∈ l is also mapped to z. Since the edge borders between any two such regions
are also mapped to z, all regions are merged into a single new region s of σ which, of
course, also touches p. So the one-to-one correspondence between the single labels of
regions and the set of labels of adjacent points is preserved by mapping with f.

At this point we can describe overlays of partitions by intersection, and by choosing an
appropriate function f partitions can be arbitrarily generalized or reclassified through
relabel. In particular, if f is not injective, a coarsening of partitions is achieved. How-
ever, we cannot really refine a single partition, for example, into its connected compo-
nents. Therefore we need an additional operation refine that extends labels of a partition
to distinguish different connected components of a region.

4.3 Refine

It is often the case that a region of a partition consists of two or more components. This
might result from a preceding intersection or relabel operation, or it might be simply
given by the application. In any case, it is sometimes interesting to distinguish different
components. For example, if we want to find out mineral resources that can be exploited
by a specific country c, we would like to perform a kind of window operation with win-
dow c on the partition of mineral resources. The result contains only some components

of regions that intersectc, and for a specific resource, say oil, this also is, in general,
only a subset of the corresponding components.

Refining a partition means to add tags (for example, numbers) to the components of a
region so that they can be distinguished. Intuitively, a connected component of an open
sets is a maximum subsetc ⊆ s such that any two points ofc can be connected by a
curve lying completely insidec (for a formal account, see [Du66]). We denote the set
of connected components of a region r ∈ ρ(π) by γ(r) = {c1, …, cnr

}. First, we define
refinement on the interior:

ι-refine(π) := {(ci, (π(ci), i)) | r ∈ ρ(π) ∧ γ(r) = {c1, …, cnr
} ∧ i ∈ {1, …, nr}}

The set of all components are the regions of the refined partition, and the interior is just
the union of all components:

ργ(π) := ∪r∈ρ(π) γ(r)
ιγ(π) := ∪r∈ργ(π) r

This means that the set of interior points (and thus the boundary points, too) is not
changed byrefine. As we have done in the definition for intersection, we derive the la-
bels of the boundary from the interior. Let σ := ι-refine(π).

refine : [A] → [A × IN]
refine(π) := σ ∪ {(p, {σ[r] | r ∈ ργ(π) ∧ p ∈ r}) | p ∈ IR2 - ιγ(π)}

An immediate use of therefine operation is to explicate different components of specific
partition regions. For example, we might be interested in the number of oil fields of the
mineral resources partitionσ. Sincerefine(σ) labels all components of a region consec-
utively, we can get the result as the maximum numbern of any (o, n) label.

Partitions are closed underrefine:

Lemma 5. If π : [A], thenrefine(π) : [A × IN].

The proof is very similar to that for Lemma 1, and we omit it for brevity. It is clear that
all regions of a refined partition are connected:

Lemma 6. ρ(refine(π)) = ργ(refine(π)).

Finally, as a corollary of lemmas 1, 4, and 5 we obtain the following closure properties:

Theorem 1. Spatial partitions are closed underintersection, relabel, andrefine.

5 Applications

Applications of partitions can be found almost everywhere in cartography, spatial anal-
ysis, etc. Operations that arise in those applications have been already reported in Sec-
tion 2. Next we show how these (and some additional operations) can be realized and
generalized by the basic operators introduced in the previous section. We thus come to
the “conquering” step by demonstrating that our set of operations is complete from an

application point of view. We shall also reveal interesting relationships among the dif-
ferent application operators (for example,clipping is just a special case ofoverlay1, and
cover is just a special case offusion). If not stated otherwise, we assume thatπ : [A] and
σ : [B]. It is interesting to note that only two of the basic operators have been identified,
more or less directly, in applications:overlay corresponds tointersection, andreclassify,
fusion, andcover are all special cases ofrelabel, however, refine has no direct counter-
part.

To begin with overlay, it is obvious that

overlay2(π, σ) = intersection(π, σ)

In contrast,overlay1 forgets all parts of the intersection that are undefined (that is, la-
beled with⊥) in either argument partition. We can recover this behavior by relabeling
the intersection with a function mapping partially undefined values to undefined:

 ⊥A×B if x = ⊥A or y = ⊥Bboth(x, y) =
 (x, y) otherwise

Then we simply have:

overlay1(π, σ) = relabel(intersection(π, σ), both)

Reclassification preserves the spatial structure of a partition and thus corresponds to re-
labeling with an injective function:

reclassify(π, f) = relabel(π, f) (reclassify is only defined iff is injective)

In contrast,fusion does not perform any real computations on labels, it essentially de-
fines an equivalence relationship on labels which causes adjacent regions with equiva-
lent labels to be merged. Technically, fusion applies to partitions of type×i∈I Ai (which
is A1 × … × Ak for I = {1, …, k} and modelsk attributes). As an additional argument
fusion takes a setS = {i1, …, in} ⊆ I specifying which attributes are to be kept. To realize
this byrelabel we need a functionΠS : ×i∈I Ai → ×i∈S Ai that projects onto the attributes
given byS as follows: ΠS(a1, …, ak) = (ai1

, …, ain
). So we have:

fusion(π, S) = relabel(π, ΠS)

Sincecover is a special case offusion, it can also be realized byrelabel: cover ignores
all attributes of a partition and only distinguishes between inside and outside (with label
⊥). This amounts to fusion with an empty subset, that is,

cover(π) = fusion(π, ∅)

Although we are able to expresscover by fusion, a more direct realization ofcover is to
relabel the partition with a special constant function that maps any (defined) value to a
unit value “•” of typeU = {•}. (U denotes the unit type that consists of just one value.)

 ⊥ if x = ⊥
unit(x) =

 • otherwise

This also makes the type of cover more explicit, namely, cover : [A] → [U]. (We call
partitions of type [U] unit partitions.) Now cover is defined by:

cover(π) = relabel(π, unit)

The clipping operation is essentially a special case of overlay1. The restriction is that
the overlaid partition consists of exactly one (unlabeled) rectangle. In particular, this
means that the second argument is a unit partition and that the result partition should be
of the same type as the first argument. Hence clipping has the restricted type
[A] × [U] → [A] so that the correspondence to overlay1 only holds up to isomorphism
of the two types [A] and [A × U].

clipping(π, σ) ≅ overlay1(π, σ)

The type-correct realization of clipping by intersection and relabeling thus differs
slightly from that of overlay1. With

 x if y = •
inside(x, y) =

 ⊥A otherwise
we thus obtain:

clipping(π, σ) = relabel(intersection(π, σ), inside)

Compared with the operations considered so far, window has a remarkably complex
definition. It is also the only operation that really requires the use of refine. In applica-
tions, the window is assumed to be a rectangle, again of type U. We give a definition
which allows windowing with respect to an arbitrary unit partition. This facilitates
many more applications: for instance, we can window the country partition

(i) with a specific oil field,
(ii) with all oil fields, or even
(iii) with the (cover of the) whole mineral resources partition

to determine

(i) all countries that are possible competitors for that specific oil field,
(ii) all countries that can exploit oil, or
(iii) all countries that have access to mineral resources at all.

For the definition of the window operation, we assume we are given a partition π : [A]
and a window ω : [U]. First, we refine π and construct the intersection of the compo-
nents with ω. We then determine the set L of all labels that contain • which means to
obtain the labels of all components that intersect ω. Finally, we relabel the components
with a function that keeps labels contained in L and maps all other labels to ⊥.

window(π, ω) = relabel(refine(π), covered)
where L = {(x, i) | ((x, i), •) ∈ range(intersection(refine(π), ω))

 x if (x, i) ∈ L
covered(x, i) = ⊥A otherwise

What makes the definition of window so complex compared with all other operations?
The fundamental difference is that usually in an operator definition the label of any re-
gion is determined locally, that is, independent from other regions. However, this is not
the case for window: to compute the label of a region it is necessary to look at all adja-
cent regions since the final label of a region labeled ((x, i), ⊥) cannot be predicted in
isolation: the result is x if there exists an adjacent region with label ((x, i), •), and it is ⊥
if there is no such region. So what we express here is essentially a kind of aggregation
of partitions. We have deliberately omitted such an operator to keep the partition model
simple and short.4

We can explain the meaning of difference(π, σ) by specifying the label for each region
of the intersection of π and σ. Regions that are undefined in any argument partition, re-
main unchanged. It is also clear that regions that are labeled equally should be mapped
to ⊥. It remains to define the label of intersection regions r for which π[r] = x and σ[r]
= y (with x ≠ y). Now this can be done in two different ways: we can give priority to
either argument partition π or σ. In the first case, this means to simply ignore the sub-
traction of y since it does not match, that is, r will remain labeled x. This is, in a certain
sense, a “conservative” view that allows subtraction only for matching region labels. In
contrast, the “aggressive” point of view subtracts everything (except ⊥) so that r will get
labeled ⊥. We capture this behavior by the following two relabeling functions:

 ⊥ if x = y
left(x, y) =

 x otherwise

 ⊥ if y ≠ ⊥
right(x, y) =

 x otherwise
Now we can define left and right difference simply by:

l-difference(π, σ) = relabel(intersection(π, σ), left)
r-difference(π, σ) = relabel(intersection(π, σ), right)

Finally, we can define the superimposition of two partitions π and σ very similarly to
overlay1: we build the intersection of π and σ and perform a relabeling giving priority
to σ. The function second takes the label given by σ as long as it is defined:

 x if y = ⊥Bsecond(x, y) =
 y otherwise

Then we have (note that superimposition has type [A] × [B] → [A ∪ B]):

4. Actually, aggregations of partitions are closely related to the aggregation of (their dual)
graphs, and as shown in [Er97] there are quite different reasonable possible definitions for that.
Moreover, we can actually express all presented application operations without an aggregation
operator. Nevertheless, aggregation has quite interesting applications, for example, testing
whether a map is colored consistently, that is, checking for each region whether it is colored
differently from all neighbors. We will deal with aggregations of partitions in a subsequent
paper.

superimposition(π, σ) = relabel(intersection(π, σ), second)

Since we have concentrated on operations on partitions alone, we cannot currently de-
fine an operationdivide(π, G) operator which requires a planar graph argumentG. How-
ever, when we clipG with cover(π) and addcover(π), this results in a partitionΓ which
is actually the remainder ofG with respect to the relevant area, that is, the area to which
divide actually applies. Then we obtain the same result asdivide by simple intersection:

divide(π, G) = intersection(π, Γ)

6 Conclusions

We have presented a very general model of partitions which, to our knowledge, is the
first rigorous formal approach to defining a spatial partition type. We have defined three
powerful operators that can express any application operation that has been mentioned
so far – actually, for most operators we even achieve a much more general definition.
The presented model serves as a specification for general spatial analysis and map-ma-
nipulation systems which can be the bases for many GIS applications. Of course, it re-
mains to investigate the relationships of partitions to points and lines and to define cor-
responding types and operations.

The partition model can also serve as a meta-model for (some) spatial data types: for
instance, an element of a region data type can be viewed as a partition with only one
region or as a unit partition. Another example is the model of vague regions presented
in [ES97]: avague region is given by a pair of disjoint regionsv = (r, s) wherer denotes
the part which definitely belongs tov ands gives the uncertain part. It is obvious that a
vague region can be viewed as a partition of type {certain, uncertain} with exactly two
regions. All operations on vague regions can then be defined in terms ofintersection and
relabel.5 With this representation we can immediately obtain a generalization of vague
regions: a vague region can be simply regarded as a partition without a restriction on the
number of regions, and labels are drawn from a type containing values for different de-
grees of vagueness, for example, real values from the interval [0..1].

References
[Be87] J.K. Berry. Fundamental Operations in Computer-Assisted Map Analysis.Int. Jour-

nal of Geographical Information Systems, vol. 1, no. 2, pp. 119-136, 1987.
[CZ96] E.P.F. Chan & R. Zhu. QL/G: A Query Language for Geometric Databases.1st Int.

Conf. on GIS in Urban and Environmental Planning, pp. 271-286, 1996.
[Da90] J. Dangermond. A Classification of Software Components Commonly Used in Geo-

graphic Information Systems.Introductory Readings in Geographic Information Sys-
tems, Taylor & Francis, pp. 30-51, 1990.

[Du66] J. Dugundji.Topology. Allyn and Bacon, Boston, 1966.

5. Actually the explanations of the vague region operations have been given in just that way:
namely, define the result label of any possible intersection region.

[EF91] M.J. Egenhofer & R.D. Franzosa. Point-Set Topological Spatial Relations.Int. Jour-
nal of Geographical Information Systems, vol. 5, no. 2, pp. 161-174, 1991.

[Eg89] M.J. Egenhofer. Spatial SQL: A Spatial Query Language. Report 103, Dept. of Sur-
veying Engineering, University of Maine, 1989.

[EG94] M. Erwig & R.H. Güting. Explicit Graphs in a Functional Model for Spatial Data-
bases.IEEE Transactions on Knowledge and Data Engineering, vol. 6, no. 5, pp. 787-
804, 1994.

[Er94] M. Erwig. Graphs in Spatial Databases. Doctoral Thesis, FernUniversität Hagen,
1994.

[Er97] M. Erwig. Functional Programming with Graphs.2nd ACM SIGPLAN Int. Conf. on
Functional Programming, pp. 52-65, 1997.

[ES97] M. Erwig & M. Schneider. Vague Regions. 5th Int. Symp. on Spatial Databases
(SSD’97), 1997. To appear.

[Fr87] A.U. Frank. Overlay Processing in Spatial Information Systems.Proc. of the 8th Int.
Symp. on Computer-Assisted Cartography, AUTOCARTO 8, pp. 16-31, 1987.

[Fr90] A.U. Frank. Spatial Concepts, Geometric Data Models and Data Structures.Com-
puter and Geosciences, 1990.

[FVM97] A.U. Frank, G.S. Volta & M. MacGranaghan. Formalization of Families of Categor-
ical Coverages.Int. Journal of Geographical Information Science, vol. 11, no. 3, pp.
215-231, 1997.

[GS95] R.H. Güting & M. Schneider. Realm-Based Spatial Data Types: The ROSE Algebra.
VLDB Journal, vol. 4, pp. 100-143, 1995.

[Gü88] R.H. Güting. Geo-Relational Algebra: A Model and Query Language for Geometric
Database Systems.Int. Conf. on Extending Database Technology, LNCS 303, pp.
506-527, 1988.

[HSH92] Z. Huang, P. Svensson & H. Hauska. Solving Spatial Analysis Problems with
GeoSAL, A Spatial Query Language.6th Int. Working Conf. on Scientific and Statis-
tical Database Management, 1992.

[KBS91] H.-P. Kriegel, T. Brinkhoff & R. Schneider. The Combination of Spatial Access
Methods and Computational Geometry in Geographic Database Systems.2nd Symp.
on Advances in Spatial Databases (SSD’91), LNCS 525, pp. 5-21, 1991.

[LN87] U. Lipeck & K. Neumann. Modelling and Manipulating Objects in Geoscientific
Databases.5th Int. Conf. on the Entity-Relationship Approach, pp. 67-86, 1987.

[MC80] P.E. Mantey & E.D. Carlson. Integrated Geographic Data Bases: The GADS Experi-
ence.Data Base Techniques for Pictorial Applications, Springer, pp. 173-190, 1980.

[NW79] G. Nagy & S. Wagle. Geographic Data Processing.ACM Computing Surveys, vol. 11,
no. 2, pp. 139-181, 1979.

[Sc95] M. Schneider. Spatial Data Types for Database Systems. Doctoral Thesis, FernUni-
versität Hagen, 1995.

[SV89] M. Scholl & A. Voisard. Thematic Map Modeling.1st Int. Symp. on Large Spatial
Databases (SSD’89), pp. 167-190, 1989.

[Ti80] R.B. Tilove. Set Membership Classification: A Unified Approach to Geometric Inter-
section Problems.IEEE Transactions on Computers, vol. C-29, pp. 874-883, 1980.

[To90] C.D. Tomlin.Geographic Information Systems and Cartographic Modeling. Prentice
Hall, 1990.

[Va91] C.R. Valenzuela. Data Analysis and Modeling.Remote Sensing and Geographical
Information Systems for Resource Management in Developing Countries, pp. 335-
348, 1991.

[VE93] G.S. Volta & M.J. Egenhofer. Interaction with Attribute Data Based on Categorical
Coverages. Conf. on Spatial Information Theory (COSIT’93), LNCS 716, pp. 215-
233, 1993.

