
www.elsevier.com/locate/jvlc

 Journal of
Visual Languages
 & ComputingJournal of Visual Languages and Computing

14 (2003) 181–211

A visual language for the evolution of
spatial relationships and its translation

into a spatio-temporal calculus

Martin Erwiga,*, Markus Schneiderb

aDepartment of Computer Science, Oregon State University,

Corvallis, OR 97331, USA
b University of Florida, Computer & Information Science & Engineering,

Gainesville, FL 32611-6120, USA

Received 5 April 2001; received in revised form 13 June 2002; accepted 17 June 2002

Abstract

Queries about objects that change their spatial attributes over time become particularly

interesting when they ask for changes in the spatial relationships between different objects. We

propose a visual notation that is able to describe scenarios of changing object relationships.

The visual language is based on the idea to analyze two-dimensional traces of moving objects

to infer a temporal development of their mutual spatial relationships. We motivate the

language design by successively simplifying object traces to their intrinsic properties. The

notation can be effectively translated into a calculus of spatio-temporal predicates that

formally characterizes the evolution of spatial relationships. We also outline a user interface

that supports specifications by menus and a drawing editor. The visual notation can be used

directly as a visual query interface to spatio-temporal databases, or it can provide predicate

specifications that can be integrated into textual query languages leading to heterogeneous

languages.

r 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Visual predicate specification; Visual database interface; Spatio-temporal queries; Object

traces; Translation

*Corresponding author.

E-mail addresses: erwig@cs.orst.edu (M. Erwig), mschneid@cise.ufl.edu (M. Schneider).

1045-926X/03/$ - see front matter r 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S1045-926X(02)00057-5

1. Introduction

Stimulated by the deep relationships between temporal and spatial data there has
recently been an increasing interest in integrating database support for both kinds of
data and in designing spatio-temporal databases. Spatio-temporal databases deal
with spatial objects that change over time (for example, they move, they grow, or
they alter their shape): cars, planes, people, animals, ..., storms, lakes, forests, etc.
Hence, database systems, in particular, spatial and temporal database systems, and
geographical information systems (GIS) need to be appropriately extended to handle
this kind of information. Of particular interest is, of course, the development of
simple but powerful query languages that allow one to ask for changes in spatial
relationships, for instance: ‘Has a tornado ever crossed Iowa?’ or ‘Which planes were
able to avoid a certain blizzard?’. A formal foundation for these kinds of queries is
given by the concept of spatio-temporal predicates [1]. Whereas it is possible to
identify a relatively small set of spatial predicates [2], it is almost impossible to do so
in the spatio-temporal case, simply because there are too many of them. Thus, there
is a very strong need for a simple way of specifying spatio-temporal situations, and a
visual notation can be extremely helpful here.

This paper continues our previous work [3,4] aiming at proposing a visual
language for spatio-temporal predicates. The main idea is to graphically represent
the temporally changing evolution of a spatio-temporal object (like a car or a storm)
in a two-dimensional way by its trace. The topological behavior of such a trace with
respect to another object is interpreted and translated into a sequence of predicates,
called development, that can then be used, for example, to query spatio-temporal
databases. In this paper, we especially provide a precise description of the translation
process of a visual specification into a predicate sequence. Moreover, we will also
deal with partial specifications, which we have not considered in our previous work.

The described visual notation can be employed in several ways. One application is,
as already mentioned, to realize a visual query interface to spatio-temporal
databases. But we can also use pictures of this language as specifications for
(complex) spatio-temporal predicates, which can then be used in arbitrary query
languages. One interesting possibility is to use a well-accepted textual query language
like SQL, to extend it by spatio-temporal objects and predicates [5], and to use
pictures to represent predicates in WHERE clauses. This leads then to a
heterogeneous visual language [6].

The paper is structured as follows: Section 2 comments on related work. In Section
3, from a user interface and application point of view, we sketch a visual query
interface, called Query-By-Trace, that is capable of specifying, querying and
evaluating developments (that is, changing object relationships) in spatio-temporal
databases. Section 4 describes how spatio-temporal data can be modeled. In
particular, we explain the notions of spatio-temporal objects, predicates and
developments. In Section 5, from a design point of view, we then explain and
motivate the concept of our visual notation for developments. The interpretation of
the visual notation and the translation into predicate sequences is then defined in
Section 6. Finally, conclusions are given in Section 7.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211182

2. Related work

The affinity of spatial and temporal phenomena has been recognized for a long
time in the literature. Both phenomena deal with ‘spaces’ or ‘dimensions’ of some
kind and are thus closely related. Recently, research efforts have led both in spatial
and in temporal data modeling to an increased interest in integrating both directions
into a common research branch called spatio-temporal data modeling and in
constructing spatio-temporal databases. Their underlying basic entities are called
spatio-temporal objects and are ubiquitous in everyday life. Consider the flight of an
airplane, the migration of whales, the raging of a storm, or the spreading of a fire
region. Characteristic features of all these objects are that they are spatial entities

changing over time and that these changes are continuous. Changes refer, for example,
to motion, shrinking, growing, shape transformation, splitting, merging, disappear-
ing or reappearing of spatio-temporal objects. In particular, the capability of
incorporating continuous change of spatial objects over time belongs to the most
challenging requirements of spatio-temporal data models.

In the meanwhile, some data models for spatio-temporal databases have already
been proposed. In [7] a spatial data model has been generalized to become spatio-
temporal: spatio-temporal objects are defined as the so-called spatio-bitemporal
complexes whose spatial features are described by simplicial complexes and whose
temporal features are given by bitemporal elements attached to all components of
simplicial complexes. On the other hand, temporal data models have been
generalized to become spatio-temporal and include variants of Gadia’s temporal
model [8] which are described in [9,10]. The main drawback of all these approaches is
that ultimately they are incapable of modeling continuous changes of spatial objects
over time.

Our approach to dealing with spatio-temporal data takes a more integrated view
of space and time and includes the treatment of continuous spatial changes. It
introduces the concept of spatio-temporal data types [11,12]. These data types are
designed as abstract data types whose values can be integrated as complex entities
into databases [13,14] and whose definition and integration into databases is
independent of a particular DBMS data model.

The definition of a temporal object [15] in general is motivated by the observation
that anything that changes over time can be expressed as a function over time. A
temporal version of an object of type a is then given by a function from time to a.
Spatio-temporal objects are regarded as special instances of temporal objects where a
is a spatial data type like point or region. A point (representing an airplane, for
instance) that changes its location in the Euclidean plane over time is called a moving

point. Similarly, a temporally changing region (representing a fire area, for instance)
is a region that can move and/or grow/shrink and whose components can split or
merge. We call such an object an evolving region.

A straightforward and very instructive view of spatio-temporal objects is to
visualize their temporal evolution as purely geometric, three-dimensional objects, that
is, the time axis is regarded as an additional third geometric dimension. An evolving
region is then represented as a volume in 3D space, and a moving point is then

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211 183

visualized as a 3D curve. Any intersection with the xy-plane yields a spatial object,
that is, a region or a point. This observation is the starting point for the design of our
visual language: by successively abstracting from irrelevant information we
eventually arrive at a two-dimensional query language.

Similar to our approach, in [16,17] based on the work in [18] the so-called
behavioral time sequences are introduced. Each element of such a sequence contains a
geometric value, a date and a behavioral function, the latter describing the evolution
between two consecutive elements of the sequence. Whereas this approach mainly
focuses on representational issues and advocates the three-dimensional object view
of spatio-temporal objects, we are particularly interested in an algebraic model of
general spatio-temporal data types including a comprehensive collection of spatio-
temporal operations [12,19]. Nevertheless, behavioral time sequences could be used
as representations for our temporal objects.

Temporal changes of spatial objects induce modifications of their mutual
topological relationships over time. For example, at one time two spatio-temporal
objects might be disjoint whereas some time later they might intersect. These
modifications usually proceed continuously over time but can, of course, also have a
discrete property. We already have devised and formally defined a concept for such
spatio-temporal relationships which are described by the so-called spatio-temporal

predicates [1]. We call a sequence of spatial and spatio-temporal predicates a
development.

Since we are dealing with predicates, it is not surprising that logic-based
approaches are related to our work. Allen [20] defines a predicate Holdsðp; iÞ
which asserts that a property p is true during a time interval i. Galton [21]
has extended Allen’s approach to the treatment of temporally changing two-
dimensional topological relationships. Topological predicates are taken from the
RCC model [22] which comes to similar results as Egenhofer’s 9-intersection model,
which is briefly discussed below. In contrast to these approaches, we have pursued a
hybrid approach taking into account elements from temporal logic and elements
from point-set theory and point-set topology. The main reason for not taking a
purely logic approach is the intended integration of spatio-temporal objects and
predicates into spatio-temporal databases and query languages. These require
concrete representations for spatio-temporal objects and besides predicates the
possibility of constructing new objects through spatio-temporal operations.
Hence, efficiency, in particular for the evaluation of spatio-temporal queries, is
indispensable.

Our work on spatio-temporal predicates is based on Egenhofer’s 9-intersection
model [2] for topological predicates between spatial objects in two-dimensional
space. The goal of this model is to provide a canonical collection of topological
relationships for each combination of spatial types. The model rests on the nine
possible intersections of boundary, interior and exterior of a spatial object with the
corresponding parts of another object. Each intersection is then tested with regard to
the topologically invariant criteria of emptiness and non-emptiness. From the total
number of possible topological constellations only a certain subset makes sense
depending on the combination of spatial objects just considered. For two regions,

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211184

eight meaningful constellations have been identified which lead to the eight
predicates called equal, disjoint, coveredBy, covers, intersect, meet, inside and
contains. For a point and a region we obtain the three predicates disjoint, meet and
inside. For two points we get the two predicates disjoint and meet (which corresponds
to equality). For each group all predicates are mutually exclusive. They are also
complete in the sense that they cover all possible topological constellations under the
assumptions of the 9-intersection model.

There exist several approaches to visual query languages for spatial databases, for
example, [23–29]. Common to all these approaches is that they allow to query only
static spatial situations, that is, they can express queries like ‘Retrieve all airports in
Ohio’. A characteristic of the involved objects ‘airport’ and ‘Ohio’ is that these
objects rarely change their location and/or extent. There are also a few approaches to
querying image sequences [30–32]. However, the goal of these proposals is mainly to
facilitate queries on video databases and not the querying of spatial (or spatio-
temporal) databases. Since video data is largely unstructured (just a sequence of
images), all these approaches have to be concerned with additional symbolic
representations for the stored images to enable queries. Our visual notation is
translated into sequences of predicates that can be directly used for querying the
database representations of the spatio-temporal objects. A short, preliminary
proposal of the visualization idea that is developed in this paper has been presented
in [3]. The main concepts of a user interface for visually specifying spatio-temporal
developments have been described in [4].

3. Query-by-trace: a GUI for specifying spatio-temporal developments

Our visual notation is demonstrated by a few application scenarios illustrating
how this notation can be employed for querying developments in spatio-temporal
databases. We give a rough outline of the interaction a user may perform when
visually specifying queries. Our goal is to interactively and graphically produce a
sketch from which a spatio-temporal predicate can be derived.

The user interface Query-By-Trace (QBT) allows a comfortable specification of
developments. It incorporates an editor component to draw specifications. The
horizontal dimension is the x-axis; the vertical dimension describes time. The top of
the editor provides two menus, one for moving points and one for evolving regions.
Assuming a relational setting, both menus show the available attributes related to
spatio-temporal objects in the database together with the corresponding relation
names in brackets. In our example we use an environmental database containing
weather and flight information.

The first application scenario deals with a user’s query asking for all flights
crossing hurricanes, that is, the user is interested in the topological relationships
between an evolving region and a moving point over time. The user selects from the
menu Evolving Regions the attribute extent of the relation hurricanes (see Fig. 1) and
clicks at a desired position on the canvas of the editor. The result of this action is a
circle labeled with the name of the selected relation (see Fig. 2).

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211 185

The user now selects from the menu Moving Points the attribute route of the
relation flights. This indicates that the user is interested in specifying the
development between an evolving region and a moving point. The user next draws

Fig. 1. Selecting the first object.

Fig. 2. Selecting the second object.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211186

a crossing situation, which requires the following interactions: a click at a desired
position outside the circle produces the starting point. The system determines the
initial relationship of this point with respect to the evolving region and displays the
spatial predicate disjoint in the two message lines at the bottom of the editor. Now
the user drags the mouse from bottom to top from the starting point towards the
circle. Note that during the specification process it is not possible to drag the mouse
cursor below the current position since a spatial object cannot move backward in
time. As soon as the mouse cursor leaves the starting point, the name of the spatio-
temporal predicate Disjoint is added to the message lines. The fact that a spatial
predicate is constant for a certain period is registered in the message lines by a spatio-
temporal predicate indicated by an initial capital letter (for example, Disjoint or
Meet).

We distinguish between the raw mode and the normalized mode of a development
specification. The raw mode corresponds to the original definition of a development
as an alternating sequence of spatial and spatio-temporal predicates (see Section 4.3).
The normalized mode introduces simplifications to make the specification more
readable for the user. One of these simplifications is that a spatial predicate (like
disjoint) followed or preceded by its corresponding spatio-temporal predicate (like
Disjoint) can be abbreviated to the spatio-temporal predicate. Hence, in the second
message line we only see the Disjoint predicate so far (see Fig. 3).

While moving the mouse, the system draws the trace of the point and steadily
watches for possible changes in the topological relationship. Each change is recorded
in the message lines. The user now continues to move the cursor toward the circle
and then traverses it. So far the user has specified an Enter situation, that is, the

Fig. 3. Raw and normalized modes.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211 187

moving point at some time has met the circle and has been inside the circle since then
(see Fig. 4). Afterwards the user drags the mouse to an end point outside the circle
and releases the mouse button. The final picture is shown in Fig. 5 and specifies a

Fig. 4. QBT-visualization of an Enter situation.

Fig. 5. Final QBT specification of the Cross predicate.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211188

Cross situation. At the end of a dragging transaction, both the visual specification
and the spatio-temporal predicate sequence are immediately available.

The scenario just described gives an example of the visual specification of the
topological behavior between two spatio-temporal objects that is completely defined
and known from its beginning up to its end; on the screen this is visible by the user’s
action drawing a continuous curve without releasing the mouse button in between.
But we can also deal with the situation where the topological relationships between
two spatio-temporal objects are unknown or irrelevant for certain periods of time. In
that case a moving point could be, for example, inside an evolving region. Then the
specification is interrupted at time t1 for a certain period and afterwards continued at
time t2 ð> t1Þ within, on the border of, or outside the evolving region. What happens
between t1 and t2 is then unknown or irrelevant. In both cases the user has to
interactively release the mouse button and to press it again at another location.

If the user releases the mouse button, three different situations can arise: first, the
user has completed the predicate specification. Second, the user has briefly
interrupted the predicate specification and continues it at the current end point of
the curve. Then the drawn end point disappears, and the drawing of the curve is
resumed. Third, the user intends to specify a period of lacking knowledge or
arbitrary topological behavior. In the predicate sequence this is indicated by the
predicate True which has the function of a wildcard. Interactively, the user clicks at a
mouse position which lies above the imaginary horizontal line and which does not
necessarily have to describe a different topological relationship like the one at the
last end point. A mouse click above the horizontal line is not subject to any
restrictions.

The second application scenario deals with a user’s query asking for a particular
topological configuration between fires and hurricanes, that is, between two evolving
regions. Moreover, this scenario gives an example of an only partially known
topological behavior between two spatio-temporal objects. The user first selects the
attribute area of the relation fires from the menu Evolving Regions and clicks at a
desired position on the canvas. The result is a labeled circle appearing on the screen.
Now the user selects the attribute extent from the relation hurricanes and positions a
second smaller circle outside and below the larger circle on the screen.

The second circle can be moved and is smaller than the first one. The trace consists
of two disjoint curves spanning a corridor which the moved circle traverses while
being dragged from a start position to its end position (see Fig. 6). The two
predicates meet and coveredBy (describing the situations when the circles touch
externally, respectively, internally) need a particular interaction. They are called
instant predicates since only they can be valid at an instant. They can, of course, also
be valid for some period (Meet, CoveredBy). To distinguish these two cases
interactively, the drawing of Meet and CoveredBy is supported by holding down the
shift-key during dragging. The movement of the mouse is then restricted to go along
the border of the constant object until the shift-key is released again.

In our scenario the user next draws an entering situation by dragging the mouse
from bottom to top into the circle and then releasing the mouse button (see Fig. 6). A
small circle marking the current end position of the trace appears on the screen.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211 189

Again we can distinguish three different situations. First, the user has finished his
specification.

Second, the user briefly interrupts the specification and then continues it at the
current end position by clicking into the last drawn small circle. As a result, the circle
disappears, and the drawing of the trace is resumed.

Third, the user intends to specify a period of lacking knowledge or arbitrary
topological behavior which is indicated by the predicate True in the predicate
sequence. Interactively, the user clicks at a mouse position which lies above an
imaginary horizontal line through the center of the last drawn small circle and which
does not necessarily have to describe a different topological relationship like the one
at the last small circle. A positioning above the horizontal line is not subject to any
restrictions. Note that the locations of the centers of circles are decisive and not the
locations of the circles themselves. Hence, it may happen that a center of a circle is
above a center of another circle but that the circles intersect each other.

In our scenario, as an illustration of the third case, the user next positions the
mouse cursor above the last drawn small circle and outside the large circle. A small
circle is drawn, and the user drags the circle over the boundary of the large circle and
releases the mouse button when the mouse cursor is outside the large circle. This
partial specification describes a Graze situation so that in the end we obtain the
predicate Enter True Graze whose composing elementary predicate sequences are
shown in raw and normalized mode in Fig. 7.

As a final application scenario, assume that we have a relation birds recording
the migration of birds. We might be interested in swarms that fly together, then take
different routes for some time, and finally meet again, that is, we are interested in the

Fig. 6. Final QBT specification of the Enter predicate.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211190

topological relationships between two moving points over time. This can be
expressed by the visual specification shown in Fig. 8. We see that if instead of a
moving region a moving point is selected at the beginning, automatically a vertical

Fig. 7. QBT specification of the Enter True Graze predicate.

Fig. 8. Example of a QBT specification of two moving points.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211 191

line is drawn which is static. In this situation the user is only allowed to select
another moving point so that a development between two moving points is specified.
This is because the specification of a development between a moving point and an
evolving region should be performed on first selecting a static region and then a
moving point.

We believe that this user interface is intuitive and easy to use because the user acts
(via the mouse) as a moving object that behaves exactly in the way as the drawn
spatio-temporal predicate demands it. In other words, the user action precisely
conforms to, or satisfies, the specification that is drawn. Of course, to obtain reliable
information about usability we have to perform a controlled user study that is
beyond the scope of this paper.

4. Spatio-temporal objects, predicates and developments

In this section we will briefly review some of the formal foundations. We sketch
our definition of spatio-temporal objects in Section 4.1, present our concept of
spatio-temporal predicates in Section 4.2, and explain our specification mechanism
for spatio-temporal developments in Section 4.3.

4.1. Spatio-temporal objects

One of our design goals is to define a spatio-temporal data model that is
independent of a specific DBMS data model. This is achieved by encapsulating
spatio-temporal data types into abstract data types which comprise a comprehensive
collection of operations and predicates. Assuming a relational setting, for instance,
we can then embed spatio-temporal data types in the same way like types for
integers, reals, booleans or strings as attribute types in a relation, that is, the relation
has only a container function to store attribute data in tuples.

The design of our model for spatio-temporal data is as follows: for compatibility
with smoothly changing spatio-temporal objects we choose a continuous model of
time, that is, time=R. The temporal version of a value of type a that changes over
time can be modeled as a temporal function of type

tðaÞ ¼ time-a

We have used temporal functions as the basis of an algebraic data model for spatio-

temporal data types [11] where a is assigned a spatial data type like point or region.
For example, a point that changes its location over time is an element of type
t(point) and is called a moving point. Similarly, an element of type t(region) is a
region that can move and/or grow/shrink. It is called an evolving region. Currently,
we do not consider a temporal version of lines, mainly because there seem to be not
many applications of moving lines. A reason might be that lines are themselves
abstractions or projections of movements and thus not the primary entities whose
movements should be considered [12]. In any case, however, it is principally possible
to integrate moving lines in much the same way as moving points if needed. In

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211192

addition, we also have changing numbers and booleans, which are essential when
defining operations on temporal objects. For instance, we could be interested in
computing the (time-dependent) distance of an airplane and a storm. This could be
achieved by an operation:

Distance : tð pointÞ � tðregionÞ-tðrealÞ

The example demonstrates the concept of temporal lifting [19] avoiding an inflation
of operation names and definitions: we can, in principle, take almost any non-
temporal operation (like Distance : point � region-real) and ‘temporally lift’ it so
that it works on temporal objects returning also a temporal object as a result. More
precisely, for each function f : a1 �?� an-b its corresponding lifted version

mf : tða1Þ �?� tðanÞ-tðbÞ

is defined by

mf ðS1;y; SnÞ :¼ fðt; f ðS1ðtÞ;y; SnðtÞÞÞjtAtimeg

Hence, we can derive temporal operations rather automatically. For example, we
obtain Distance ¼ mdistance:

4.2. Spatio-temporal predicates

Temporal lifting is, of course, also applicable to spatial predicates. Consider the
spatial predicate

inside : point � region-bool

The lifted version of this predicate has the type

minside : tðpointÞ � tðregionÞ-tðboolÞ

with the meaning that it yields true for each time at which the point is inside the
region, undefined whenever the point or the region is undefined, and false in all other
cases. We see that the lifted version is not a predicate since it yields a temporal
boolean and not a (flat) boolean what we would expect from a predicate.

Our understanding of spatio-temporal predicates is the following: a spatio-
temporal predicate is essentially a function that aggregates the values of a spatial
predicate as it evolves over time. In other words, a basic spatio-temporal predicate
can be thought of as a lifted spatial predicate yielding a temporal boolean, which
is aggregated by determining whether that temporal boolean was sometimes or
always true. Thus, a spatio-temporal predicate is a function of type tðaÞ �
tðbÞ-bool for a; bAf point; regiong:

If we consider the definition of minside; we can define two spatio-temporal
predicates sometimes-inside and always-inside that yield true if minside yields true at
some time, respectively, at all times. Whereas the definition for sometimes-inside is
certainly reasonable, the definition for always-inside is questionable since it yields
false whenever the point or the region is undefined. This is not what we would
expect. For example, when the moving point has a shorter lifetime than the evolving
region and is always inside the region, we would expect always-inside to yield true.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211 193

In fact, we can distinguish different kinds of ‘forall’ quantifications that result from
different time intervals over which aggregation can be defined to range. In the case of
inside the expected behavior is obtained if the aggregation ranges over the lifetime of
the first argument, the moving point. This is not true for all spatial predicates.
Actually, it depends on the nature and use of each individual predicate. For example,
two spatio-temporal objects are considered as being always-equal only if they are
equal on both objects’ lifetimes, that is, the objects must have the same lifespans and
must be always equal during these.

In order to be able to concisely define spatio-temporal predicates, we use the
syntax Qop:p to denote spatio-temporal predicates. QAf8; (g is a quantifier,
opAf-; ,; p1; p2g is a function mapping two sets into a new set (pi simply takes
the ith argument set), and p is a spatial predicate. An expression Qop:p then denotes
the spatio-temporal predicate:

lðS1; S2Þ:QtAopðdomðS1Þ; domðS2ÞÞ:pðS1ðtÞ; S2ðtÞÞ:

In general, lðx1; x2;yÞ:e denotes a function that takes arguments x1; x2;y (here
two spatio-temporal objects S1 and S2) and returns a value determined by the
expression e (here a boolean predicate quantified over time). This means that, for
example, 8p1

:inside denotes the spatio-temporal predicate

lðS1; S2Þ:8tAdomðS1Þ:insideðS1ðtÞ; S2ðtÞÞ:

This expression describes a function that takes S1 and S2 as arguments and
checks if for all times t of the lifespan of S1, the value of S1 at t, which is a
spatial object, lies inside S2 at t, which also describes a spatial object. If this check
yields true for all times t under consideration, the whole function yields true and
otherwise false.

With this notation we can give the definitions for the spatio-temporal versions of
the eight basic spatial predicates (for two regions):

Disjoint :¼ 8-:disjoint

Meet :¼ 8,:meet

Overlap :¼ 8,:overlap

Equal :¼ 8,:equal

Covers :¼ 8p2
:covers

Contains :¼ 8p2
:contains

CoveredBy :¼ 8p1
:coveredBy

Inside :¼ 8p1
:inside

For a moving point and a moving region we have just the three basic predicates
Disjoint, Meet and Inside, which are defined as above. For two moving points we
have the basic predicates Disjoint and Meet, which are also defined as above. The
chosen aggregations are motivated and discussed in detail in [1].

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211194

4.3. Developments

Now that we have basic spatio-temporal predicates, the question is how to
combine them in order to capture the change of spatial situations. That is, the issue is
how to specify developments. In order to temporally compose different spatio-
temporal predicates, we need a way to restrict the temporal scope of basic spatio-
temporal predicates to specific intervals. This can be obtained by predicate

constrictions (note that S|I denotes the partial function that yields SðtÞ for all tAI

and is undefined otherwise): let I be a (half-) open or closed interval. Then

PI :¼ lðS1; S2Þ:PðS1jI ; S2jI Þ:

Now we can define the composition of predicates as follows:

P until p then Q :¼ lðS1; S2Þ:(t : pðS1ðtÞ; S2ðtÞÞ4Pj	
N;t½ðS1; S2Þ4Qj	t;N½ðS1; S2Þ

When we now consider how spatial situations can change over time, we observe that
certain relationships can be valid only for a period of time and not for only a single
time point (given that the participating objects do exist for a period of time) while
other relationships can hold at instants as well as on time intervals. Predicates that
can hold at time points and intervals are: equal, meet, covers, coveredBy; these are
called instant predicates. For example, an airplane and a hurricane can meet at a
certain instant or for a whole period. Predicates that can only hold on intervals are:
disjoint, overlap, inside, contains; these are called period predicates. For example, it is
not possible for an airplane to be disjoint from a hurricane only at one point in time;
they have the inherent property to be disjoint for a period.

It is now interesting to see that in satisfiable and uninterrupted developments
instant and period predicates always occur in alternating sequence. For example, it is
not possible that two continuously changing spatio-temporal objects satisfy Inside

immediately followed by Disjoint. In contrast, Inside first followed by meet (or Meet)
and then followed by Disjoint can be satisfied. Hence, developments are represented
by alternating sequences of spatio-temporal predicates and spatial predicates and are
written down by juxtaposition (in this paper). A more formal treatment of
compound spatio-temporal predicates and developments is given in [1]. Our example
of a flight running into a hurricane can now be formulated as the composition:

Disjoint untilmeet then Inside

Since predicate composition is associative, we can abbreviate nested compositions by
writing down simply a sequence of the spatio-temporal and spatial predicates, that is,
we can simply write Disjoint meet Inside for the above example. We introduce the
name Enter for it to reuse it later. A flight running out of a hurricane can be
characterized by Leave :¼ Inside meet Disjoint: A flight that traverses a hurricane can
be written as Disjoint meet Inside meet Disjoint using basic spatio-temporal
predicates or shorter as Enter Leave using derived predicates; we introduce the
name Cross for it. Note that spatial predicates and their corresponding spatio-
temporal predicates (like meet and Meet) that occur next to each other in a
development can be merged to the respective spatio-temporal predicate (see also

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211 195

Section 6). We list a few further examples for two evolving regions:

Enter :¼ Disjoint meet Overlap coveredBy Inside

Leave :¼ Inside coveredBy Overlap meet Disjoint

Cross :¼ Enter Leave

Touch :¼ Disjoint meet Disjoint

Bypass :¼ Disjoint meet Disjoint

Graze :¼ Disjoint meet Overlap meet Disjoint

In order to assess the expressiveness of our visual notation we can ask which
developments are possible at all and which developments can be specified by our
visual language. Possible transitions of spatio-temporal relationships can be
represented in the so-called development graphs whose vertices are labeled either
with a spatial, that is, an instant, predicate or with a basic spatio-temporal predicate.
Hence, each vertex models a time point or a time interval in which the corresponding
predicate is valid. An edge (p, q) represents the transition from a predicate p to a
predicate q and stands for p q. A path (p1; p2; y; pn) within the graph describes a
possible temporal development p1p2ypn of topological relationships between two
spatial objects.

Since due to cycles infinitely many paths of possibly infinite length exist in the
development graph, we appropriately restrict the set of possible paths. First, we only
consider paths of finite length. Second, we take into account the observation that if a
path properly contains an instant predicate together with its corresponding basic
spatio-temporal predicate, we can regard this situation as a reoccurrence of a
topological relationship. The only difference concerns the temporal duration of the
topological relationship. This leads us to the notion of a quasi-cycle as a path v ¼
ðv1; y; vnÞ in the development graph such that v is a cycle or such that v1 is a spatial
predicate and vn is its corresponding spatio-temporal predicate, or vice versa. Then a
development path of a development graph is a path in the graph which does not
properly contain any quasi-cycles.

For the point/point and for the point/region case we obtain the
following development graphs shown in Fig. 9. Starting, for example, with
Inside in the point/region case, we obtain seven possible development paths,
see Fig. 10.

Meetmeet

Disjoint

Inside

Meetmeet

Disjoint

Fig. 9. Development graphs for the point/point and the point/region case.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211196

Since the development graph is symmetric in this case (each of the four vertices can
be selected as the start vertex of a path), we obtain a total of 28 paths. This means,
there are 28 distinct temporal evolutions of topological changes between a moving
point and an evolving region without repetitions. For each alternative we could
define an own spatio-temporal predicate. In the point/point case we get 13 possible
development paths. The development graph for the region/region case contains 2198
paths and thus possible predicates [1]. It is shown in Fig. 11.

There are some constraints imposed by our visual notation which restrict the
possible development paths that can be expressed by a visual specification;
consequently, they lead to a restriction of the development graph. These constraints
are: (i) the sizes of the static circle and the moved circle are fixed, (ii) the static circle
is larger than the moved circle, and (iii) our visual notation contains an implicit
ordering of both circles, that is, the smaller moved circle symbolizes always the first
argument of a predicate and the larger constant circle stands always for its second
argument. These constraints lead to the following restrictions of the development
graph.

Inside

Meetmeet

Disjoint Disjoint

Inside

Inside

Fig. 10. Examples of development paths.

Overlap

Meetmeet

Disjoint

ContainsInside

equal

CoverscoveredBy CoveredBy covers

Equal

Fig. 11. Region/region development graph.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211 197

First, from the three pairs coveredBy/covers, CoveredBy/Covers and Inside/
Contains only one relationship per pair, namely coveredBy, CoveredBy, and Inside,
can be represented in our visual development specifications. Hence, we can remove
the vertices covers, Covers, and Contains and their incident edges1 (see Fig. 12).

Second, four transitions in the graph, namely from CoveredBy and from Inside to
equal and Equal, respectively, solely result from a growing or shrinking of one object.
Since we cannot alter the proportions neither of the static circle nor of the moved
smaller circle, the vertices equal and Equal cannot be reached by CoveredBy and
Inside (and vice versa) so that we can take away the corresponding eight edges (see
Fig. 13).

Third, the transitions between Overlap and equal and between Overlap and Equal

do not require growing or shrinking. But the prerequisite for this transition is that
the static circle and the moved circle have the same size, and just this is excluded by

Overlap

Meetmeet

Disjoint

Inside

equal

coveredBy CoveredBy

Equal

Fig. 12. Removing the predicates covers, Covers and Contains with their incident edges.

Overlap

Meetmeet

Disjoint

Inside

equal

coveredBy CoveredBy

Equal

Fig. 13. Removing four edges due to the impossibility of changing an object’s extent.

1Note that this restriction could be dropped if we would allow that the moved circle can be made larger

than the constant circle. (Then the g-matrix in Section 6 would have to be adapted.)

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211198

our visual notation. From an Overlap situation we can never come to an equal or an
Equal situation (and vice versa) so that the four corresponding edges must be
removed. Because the vertices equal and Equal are isolated now, we can remove
them, too. We obtain the following final development graph shown in Fig. 14. In this
restricted graph, only 87 different development paths are possible.

All finite paths that can be obtained by this development graph (and, of course, all
those that can be obtained by concatenation) can be specified with our visual
language for the region/region case.

5. Visual specifications of developments

In Section 3, we have described the visual specification mechanism from an
application and user interface point of view, that is, how such a query interface could
be realized in practice. With the formal background provided by the previous
section, this section now gives the reasons and the motivation for our design by
discussing a collection of underlying design criteria. For this purpose, we review
some of the aspects of Section 3 from a design perspective. The design criteria will
eventually lead to a two-dimensional visual language.

The first design decision is essential to obtain an integrated notation for spatial
and temporal aspects:

(1) Represent the temporal dimension geometrically. This leads in a first step to a
three-dimensional model of spatio-temporal objects.

Now we could stop here and use three-dimensional pictures to specify
developments, but in our special application there are two main reasons for not
doing so: first, three-dimensional pictures contain much more information than two-
dimensional pictures and require therefore generally more input for their generation.
This input has to be provided by the user, which means that it can be generally
expected that it takes more time and effort to draw three-dimensional than two-
dimensional pictures. In particular, without specialized user input devices, it can
become quite tedious to generate three-dimensional drawings with mouse and
keyboard. Such a drawing interface is also more difficult to implement. Second,
three-dimensional illustrations of developments are overdetermined in the sense that

Overlap

Meetmeet

Disjoint

Inside

coveredBy CoveredBy

Fig. 14. Removing the predicates equal and Equal with their incident edges.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211 199

they display (i) growing/shrinking and movement of regions and (ii) relative
positions of the beginnings and endings of objects’ lifetimes. (The first point will be
discussed in more detail below.) Such overspecifications are generally undesirable
since they can complicate the understanding of visual notations: the user has to sort
out much visual information that has no meaning for her specification.

The second design decision is essentially a step to reduce overdetermination:

(2) Abstract from exact positions/extents, and reduce two-dimensional geometric
objects to one-dimensional ones. Use the y-axis to represent the temporal dimension.

This essentially means to ‘forget’ about the y-axis with regard to spatial
information, and to represent a point at time t as a point on the x-axis and a
region as an x-interval. Thus, the y-axis can capture the temporal aspect of spatio-
temporal objects so that a moving point is represented by a line and an evolving
region is represented by a region as shown in Fig. 15.

This picture describes a moving point that enters a region, then leaves the region
and finally stops on the region’s border. It is striking that the sketched movement/
shrinking/growing of the interval representing the evolving region does not
contribute anything to this specification, that is, it would be as well possible to
use a plain rectangle representing a stationary/constant region. The reason is that we
are only specifying topological relationships, and thus we need only information
about the relative positions of objects with respect to each other. In particular, we
need not be concerned about the exact position or size information of objects.2

This leads to the third design decision:
(3) Represent the evolving region in the definition of a point/region predicate,

respectively, one evolving region in the definition of a region/region predicate, simply
as a static circle. Likewise, represent one of the two moving points in a point/point
spatio-temporal predicate as a static vertical line.

This leads to a uniform notation. For instance, the point/region predicate Bypass

can be specified as shown in Fig. 16. The trace of the point’s movement is
interactively specified by the user and depicted by a dotted line.

t

x

Fig. 15. Simplifying two-dimensional objects.

2Actually, this is not the whole truth: for some spatio-temporal developments, growing and shrinking is

essential, but these cases are rare, and the complexity of an extension of the visual notation would not be

justified by the relatively small gain in expressiveness, see Section 4.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211200

In the region/region case, two circles are displayed which show the circle’s
(evolving region’s) first and last position, are smaller than the static circle, and are
connected by a trace specifying the circle’s movement. The trace itself is depicted by
two dotted lines. For example, the predicate Graze is drawn as shown in Fig. 17.

The trace represents the sequence Disjoint meet Overlap meet Disjoint. This is
because the left trace border intersects the constant region in exactly two points and
the right trace border does not intersect the constant region at all. Hence, altogether
this picture denotes the predicate Graze. Some variations are shown in Fig. 18.

Note that the exact interpretation can always be inferred from the intersections of
the trace borders with the static circle. This will be explained in the next section.

Graze

Fig. 17. Visual specification of Graze.

Cross

Touch

Bypass

Fig. 18. More spatio-temporal predicates.

Fig. 16. Visual specification of Bypass.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211 201

So far we have only considered continuously moving objects and the spatio-
temporal predicates that can be derived from them when interacting with a static
object. But, as we have already seen in Section 3, we can well use the described
notation with discontinuous objects and even with objects having gaps in their
domain. All these cases have a precisely defined correspondence in the user interface.
Consider, for instance, a moving point that has entered the constant circle. When the
user releases the mouse button, say, at y-position or time-value t, this specifies the
spatio-temporal predicate Disjoint meet Inside, see Fig. 19.

Now there are two ways to continue this specification:

(1) The line is continued from the last position.
(2) A new line is added with an initial point that has the a time-value t0 that is

greater than t.

This gap in the drawn object means there is some time between t and t0 which we
do not care about, that is, the relationship between the moving object and the static
object during this period is not to be specified but rather arbitrary. In this case we do
not have to restrict the new position, in particular, it may well specify the same
spatial predicate as the last position of the preceding movement. In our example it is
therefore possible to continue (and complete) a movement inside the circle (see
Fig. 20). This denotes the development Disjoint meet Inside True Inside. The inserted
True predicate serves as a kind of wildcard predicate: between t and t0 anything can
happen, but after t0, the point has to stay inside the circle. Hence, points that just
enter the static object satisfy this predicate as well as points that enter and after that
touch or leave the static object many times if they finally stay inside.

Let us finally note that the visual notation is also well suited to express predicates
on three or more spatio-temporal objects. Consider, for example, the task of finding

t

Fig. 19. Intermediate specification.

t

t’

Fig. 20. Continuation of specification: a gap.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211202

out animals that have visited a lake and then entered a forest. This can be easily
expressed by the specification shown in Fig. 21.

It is the fact that the temporal evolution of constant regions is ignored in trace
pictures that makes the spatio-temporal relationships between forest and lake

irrelevant; and the use of the y-axis for representing the temporal dimension
expresses in the above picture that first the lake has to be visited and after that the
forest has to be entered. (By flipping the picture upside down, a query asking for
animals leaving the forest and then touching the lake would be expressed.)

6. Interpretation of development specifications

In this section we describe how sequences of spatio-temporal predicates are
inferred from visual development specifications. In the following, we refer to the
constant and to the moving object of a specification. The constant object can be
either a vertical line or a circle. If the moving object is a moving point, it is shown as
a curve representing the trace, otherwise it is given by two circles showing the first
and last position of the moving region, and two parallel curves representing the
borders of the trace. Note that all curves are monotonic with respect to the y-axis
(that is, t-axis) because an object cannot move backward in time. Moreover, the two
curves representing the borders of a moving region’s trace do not intersect. We
denote these two lines by l1 and l2. (Note that the naming is arbitrary because the
g-matrix (see below) that defines the computation of spatio-temporal predicates is
symmetric.)

Next, we compute the intersection IS of the constant object and the trace
representation of the moving object, that is, one line in case of a moving point and
two lines in case of a moving region. IS contains a t-sorted sequence of predicates for
the resulting line segments and intersection points and for the begin and end points
of the trace. In the region/region case IS consists of two such sequences. More
precisely, IS contains pairs (t, P) where t denotes a value of the t-axis and P gives the
relationship of the point or line segment with respect to the constant object.
Actually, IS contains for each but the last time value two tuples: one for the spatial

forest

lake

Fig. 21. Predicates on more than two objects.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211 203

predicate that holds for the point at t and one for the spatial predicate that holds for
the line segment starting from t. The spatial predicate for the line segment will later
be interpreted as a basic spatio-temporal predicate that holds for the point during its
movement from t up to the next time value.

With this information we are almost done, at least in the case of point/point and
point/region specifications: we can simply take the sequence of predicates from IS.
Although there might be some surplus instant predicates, these do not affect the
semantics of the resulting development predicate. For example, extracting the
predicates from IS for Fig. 16 gives (predicates with an exponent L are line
predicates):

disjoint disjointL meet meetL meet disjointL disjoint

Interpreting the line predicates, such as disjointL; as spatio-temporal predicates yields
the development:

disjoint Disjoint meet Meet meet Disjoint disjoint

Actually, this denotes the same development as

Disjoint Meet Disjoint

This is because Lemma 1 allows the simplification of predicate sequences:

Lemma 1. Let q/p/i be an arbitrary/period/instant spatial predicate, and let Q/P/I be

the corresponding spatio-temporal predicate. Then:

(a) qQ ¼ Q

(b) IiP ¼ IP

(c) 8o; o0 : domðoÞ
T

domðo0Þ is right
 closed) ðQqÞðo; o0Þ ¼ Qðo; o0Þ
(d) QQ ¼ Q:

We can use this lemma to repeatedly rewrite a predicate sequence to a short, non-
redundant normal form. For the above example, we can reduce with part (a) disjoint

Disjoint to Disjoint and meet Meet to Meet, and with part (b) we can replace the
sequence Meet meet Disjoint by Meet Disjoint. Finally, we can apply part (c) to
reduce Disjoint disjoint to Disjoint.

A bit more complex is the treatment of the region/region case. First, intersection
yields two sequences IS1 and IS2 of predicates, for the two trace lines l1 and l2;
respectively. These have to be scanned in parallel to build a new predicate sequence
%P: Essentially, in each step one predicate from IS1 is combined with one predicate
from IS2 into a new predicate. We do that as follows: first, we compute a sorted list T

of all t-values from both sequences. T describes the events at which a predicate
in either sequence changes. The elements of T contain first the two starting points
of the two trace lines, followed by all intersection points, and finally the end points of
the trace lines. Then we inspect IS1 and IS2 for each tAT : With ISi½t	 we denote the
predicate that holds at time t in the sequence ISi: If ISi contains a pair for t (recall
that for each but the last time point, it will actually contain two pairs), the pair with
the instant predicate is selected. Otherwise, a period predicate is selected for the

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211204

largest t0 in ISi that is smaller than t (because this predicate holds until the next time
point in ISi). It is clear that in each step either IS1 or IS2 contributes an instant
predicate because one sequence has contributed its time value to T : With ISi½t>	 we
denote the period predicate that holds immediately after time t in the sequence ISi:
This is given by the tuple (t0; P) for the largest t0 in ISi with t0rt (where P is a spatio-
temporal predicate). It is striking that, in general, the time intervals spanned by IS1

and IS2; given by the minimum and maximum contained t-value, do not agree. Thus,
for some tAT ; ISi½t	 will be undefined, and we define ISi½t	 at those places to yield the
dummy predicate undef. This simplifies the definition of the combination of
predicates described next.

The combination of two predicates is defined by a function g which is defined in
Table 1: the row and column headers show the spatial predicates for points and lines,
and the table fields give the corresponding derived spatio-temporal predicates.
Table 1 defines a function that maps a pair of two-dimensional spatial predicates
that can hold for a point/line and a circle (where the predicates for lines are written
with an exponent L) to a spatial or a basic spatio-temporal predicate for two
evolving regions. Note that the table is symmetric (that is, g is commutative); we have
therefore omitted the lower left part for clarity. Table 1 is used as follows: for each
time value t we look up the table entry for row IS1½t	 and column IS2½t	 to get the
spatial or spatio-temporal predicate that holds at time t for the two evolving regions.
Similarly, we look up the table entry for row IS1½t>	 and column IS2½t>	 to get the
spatio-temporal predicate that holds immediately after t for the two evolving
regions.

Before we proceed, let us illustrate the above definitions with an example.
Consider the visualization of the predicate Cross from Fig. 18. Here we show the
time points for any change in the predicate sequences, see Fig. 22: we get 4
intersection time points t1;y; t4 (sorted by increasing t-coordinate): t1 and t4 result
from l1; and t2 and t3 result from l2; and we have two start points (ta for l1 and tb for
l2) and two end points (ty for l2 and tz for l1):

With these time points, we obtain the following predicate sequences:

IS1 ¼ ½ðta; disjointÞ; ðta; disjointLÞ; ðt1; meetÞ; ðt1; insideLÞ; ðt4; meetÞ; ðt4; disjointLÞ; ðtz; disjointÞ	

IS2 ¼ ½ðtb; disjointÞ; ðtb; disjointLÞ; ðt2; meetÞ; ðt2; insideLÞ; ðt3; meetÞ; ðt3; disjointLÞ; ðty; disjointÞ	

Table 1

g disjointL disjoint meetL meet insideL inside undef

disjointL Disjoint disjoint Meet meet Overlap overlap True

disjoint disjoint meet meet overlap overlap True

meetL Meet meet CoveredBy coveredBy True

meet meet coveredBy coveredBy True

insideL Inside inside True

inside inside True

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211 205

Obviously, we have T ¼ ½ta; tb; t1; t2; t3; t4; ty; tz	; and the values for ISi½tj	 and
ISi½t>j 	 for iA{1, 2} and jAfa; b; 1; 2; 3; 4; y; zg are shown in the following table:

Next we can compute the derived predicates with the help of g: Let us explain some

of the entries in the g-table: for time points ta; t>a ; t>y and tz we obtain the unit

predicate True. Whenever both predicates agree, a predicate of the same name is
computed, and this is a spatio-temporal predicate only if both predicates are period

predicates. We therefore obtain Disjoint at time points t>b and t>4 ; disjoint for tb and ty;
and Inside at t>2 : When one side of the moving circle meets and the other side is at the

same time inside, this means that the moving circle is covered by the static circle.
Similarly, if one side meets and the other side is disjoint, this is the case if both circles
touch. Hence, we get coveredBy at t2 and t3 and meet at t1 and t4: Finally, if one side
is disjoint and the other side is inside, this can only be the case if both circles overlap.

This means that g yields Overlap for t>1 and t>3 : Altogether, we obtain the following

sequence of predicates:

There are two further points to note before we can describe the complete
algorithm to compute %P:

First, the predicates obtained from the trace intersections are not sufficient to
derive the denoted development predicate. Consider, for instance, the situation
shown in Fig. 23.

Obviously, this specifies the development Disjoint meet, but both trace lines
contain only predicates disjoint and Disjoint (we have indicated the endpoints of the
trace lines), and thus meet cannot be inferred. Therefore, we have to compute the
spatial predicates that hold for the initial and final circle, too, and join these

time

ty
tz

ta
tb
t1
t2

t3
t4

Fig. 22. Events in the visualization of the Cross predicate.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211206

predicates at both ends of the predicate sequence %P: For the above picture we obtain
disjoint and meet, and for the Cross example we get two times disjoint. We denote
these predicates by pI and pF :

The second observation is related to the previous point: the spatial predicate
obtained for an initial or final circle can be either a period predicate (disjoint, inside,
overlap) or an instant predicate (meet, coveredBy). In the former case, we know that
the development will contain the corresponding spatio-temporal predicate. In the
latter case it can be either the spatial predicate itself or its spatio-temporal
counterpart. Fortunately, we can discriminate between these two cases by looking at
the first line predicate in either of the two intersection sequences (to deal with the
initial circle): if this predicate is the spatio-temporal predicate that corresponds to the
spatial predicate obtained for the initial circle, then this spatio-temporal predicate is
taken into the development, otherwise the simple spatial predicate remains. The case
for the final circle is analogous: we just look at the last line predicate in either of the
two intersection sequences.

Now we can compute the predicate sequence %P with the algorithm shown below.
We use the following notations: periodðpÞ:3pA{disjoint, inside, overlap}, and PI and
PF denote the spatio-temporal predicates corresponding to pI and pF ; respectively.
The concatenation of an element and a sequence or of two sequences is performed by
the function concat, the ith element from a sequence S is denoted by S½i	; and the
length of a sequence S is given by jSj: Finally, the last time value of T requires special
treatment. We therefore denote the last element of T by lastðTÞ and the initial part of
T ; that is, T without lastðTÞ; by initðTÞ: (We therefore have: T ¼ concatðinitðTÞ;
lastðTÞÞ:)

Algorithm InferPredicates
begin

%P:¼ ½ 	
for each tAinitðTÞ do

%P :¼ concatð %P; ½gðIS1½t	; IS2½t	Þ; gðIS1½t>	; IS2½t>	Þ	
%P :¼ concatð %P; gðIS1½lastðTÞ	; IS2½lastðTÞ	
Simplify %P (by Lemma 1)
Determine pI and pF

if ðperiodðpI Þ3(i : ISi½T ½1	>	 ¼ PI Þ then
%P :¼ concatðPI ; %PÞ

Fig. 23. Trace intersections are not sufficient.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211 207

else
%P :¼ concatðpI ; %PÞ

if ðperiodðpF Þ3(i : ISi½T ½jT j
 1	>	 ¼ PF Þ then
%P :¼ concatð %P; PF)

else
%P :¼ concatð %P; pF Þ

Simplify %P again
end

We demonstrate the application of the algorithm with the Cross example. We have
already determined T and the values of g at the different times. Thus, just before the
first simplification we have:

Simplification then yields:

%P ¼ ½Disjoint; meet; Overlap; coveredBy; Inside; coveredBy; Overlap; meet; Disjoint	

Next we obtain disjoint for both pI and pF : The next two if-statements try to fuse

these predicates with %P: The first element of T is ta; and since IS1½t>a 	 ¼ Disjoint we

add Disjoint to the front of %P: Similarly, the second-last element of Tð¼ T ½jT j
 1	Þ is

ty; and since IS1½t>y 	 ¼ Disjoint; we add Disjoint to the rear of %P: Actually, this does

not have any effect since the following simplification eliminates [here: Lemma 1 (d)]
both predicates. Thus, the development computed for the Cross picture is finally as
expected:

Disjoint meet Overlap coveredBy Inside coveredBy Overlap meet Disjoint

So far, we have described the inference of predicates only for continuous movements.
Fortunately, the method can be also applied to non-continuous movements and also
to objects with disconnected domains: first, determine with the above algorithm the
predicate sequence for each continuous part of the movement. Then concatenate the
predicate sequences, and if the time-value of the start circle/point of the n þ 1st
movement is not equal to the time-value of the end circle/point of the nth movement
(then a gap in the domain of the moving object is specified), insert a True predicate.
Otherwise, that is, when the time-values agree (then just a non-continuous movement
is specified), drop a possible final spatial predicate in the sequence for the nth
movement because the object semantics defines that the object’s value is given by the
initial value of the n þ 1st movement, and therefore also the corresponding predicate
holds.

We illustrate this by a further example. Consider the specification in Fig. 24.
For the lower part we obtain the following predicates of the trace lines:

t ta t>a tb t>b t1 t>1 t2 t>2 ty t>y tz

IS1½t	 disjoint disjointL disjointL disjointL meet insideL insideL insideL inside True True

IS2½t	 True True disjoint disjointL disjointL disjointL meet insideL insideL insideL inside

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211208

Using the g-matrix we obtain the following sequence of predicates:

ta t>a tb t>b t1 t>1 t2 t>2 ty t>y tz

g True True disjoint Disjoint meet Overlap coveredBy Inside Inside True True

Simplification then yields the development:

%Pl ¼ ½Disjoint; meet; Overlap; coveredBy; Inside	

For the upper part we obtain the following predicates of the trace lines. Note that
irrespective of the spatial ordering in the picture ta and tb give always the minimum
time-values, which means that, despite actual spatial positions shown in the upper
part of Fig. 24, we have tbot1:

t ta t>a tb t>b t1 t>1 t2 t>2 ty t>y tz

IS1½t	 disjoint disjointL disjointL disjointL meet insideL meet disjointL disjoint True True

IS2½t	 True True disjoint disjointL disjointL disjointL disjointL disjointL disjointL DisjointL disjoint

Using the g-matrix we obtain the following sequence of predicates:

t ta t>a tb t>b t1 t>1 t2 t>2 ty t>y tz

g True True disjoint Disjoint meet Overlap meet Disjoint disjoint True True

Simplification then yields the development:

%Pu ¼ ½Disjoint; meet; Overlap; meet; Disjoint	

time

ty

ta

tb

t1
t2

tz

tz
ty

t1

t2

ta

tb

Fig. 24. Specification of a gap.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211 209

Joining %Pl and %Pu requires the insertion of a True predicate and finally yields the
development specification:

%P ¼ ½Disjoint; meet; Overlap; coveredBy; Inside; True; Disjoint; meet; Overlap; meet; Disjoint	

which is the same as Enter True Graze.
Note that the described technique can be used in a syntax directed editor as well as

in an off-line environment.

7. Conclusions

We have demonstrated how a simple two-dimensional visual language can be used
to express topological predicates on spatio-temporal objects. This language can be
well used as a query interface to spatio-temporal databases. Having a precise
semantics, the visual notation can also serve as a formal language to communicate
and reason about spatio-temporal situations in general.

References

[1] M. Erwig, M. Schneider, Spatio-temporal predicates, IEEE Transaction on Knowledge and Data

Engineering 14 (2002) 881–901.

[2] M.J. Egenhofer, R.D. Franzosa, Point-set topological spatial relations. International Journal of

Geographical Information Systems, (1991) 161–174.

[3] M. Erwig, M. Schneider, Visual specification of spatio-temporal developments. 15th IEEE

Symposium on Visual Languages, Tokyo, Japan, 1999, pp. 187–188.

[4] M. Erwig, M. Schneider, Query-by-trace: visual predicate specification in spatio-temporal databases,

in: H. Arisawa, T. Catarci (Eds.), Advances in Visual Information Management—Visual Database

Systems, Kluwer Academic Publishers, 2002, pp. 199–218.

[5] M. Erwig, M. Schneider, Developments in spatio-temporal query languages. IEEE International

Workshop on Spatio-Temporal Data Models and Languages, Florence, Italy, 1999, pp. 441–449.

[6] M. Erwig, B. Meyer, Heterogeneous visual languages — integrating visual and textual programming.

IEEE Symposium on Visual Languages, Darmstadt, Germany, 1995, pp. 318–325.

[7] M.F. Worboys, A unified model for spatial and temporal information, The Computer Journal 37

(1994) 25–34.

[8] S.K. Gadia, S.S. Nair, Temporal databases: a prelude to parametric data. In: A.U. Tansel et al. (eds.),

Temporal Databases: Theory, Design, and Implementation, 1999, pp. 28–66.

[9] T.S. Cheng, S.K. Gadia, A pattern matching language for spatio-temporal databases. ACM

Conference on Information and Knowledge Management, 1994, pp. 288–295.

[10] M.H. B .ohlen, C.S. Jensen, B. Skjellaug, Spatio-temporal database support for legacy applications,

ACM Symposium on Applied Computing, 1998, pp. 226–234.

[11] M. Erwig, R.H. G .uting, M. Schneider, M. Vazirgiannis, Abstract and discrete modeling of spatio-

temporal data types, 6th ACM Symposium on Geographic Information Systems, Washington, DC,

USA, 1998, pp. 131–136.

[12] M. Erwig, R.H. G .uting, M. Schneider, M. Vazirgiannis, Spatio-temporal data types: an approach to

modeling and querying moving objects in databases, GeoInformatica 3 (1999) 269–296.

[13] M. Stonebraker, B. Rubenstein, A. Guttman, Application of abstract data types and abstract indices

to CAD data bases, ACM/IEEE Conference on Engineering Design Applications, 1983, pp. 107–113.

[14] M. Stonebraker, Inclusion of new types in relational database systems, International Conference on

Data Engineering, 1986, pp. 262–269.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211210

[15] M. Erwig, M. Schneider, R.H. G .uting, Temporal objects for spatio-temporal data models and a

comparison of their representations, International Workshop on Advances in Database Technologies,

Lecture Notes in Computer Science, 1552, 1998, pp. 454–465.

[16] T.S. Yeh, B. de Cambray, Time as a geometric dimension for modeling the evolution of entities: a 3D

approach, International Conference on Integrating GIS and Environmental Modeling, 1993.

[17] T.S. Yeh, B. de Cambray, Modeling highly variable spatio-temporal data, Sixth AustraliAsian

Database Conference, 1995, pp. 221–230.

[18] A. Segev, A. Shoshani, A temporal data model based on time sequences, in: A. U. Tansel et al. (Eds.),

Temporal Databases: Theory, Design, and Implementation, 1993, pp. 248–270.

[19] R.H. G .uting, M.H. B .ohlen, M. Erwig, C.S. Jenssen, N.A. Lorentzos, M. Schneider, M. Vazirgiannis,

A foundation for representing and querying moving objects, ACM Transactions on Database

Systems 25 (2000) 1–42.

[20] J.F. Allen, Towards a general theory of action and time, Artificial Intelligence 23 (1984) 123–154.

[21] A. Galton, Towards a qualitative theory of movement. International Conference on Spatial

Information Theory, Lecture Notes on Computer Science, Vol. 988, 1995, pp. 377–396.

[22] Z. Cui, A.G. Cohn, D.A. Randell, Qualitative and topological relationships in spatial databases,

International Symposium on Advances in Spatial Databases, Lecture Notes in Computer Science,

Vol. 692, 1993, pp. 296–315.

[23] M.A. Aufaure-Portier, Ahigh level interface language for GIS, Journal of Visual Languages and

Computing 6 (1995) 167–182.

[24] D. Calcinelli, M. Mainguenaud, Cigales, a visual query language for a geographical information

system: the user interface, Journal of Visual Languages and Computing 5 (1994) 113–132.

[25] M.J. Egenhofer, Spatial-query-by-sketch. IEEE Symposium on Visual Languages, Boulder, CO, USA,

1996, pp. 60–67.

[26] M. Hirakawa, E. Jungert, An image database system facilitating icon-driven spatial information

definition and retrieval. IEEE Symposium on Visual Languages, 1991, pp. 192–198.

[27] Y.C. Lee, F.L. Chin, An iconic query language for topological relationships in GIS, Journal of Visual

Languages and Computing 9 (1995) 25–46.

[28] B. Meyer, Pictorial deduction in spatial information systems. IEEE Symposium on Visual Languages,

Seattle, WA, USA, 1994, pp. 23–30.

[29] M. Wessel, V. Haarslev, VISCO: bringing visual spatial querying to reality. IEEE Symposium on

Visual Languages, Halifax, Nova Scotia, Canada, 1998, pp. 170–177.

[30] T. Arndt, S.K. Chang, Image sequence compression by iconic indexing. IEEE Workshop on Visual

Languages, 1989, pp. 177–182.

[31] A. Del Bimbo, E. Vicario, D. Zingoni, Symbolic description and visual querying of image sequences

using spatio-temporal logic, IEEE Transactions on Knowledge and Data Engineering 7 (1995)

609–621.

[32] I.M. Walter, R. Sturm, P.C. Lockemann, A semantic network based deductive database system

for image sequence evaluation. Second IFIP Working Conference on Visual Database Systems, 1992,

pp. 251–276.

M. Erwig, M. Schneider / Journal of Visual Languages and Computing 14 (2003) 181–211 211

	A visual language for the evolution of spatial relationships and its translation into a spatio-temporal calculus
	Introduction
	Related work
	Query-by-trace: a GUI for specifying spatio-temporal developments
	Spatio-temporal objects, predicates and developments
	Spatio-temporal objects
	Spatio-temporal predicates
	Developments

	Visual specifications of developments
	Interpretation of development specifications
	Conclusions
	References

