COP-5555 PROGRAMMING LANGUAGE PRINCIPLES
NOTES ON RECURSION AND FIXED-POINT THEORY.

Our purpose is to describe the meaning, or the semantics, of the keyword "rec" in RPAL. As is often
the case, an analogy is useful. The meaning of an RPAL program of the form "let x=P in Q", as we now
know, is the value of applicative expression "(Ax.Q)P". In fact, "let x=P in Q" is not the only program with
that meaning (for example consider "Q where x=P"). Since all RPAL programs (except those containing
"rec") can be similarly transformed to A-expressions whose evaluation will yield the value of the program,
we can say that RPAL programs are "syntactically sugared" 1-expressions, i.e. RPAL programs are simply
A-expressions, presented in another form. Thus the question:

What is the meaning of an RPAL program of the form "letrecfn=Pin Q" ?
can be re-phrased as:
What A-expression, if any, is the "de-sugarized" version of "letrecfn=P in Q" ?

To answer that question, we must first develop some intuition. Consider the most popular example of
recursive computation: the factorial function:

letrecfn=neq0 - 1|n*f(n-1) inf3
If we assume the "rec" keyword were not present, then the corresponding applicative expression would be
(Aff3)[An.neq0 - 1| n*f(n-1)]

It is easy to see that the last occurrence of "f" in this expression is free, and that the evaluation of the
expression would not succeed because of that "f" being undefined. Thus the purpose of the "rec” keyword
is to "magically" make that occurrence of "f" bound to the bracketed expression. With the "rec”, somehow,

(Aff3)[An.neq0 - 1| n*f(n-1)]
=>4 (An.neq 0 - 1|n*f(n-1)) 3
=>; 3eq0 - 1|3*f(3-1)
=>; 3Q)
magic 37(An.neq0 - 1|n*f(n-1))2
=>; 3*(2eq0 - 1]2*f(2-1)
=>5 3*2*f(1)
= >pagic 3¥2*(An.neq0 - 1[n*f(n-1)) 1
=>; 3*2*(leq0 - 1]1*f(1-1))
=>5 3*2*1*(0)
= >pagic 3¥2*1*(Anneq 0 - 1|n*f(n-1)) 0
=>; 3*2*1%(0eq0 - 1|0*f(0-1))
=>5 3*2*1*1

To dispel the magic, we need some mathematics.

PLP Notes Recursion

Definition:
Let F be a function and w a value. w is called a fixed-point of F iff F w = w.

Example 1:

S=ax.x? - 6 has two fixed points, 3 and -2, because

(AxX?-6)3 =>;3°-6 =>,3
(AXX%-8) -2 =>4 (-2)*-6 =>; -2

There are no more fixed-points, because -2 and 3 are the only solutions to x? - x - 6 = 0.
Example 2:

T = 2£.2().(F nil)? - 6 has two fixed points, A().3 and A().-2, because

(AF.AQ.(Fnil? - 6) 20.3 =>4 20.((20.3) nil)2-6 =>;20.3°-6 =>52(.3
(AF.AQ).(Fnil)? - 6) 10.-2 =>4 20.((20.-2) nil)* - 6 =>4 1().=22-6 =>5 2().-2

Note that fixed points can be functions. In fact, the fixed points we are interested in can only be functions.
Example 3:

Consider U = Af.An.neq 0 — 1| n*f(n-1). The function Ax.x? is not a fixed point of U, but the Factorial
function is. Proof of this is left to the reader.

Back to magic dispelling:

letrecfn=PinQ
=> letrecf=AnPinQ (fcn_form)
=> letrec f=(Af.An.P)finQ (abstraction)
=> letrecf=FfinQ

where F = Af.An.P . Note that now there are no free occurrences of f in F, and there is only one free occur-
rence of f in the entire expression. Further, in this last expression (i.e. let rec f = F fin Q) the presence of
the "rec™ means that both f’s should be the same; without the "rec” they would be different. With "rec", we
want f to be a fixed point of F ! Let us then re-phrase the expression as

let f = A_fixed_point_of F in Q.
This operator, "A-fixed_point_of" is called a fixed point finder, and we will identify it from now on as
"Y". Hence our expression becomes

letf=YFinQ
=> (Af.Q) (Y F)
= (Af.Q) (Y (Af.An.P))

Now there are no free occurrences of f I In summary, the problem of explaining the purpose of "rec" is
equivalent to finding a fixed point of F. Such a fixed point finder is called Y; we must now find a suitable .

How do we find a suitable Y ?

WE DON’T NEED TO !!' We only need to use some of its characteristics:

PLP Notes Recursion

1) f=YF
2) Ff=f
Substituting 1) in 2), we obtain

This is called the fixed point identity, and it is all that is required to evaluate 1 expressions that contain
Y’s, which are "de-sugared" RPAL programs that contain rec’s. Let’s extend some earlier definitions:

Definition. Axiom p (rho): Y F=>,F (Y F).
Definition. (Extension): An applicative expression M is not in normal form if it is of the form Y N.

Definition. (Extension): A reduction sequence is in normal order iff at every step we reduce the left-most
YorA.

We can now return to the factorial function, and evaluate the applicative expression (again). This time,
there is no magic.

(A£.£3) (Y F), where F = Af.An.neq 0 - 1| n*f(n-1)
=>; YF3
=> F((YF)3
= (Af.anneq0 - 1| n*f(n-1)) (Y F) 3
=>; (inneq0 - 1[n*Y F(n-1))3
=>55 3*YF(2)
=> 3*F(YF)2
= 3* (Af.Anneq0 - 1| n*f(n-1)) (Y F) 2
=>; 3*(inneq0 - 1[n*Y F(n-1)) 2
=>55 32*YF(1)
=> 3*2*F(YF)1
= 3*2* (Af.An.neq0 - 1| n*f(n-1)) (Y F) 1
=>5 3*2*(Anneq0 - 1|n*Y F(n-1)1
=>55 3*2*1* Y F (0)
=> 3*2*1*F(YF)0
= 3*2*1* (Af.Anneq0 - 1| n*f(n-1)) (YF) O
>z 3¥2*1* (Anneq0 - 1|n*Y F(n-1))0
=>,5 3%2%1*1
=>; 6

Notice that normal order is required to evaluate the expression; in programming language order the evalua-
tion would not terminate.

We have now seen Y at work, but the question is, "Is YF really the factorial function ?" In other words, we
have seen that YF (for this particular F) can be used to compute factorial of three, but can it be used to com-
pute factorial of k, for any k? Let’s try it by induction.

Base Case:

YFO=>, F(YF)O
= (Af.Anneq0 - 1| n*f(n-1)) (YF) O

PLP Notes Recursion

=>; (inneq0 - 1|n(YF)(n-1))0
:>/3v5 1

Inductive step: for k > 0,

YFk =>, F(YF)k
= (Af.An.neq0 - 1| n*f(n-1)) (Y F) k
=>; (Anneq0 - 1| n*(Y F) (n-1)) k
=>5; keq0 - 1|k*(YF) (k-1)
=>5 k*(YF) (k-1)

Recursion via lambda-calculus.

Recursion can be acheived using the fixed-point identity. The question now is whether it can also be
acheived using lambda-calculus alone, i.e. does there exist a suitable A-expression that can be used as the
value of Y? After some trials and errors, someone came up with this:

Y = AR (Aff1) (19. F (9 9)
This satisfies the fixed-point identity:

YF

(AF.(AfFf) (10. F(g 9))) F

> (ARF1) (A9.F(9 9))

=>4 (49.F(9 9)) (A9.F(9 9))

>; F((19.F(99)) (19.F(9 9)))

=4 F((41.f1) (19.F(99)))

=5 F((AR(AFF1) (A9.F(@09)) F)
F(YF)

NN 1

Notice again how normal order of evaluation is required.

Recursion in the CSE Machine

We finally come to what matters: getting recursion to work. We have several alternatives for implementing
recursion in the CSE machine:

1- UseY = AR (Aff1f) (19.F(g g)). This is pretty tedious on paper, and it won’t work on the CSE
machine because it requires normal order of evaluation, and the CSE machine uses program-
ming language order.

2.- Try delaying the evaluation of the arguments in Y above, in a fashion similar to the trick used
for modeling the conditional. We could use Z = AF.(Af.f f) (Ah.F(ix.h h X)), but it would be
EXTREMELY tedious.

3.- Try avariation of the fixed-point identity, our method of choice.
CONTROL STACK ENV

CSERule12 | ...y YA
Cp¥
Vo

PLP Notes Recursion

CSERulel13 | ...y

‘nR..
AV n' R ...

Example (the factorial function):

Standardized tree:

letrecfn=neql->1|n*f(n-1)inf3

Control Structures:

PLP Notes

So=rALrY

o,=yf3
5= Al
03=0405 fegnl
5,=1
ds=*nyf-nl
RULE CONTROL STACK ENV
2 ey AyY A & | &=PE
1 oy AyY 025 &
12 &y ALy Y %45 e
2 &y Al o) &
4 &7 021 °n &
1 e yf3 e & | e=["nb/fle
1 e yf 3e g
13 ey %ny3er e
4 €€ vy 025 °n 3 &

Recursion

PLP Notes

2 €€y € A &3e & | &=[’nhfle
5 ®eye 213636 6
4 &@ey 2/133(5'1(90
1 €€ 85,5 fegnl e | &=[3ne
1 € €1 €364 05 B EQN lese g
6 € €1 €304 J5 B €] 3lese g
8 €) €, €304 5 B fasee; e
1 e e*nyf-nl €3 €1
1 e e*nyf-n le;e g
6 egee*nyf- 3le;e g
1 e e*nyf 2e3e 6
13 @e *ny % 2e3€ &
4 &ee*nyy 025 b 26501 &
2 €€ e*Nyey iy e,2e30 6 | &=["nHfle
5 €& Nye ‘e, 2656 &
4 Qe e*ny ‘132631
1 e e *Nesdyds feqnl e e | e=[2ne
1 &€ &*Nesdyds fegn leseze
6 € €16 * Nes Iy J5 B €] 2lese36 6
8 € € €3* NEs5 Iy 05 B fdsees ;€ g
1 e e *nes*nyf-nl & €36 &
1 e e*nes*nyf-n lesese g
6 @e e nes*nyf- 2lese3e &
1 e e*nes*nyf lesese g
13 ®e g*ne*ny b leseser g
4 @e e ne*nyy 025 %n 1es ey €1 &
2 e &g Nnes*nye; A3 esleseye e | &=['nb/fle
5 Qe e nes*nyes *l3eslesez e &
4 ®e & nes*ny *AJlesese g
1 @€ e *Nes*ne; dsds feqnl €& 6636 6 | &=[lUnle
1 Qe & Nnes*ne 5, ds feqn lejesese &
6 €€ e*Nes*Nne; dyds feq lleyesese g
8 Qe &g*Nes*ne s, ds B truee; es €3 € &
1 ®e g*nes*nel & €56 6
5 ®e & nes*ne lejesese g
1 @e g ne*n leseze
6 @e grne* 2lese3e
5 e 8t nes 2es850
1 e & n 2e3e
6 e et 32e3e
5 € € €3 6e;e e
5 € e 6e g
5 & 6 e
- - 6
Recursion

