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Abstract—In very close future, human interests and 
behavior will play a central role in design of mobile networks. 
Thus, simulation of user behaviors is imperative for the design 
and evaluation of future mobile networks. However, multi-
dimensionality of human interests makes it difficult for us to 
provide realistic simulations. In this paper, we address 
challenges in this regard and propose a multivariate technique 
based on Gaussian mixture models as the first step for 
simulation of mobile users’ interests considering website 
visitations. We also introduce an evaluation technique for 
measuring the quality of high-dimensional simulation output.   
Using our collected dataset including billions of WLAN 
netflow records for 100 web domains at 79 buildings, we show 
that our technique not only keeps the characteristics of hidden 
behavioral groups, but also is flexible enough to approximate 
the real dataset with given required accuracy. 
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I. INTRODUCTION 
Mobile networking is going to play a central role in 

supporting many important human activities. The explosion 
in the availability of information through tens of thousands 
of Internet websites means, on one hand, that the amount of 
data we can collect on mobile users behavior will continue 
to increase, and on the other hand, that we need to develop 
realistic paradigms to model and simulate multi-
dimensional behaviors. Such modeling and simulation is 
imperative for design of novel behavior-aware network 
protocols (e.g., for targeted announcements/ads). However, 
for multi-dimensional behaviors and interests (e.g,  
websites visitations) classic univariate paradigms for 
network modeling and simulation are not appropriate. 
Applying these models means producing the outputs for 
different measures of interest separately. This method will 
lose significant information on potential correlations 
between different variables, e.g., web domains, and will 
lead the simulation to be far from the reality of mobile 
society. On the other hand, our study on billions of online 
activities reveals the fact that there exist different kinds of 
behavioral groups in a mobile society.   For example, there 
exist groups with narrow website access and other groups 
with wide spread access. Keeping the characteristics of the 
behavioral groups in addition to the general characteristics 
of the behavioral space is another important requirement 
for realistic simulation of mature mobile networks. 

 Moreover, human behaviors can be viewed from 
several aspects, e.g., web accesses, location visitations and 
application usage. It is not far from realistic, if we expect to 
find inter-aspect behavioral patterns in addition to the intra-

aspect ones. For example, considering web accesses and 
location visitations, we might find inter-aspect correlations 
(e.g., people who visit domain X at location A visit domain 
Y at location B too) or inter-aspect characteristics (e.g., 
locations X, Y, Z are similar on web access patterns for 
domains A, B, C, D). This possibility becomes exciting 
when sparking the idea that there might be even distinct 
multi-aspect multi-dimensional elements in human 
behavioral space, capable of explaining the whole space 
much like what chemical elements in periodic table do. 
Identifying such elements will be indeed a huge 
advancement toward the understanding of mobile societies. 
We might be able to explain very complex behavioral 
patterns using a mixture of these elements much like what 
chemists do for explaining the chemical reactions and the 
nature of substances. Maybe it is time for us to give up 
explaining the whole nature by just the (observable) 
classical elements of earth, water, air and fire. At this point, 
we are indeed in need of a significant paradigm shift from 
simple modeling techniques toward much more mature 
ones to be able to capture and simulate the spirit of 
dynamics within the mobile societies.   

In this paper, we propose our simulation paradigm 
(SPIRIT) based on Gaussian Mixture Models (GMM) [27] 
for multivariate simulation of mobile users’ behavior and 
interests. Multivariate distributions are generalization of 
one-dimensional (univariate) distributions to higher 
dimensions. The multivariate Gaussian distribution is often 
used to describe, at least approximately, any set of 
(possibly) correlated real-valued random variables. 
However, this classic model represents the whole feature 
(interest) distributions by just one position (mean vector) 
and an elliptic shape (covariance matrix). Therefore, it may 
simply ignore some underlying set of hidden behavioral 
classes and thus do not provide an accurate approximation 
of the distribution. To remedy this problem, mixture 
models comprise a set of component functions for 
modeling multiple classes of sample distributions. A GMM 
uses a discrete set of Gaussian functions as the components 
to provide not only a smooth overall distribution fit, but 
also details for multi-modal nature of the density.  

For evaluating our simulation paradigm (SPIRIT), we 
apply a dataset provided by processing of extensive 
netflow, DHCP and WLAN session logs for more than 22 
thousand mobile users in a Wireless LAN spanning over 79 
buildings (including over 700 APs), that we have collected. 
This original dataset includes billions of records, represents 
by far the largest set of traces analyzed in any study of 
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mobile networks to date. In our case study, we apply GMM 
for multivariate simulation of users interests on the top 100 
active web domains.  

Our work has the following key contributions:  
1. We propose an effective approach for multi-

dimensional modeling and simulation of mobile users 
interests extracted from one of the largest set of mobile 
network usage traces (including billions of records) and 
show how Gausain mixture models can be applied to keep 
behavioral characteristics. 

2. We suggest an evaluation technique based on 
Pearson's chi-square test for measuring the accuracy of 
multivariate simulation output and show how the involved 
complexity problem for high-dimensional datasets can be 
resolved in practice. 

3. We analyze how the choice of number of 
components affects the accuracy of simulation output and 
show how the chosen number of bins affects the evaluation 
scheme. 

The rest of the paper is organized as follows. In Section 
2, we review the related work. In Section 3, we briefly 
address challenges associated with collection and 
processing of large-scale wireless traces and then explain 
our modeling, simulation and evaluation technique in 
detail. Section 4 provides our case study using campus 
traces and the experimental results. Section 5 discusses 
applications and Section 6 concludes 

II. RELATED WORK  
The rapid adoption of wireless communication 

technologies and devices has led to a widespread interest in 
analyzing the traces to understand user behavior and to 
simulate their behaviors. The scope of analysis includes 
WLAN usage and its evolution across time [1-3], user 
mobility [4, 5], traffic flow statistics [6], and encounter 
patterns [7, 8]. Some previous works [4, 7] explore the 
space of understanding realistic user behaviors empirically 
from data traces. The two main trace libraries for the 
networking communities can be found in the archives at [9] 
and [10]. None of the available traces provides large-scale 
netflow information coupled with DHCP and WLAN 
sessions to be able to map IP addresses to MAC addresses 
to AP to location and eventually to a context (e.g., history 
department). Therefore, (to the best of our knowledge) our 
work represents the first one to address large-scale multi-
dimensional modeling and simulation of wireless and 
mobile societies while providing finer granularity, richer 
semantics and more accuracy. 

There are several prominent examples of utilizing the 
data sets for context specific study. Mobility modeling is a 
fundamentally important issue, and several works focus on 
using the observed user behavior characteristics to design 
realistic and practical mobility models [11-14]. They have 
shown that most widely used existing mobility models 
(mostly random mobility models, e.g., random walk, 
random waypoint; see [15] for a survey) fail to generate 
realistic mobility characteristics observed from the traces. 
Realistic mobility modeling and simulation is essential for 
protocol performance [16]. It has been shown that user 
mobility preference matrix representation leads to 

meaningful user clustering [17]. Several other works with 
focus on classifying users based on their mobility 
periodicity [18], time-location information [19, 20], or a 
combination of mobility statistics [21]. The work on the 
TVC model [11] provides a data-driven mobility model for 
protocol and service performance analysis. In [6] it was 
shown that the performance of resource scheduling [22] 
and TCP vary widely between trace-driven analysis and 
non-trace-driven model analysis. Using multi-dimensional 
modeling, our simulation technique can help to develop 
new mobility-aware Internet-usage models, and utilize the 
realistic profiles to enhance the performance of networking 
protocols. Our propose simulation paradigm has the 
potential to incorporates web activity, location and 
mobility, and provides user profiles that may be used in a 
myriad of networking applications. 

One network application for multi-dimensional 
simulation is profile-based services. Profile-cast [23, 24] 
provides a new one-to-many communication paradigm 
targeted at a behavioral groups. In the profile-cast 
paradigm, profile-aware messages are sent to those who 
match a behavioral profile. Behavioral profiles in [23, 24] 
use location visitation preference and are not aware of 
Internet activity. Other previous works also rely on 
movement patterns. Our multi-dimensional simulation of 
mobile users, however, provides an enriched set of user 
attributes that relate to social behavior (e.g., interest, 
community as identified by web access, application, etc.) 
that has been largely ignored before. 

III. SIMULATION APPROACH 
Developing a realistic simulation paradigm for mobile 

societies requires four main phases. In the first phase, 
extensive datasets are collected using the network 
infrastructure which may be augmented using online 
directories (e.g., buildings directory, maps) and the web 
services (e.g., whois lookup service). Data processing is the 
second phase to cross-correlate obtained information from 
different resources (e.g., IP and MAC addresses), in which 
multiple datasets are manipulated, integrated and 
aggregated. The third phase is modeling of users’ interests 
based on their web domain visitation patterns. The fourth 
phase includes generating simulated data based on the 
acquired parameters for the model and evaluating the 
quality of simulation output.    

A. Data Collection 
We collect different types of extensive traces via network 

switches (in USC campus) including netflows, DHCP and 
wireless session logs. An IP flow is defined as a 
unidirectional sequence of packets with some common 
properties (e.g., source IP address) that pass through a 
network device (e.g., router) which can be used for flow 
collection. Network flows are highly granular; flow records 
include the start and finish times (or duration), source and 
destination IP addresses, port numbers, protocol numbers, 
and flow sizes (in packets and bytes) (see Table 1). The 
source and destination IP addresses can be used to identify 
user device Mac addresses using DHCP log and the 
websites accessed respectively. The DHCP log contains the 



dynamic IP assignments to MAC addresses and includes 
date and time of each event. This information is needed to 
get a consistent mapping of dynamically assigned IP 
addresses to the device MAC addresses. The wireless 
session log collected by each wireless access point (AP) 
includes the ‘start’ and ‘end’ events for device associations 
(when they visited or left that specific AP) which can be 
used to derive the location of users at any time.    

B. Data Processing 
The variety and scale of different collected traces 

introduces one of the main challenges with respect to data 
processing. The size of the underlying data is very large 
and therefore, with a naïve approach the required time for 
this task would be in the order of months. For example, the 
netflow dataset gathered from USC campus includes 
around 2 billions of flow records for each month in 2008 
which equals to 2.5 terabytes of data per year. To 
circumvent the problem, we first compress the data via 
substituting similar patterns with binary codes and creating 
mapping headers to be used in the analysis step; then get 
the data exported into a database management system 
(MySQL) and design customized stored procedures for data 
integration (mapping source IPs to Mac addresses (user 
IDs) and destination IPs to domain names). In the last step, 
we aggregate the integrated data based on user ID, domain 
name, location and month and calculate the total online 
time for each resulting record. 

C. Data Modeling   
Gaussian Mixture Model (GMM) is a type of density 

models which comprise a number of Gaussian component 
functions. A mixture of K Gaussian is defined as follows:  

where !k is the mixing parameter satisfying "!k = 1 and 
G(x,µk,"k) is the probability density function (pdf) for the 
kth Gaussian component. The Gaussian mixture model 
contains the following adjustable parameters: !k, µk and "k. 
For estimating the parameters of the GMM which in some 
sense best matches the distribution of the training input 
patterns, we use maximum likelihood (ML) estimation 
method. The aim of ML estimation is to find the model 
parameters which maximize the likelihood of the GMM 
given the training data.  We apply Expectation 
Maximization (EM) algorithm for finding the maximum 
likelihood. EM is an iterative method  which alternates 
between performing an expectation (E) step, which 
computes the expectation of the log-likelihood evaluated 
using the current estimate for the latent variables, and a 

maximization (M) step, which computes parameters 
maximizing the expected log-likelihood found on the E 
step. These parameter-estimates are then used to determine 
the distribution of the latent variables in the next E step. 
(Latent variables are variables that are not directly observed 
but are rather inferred from other variables that are 
observed (directly measured)).     

D. Data Simulation and Evaluation 
After estimating the GMM parameter, we can simply 

produce synthetic data based on the model. A simulated 
data point can be generated by first choosing one of the 
multivariate Gaussians (with the probability of !k) and then 
sampling based on the parameters for the chosen 
distribution (µk and "k).  

For the evaluation of simulation output, we apply two 
methods. In the first method, we first cluster the real dataset 
into a number of behavioral groups and acquire the 
distribution of real samples in different groups. Then, using 
the same clusters, we partition the synthetic samples and 
obtain their distribution over different clusters. Finally, we 
compare the two acquired distribution to see if the 
simulation output keeps the behavioral groups or not.  

Although the first method provides a general insight on 
the quality of simulation output, it can be controversial in 
the sense that the quality metric depends on the clustering 
technique we use. Hence, we propose a second evaluation 
technique which is essentially based on Pearson's chi-
square test [28] with some modifications. Pearson's chi-
square is used to assess goodness of fit for a dataset. The 
test of goodness of fit establishes whether or not an 
observed frequency distribution differs from a theoretical 
distribution. In our test, we partition N observations (real 
samples) as well as N simulated samples into k sub-space 
(bins). Then we verify the hypothesis that, in the general 
population, real and synthetic samples would occur in each 
bin with equal frequency. The amount of discrepancy from 
this hypothesis is generally measured using the following 
formula:  

! 

X 2 =
(Oi " Ei)

2

Eii=1

k

#  

where X2 is the Pearson's cumulative test statistic, Oi is the 
observed frequency from the real dataset, Ei is the 
theoretical frequency from the simulation and k is the total 
number of bins.  
This metric is easy to calculate when dealing with one- 
dimensional data as we can simply partition the data space 
using a few number of bins. However, for high dimensional 
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0618.00:00:07.184 0618.00:00:07.184 128.125.253.143 53 207.151.245.121 64209 17 0 1 469 

0618.00:00:07.184 0618.00:00:07.472 207.151.241.60 52759 74.125.19.17 80 6 0 4 1789 

0618.00:00:07.188 0618.00:00:07.188 193.19.82.9 31676 207.151.238.90 43798 17 0 1 103 



data the number of required bins grows exponentially fast.  
For an n-dimensional data space we require b to the power 
n (b^n) bins to equally partition the space considering b 
sub-range along each dimension (e.g., 10^15 bins for 15 
dimensions and 10 sub-ranges). This means that the 
computational complexity of calculating this metric and the 
required memory is significantly high if we want to deal 
with huge number of bins.  To resolve this problem, we 
suggest to just keep track of non-empty bins as in practice a 
huge number of bins will remain empty. For each new 
sample, we look into the set of non-empty bins which we 
keep track of. If we do not find the corresponding bins, we 
create a new one and keep track of that bin afterward. This 
way we can simply resolve the complexity and memory 
problem.   
However, on the other hand, this metric is based on the 
assumption that sufficient samples will exist in each bin, 
which found is not always true in our case. This metric is 
essentially designed to show the fraction of samples that 
deviate from the analytical model; the smaller the value, the 
better the model. Therefore, for each bin it tries to calculate 
the fraction of deviated samples. The calculated fraction 
should not be more than the total number of samples in the 
bin, which is approximately true when having sufficient 
samples in the bin. However, when this assumption is not 
true for a bin, we will get wrong result. For example, if 
Ei=1 Oi=5, we get 16 from the formula while the result 
should not be more than 1 (the total number of verified 
samples). To resolve this problem, we modify the metric as 
follows:       

! 

X 2 = min (Oi " Ei)
2

Ei

,Ei

# 

$ 
% 

& 

' 
( 

i=1

k

)  

Using the above discrepancy measure, we define simulation 
accuracy as follows: 

! 

Accuracy =1" X
2

N
 

 
IV. CASE STUDY 

In our case study, we collected data from the University 
of Southern California (USC) in 2008 and conduct the 
simulation based on the approach and techniques explained 
in the previous section.  

A. Data Processing Details 
The netflow and DHCP traces from the USC campus 

(over 700 access points) were processed to identify mobile 
user IDs using MAC addresses, and destinations, or ‘peers’ 
(usually web servers) using IP address prefixes. Over a 
billion records (for the month of March 2008) were 
considered initially, then the February and April traces 
(over two billion records) were considered for the stability 
analysis. The IP prefixes (first 24 bits) were filtered using a 
threshold of 100,000 flows (the reason for using 24 bits 
filter is the fact that popular websites usually use an IP 
range instead of a single IP address).  For the filtered IP 
prefixes, their domains were resolved.  Among the 

resolvable domains, the top 100 active ones were identified. 
Then, a dataset was created describing the total online time 
of all users (22,816) at different web domains (per minute). 
The data is finally scaled using row-normalization of log 
the online time values. This dataset forms our real data 
samples. 
B. . Simulation Result 
     We applied our proposed method for simulating the real 
data samples. Figure 1 shows the clustering result on the 
real dataset. As can be seen, we can identify different 
behavioral groups based on users’ interests. Figure 2 shows 
the distribution of users in different groups for the real 
dataset and two simulated datasets; one based on the classic 
multivariate normal distribution and the other based on our 
proposed technique. As can be seen in the figure, our 
technique is able to generate almost the same distribution 
for the behavioral groups while the other one fails to do so. 
 

    

 
Figure 1. Behavioral clusters for the real samples. X-axis shows 

domain names and y-axis shows users and cluster IDs. 

     

 
(a) real dataset 

  
(b) simulated dataset using 

normal distributaion 
(c) simulated dataset using our 

proposed techniqe (GMM) 

Figure 2. Distribution of real and simulated samples over behavioral 
clusters (sorted by the number of users). 

  



For measuring and analyzing the simulation accuracy, we 
repeated the simulation process 225 times for different 
numbers of domains and components from 1 to 15.  For 
each case, we measured the accuracy, using different 
numbers of bin for 2 to 15 sub-ranges along each 
dimension. Figure 3, Figure 4(a) and Figure 4(b) show the 
simulation accuracy for different numbers of domains and 
components while the sub-range along each dimension is 
set to 10, 15 and 5 respectively. As can be seen in Figure 3, 
generally speaking, as the number of components increase, 
the accuracy of simulation increases too. Therefore, 
depending upon the degree of required accuracy, we can 
choose an appropriate number of components for the 
GMM. For example, for 15 domains the simulation 
accuracy varies from less than 30 percent to around 60 
percent for 1 to 15 components. However, as can be noticed 
in the figure, the level of accuracy is not always increasing 
and there exist several local maximum. For example, for 15 
domains, we get the maximum accuracy at 12 in the range 
of 1 to 15 components.  Another important point, which can 
be inferred from the figure, is the fact that as the 
dimensionality of data increases; the simulation accuracy 
decreases for the same number of components. This fact 
pretty good shows the deficiency of uni-component 
simulation techniques for very high dimensional data.  As 
can be seen in Figure 4, these findings hold true for 
different number of sub-ranges along the dimensions for 
creating the bins. However, taking more bins into 
consideration leads to a smoother and more realistic 
measurement. 
Figures 5 and 6 show how the number of bins affects the 
accuracy metric. As can be seen in Figure 5, for 10 
domains and the same number of components (which in 
fact leads to the same simulation output), higher number of 
bins lead to lower accuracy measure, but they can better 
differentiate the quality of different simulation schemes. 
For example, the left-side columns in the graph (for lower 
numbers of bins) suggest not much accuracy difference for 
different numbers of components, while the right side of 

the graph (for higher numbers of bins) reveals a significant 
difference. We can infer a similar relationship for the 
number of domains and bins from Figure 6. The noticeable 
difference in the two graphs is basically because of the fact 
that higher numbers of domains lead to lower accuracy in 
general but the higher numbers of components lead to 
higher amounts.  
    

 
(a) 15 sub-range for bins 

 

 
(b) 5 sub-range for bins 

Figure 4. Simulation accuracy for different number domains and 
components considering 15 and 5 sub-ranges along each dimension for 

creating the bins 

 
Figure 3. Simulation accuracy for different number of domains and components considering 10 sub-ranges along each dimension for 

creating the bins  



V. DISCUSSION: APPLICATIONS 
The systematic realistic simulation method proposed in this 
paper can be applied with any set of wireless data and can 
be used in several important applications in mobile 
networking research. Here, we briefly address two such 
major applications: 

1- Interest-based protocols and services: A new class of 
protocols and services center around user-interest and 
similarity, including profile-cast, participatory sensing [25], 
trust establishment [26], location-based services, crowd 
sourcing, alert notification and targeted announcements and 
ads. So far, mobility patterns (e.g., in profile-cast) have 
been used to infer interest. Website access patterns can 
remarkably enhance the accuracy of interest inference and 
provide much needed granularity for these protocols and 
services. The developed simulation method can help both 
the informed design of such efficient protocols and the 
realistic evaluation thereof.  

2- Network planning and web caching: Load distribution 
on the network is imperative for network capacity planning 
and on-going configuration and management issues, and is 
definitely related to web access patterns and its 
characteristics. Also, the caching of web objects for mobile 
users can only be efficient if informed by the users web 
access patterns which can be provide through our 
simulation technique. These applications for mobile 
networks are becoming more compelling with the 
significant growth of usage of smart phones, iphones, 
ipads, and the like. 

 

 
Figure 5. Simulation accuracy for different number of components and 

bins considering 10 domains 

 
Figure 6. Simulation accuracy for different number of domains and bins 

considering 10 components 

 

VI. CONCLUSION 
This study is motivated by the need for developing 

realistic simulation paradigms required for design of 
efficient protocols and services for the future mobile 
Internet. We provided a systematic method to process the 
largest wireless trace to date, with billions of records of 
Internet usage from a campus network, and simulate web 
interests for thousands of users. We have shown that 
mobile Internet usage can be simulated using Gaussian 
mixture models with enough flexibility to acquire the 
required accuracy. Our study is the first step toward 
realistic simulation of multi-dimensional users behaviors 
and interest with many applications in several areas of 
networking, including mobile web caching, evaluation of 
protocols, interest-aware services and network planning, to 
name a few. We hope for our method to provide an 
example for realistic simulation of mobile societies and 
lead to a paradigm shift in simulation techniques in the 
future. With more measurements from mobile and sensor 
networks becoming available, we expect our method to get 
extended and matured in order to facilitate simulation of 
many other large datasets in future studies. 
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