Systematic Testing of Multicast Routing Protocols: Analysis of Forward and Backward Search
Techniques

Ahmed Helmy, Deborah Estrin, Sandeep Gupta
University of Southern California, Los Angeles, CA 90089
email: helmy @ceng.usc.edu, estrin@usc.edu, sandeep@boole.usc.edu

Abstract—

In this paper, we present a new gy for di ping sy ic and
automatic test generation algorithms for multipoint protocols. These algorithms
attempt to synthesize network topologies and sequences of events that stress the
protocol’s correctness or performance. This problem can be viewed as a domain-
specific search problem that suffers from the state space explosion problem. One
goal of this work is to circumvent the state space explosion problem utilizing
knowledge of network and fault modeling, and multipoint protocols. The two ap-
proaches investigated in this study are based on forward and backward search
techniques. We use an extended finite state machine (FSM) model of the protocol.

thodol

The first algorithm uses forward search to perform reduced hability ly

Using d in-specific information for multicast routing over LANs, the algorithm
plexity is reduced from exp tial to poly ial in the ber of routers.

This approach, however, does not fully topology sy is. The d

algorithm, the fault-oriented test generation, uses backward search for topology

synthesis and uses backtracking to generate event sequences instead of searching

forward from initial states. Using these algorithms, we have conducted studies for
. correctness of the multicast routing protocol PIM.

I. INTRODUCTION

Network protocols are becoming more complex with the expo-
nential growth of the Internet, and the introduction of new network
services. In particular, the advent of IP multicast and the MBone en-
abled multipoint applications. To date, little effort has been exerted
to formulate systematic methods and tools that aid in the design and
characterization of these protocols.

In addition, researchers are observing new and obscure, yet all
too frequent, failure modes over the internets {1]. Such failures are
becoming more frequent, mainly due to increased heterogeneity, and
may affect the proper operation of network protocols.

Network protocol errors are often detected by application failure.
Such errors are hardest to diagnose when the behavior is unexpected.
Even if a protocol is proven to be correct in isolation, its behavior
may be unpredictable in an operational network, with interaction
with other protocols and the presence of network failures. To pro-
vide a systematic methodology for testing of multipoint protocols,
we present the STRESS framework that integrates test generation al-
gorithms with simulation and implementation. We target robustness
testing in the presence of network failures.

We investigate two approaches for test generation. The first ap-
proach, called the fault-independent test generation (FITG), uses a
forward search algorithm to explore a subset of the protocol state
space to generate the test events automatically. State and fault equiv-
alence relations are used in this approach to reduce the search com-
plexity. The second approach is called the fault-oriented test gener-
ation (FOTG), and uses a mix of forward and backward search tech-
niques to synthesize test events and topologies automatically. We
have applied these methods to multicast routing. Our case studies
revealed several design errors, for which we have formulated solu-
tions with the aid of our systematic method.

The rest of this document is organized as follows. Section II intro-
duces the STRESS framework. Sections III, IV, V present the search
techniques, FITG and FOTG, respectively. Section VI presents re-
lated work and Section VII concludes.

0-7803-6494-5/00/$10.00 © 2000 IEEE

II. FRAMEWORK OVERVIEW

Robustness of a protocol is its ability to respond correctly in the
face of network component failures and packet loss. This work
presents a methodology for studying and evaluating multicast proto-
cols, specifically addressing robustness and performance issues. We
propose a framework that integrates automatic test generation as a
basic component for protocol design, along with protocol modeling,
simulation and implementation testing. The major contribution of
this work lies in developing new methods for generating stress test
scenarios that target robustness and correctness violation.

Our framework integrates test generation with simulation and im-
plementation code. We call our proposal Systematic Testing of
Robustness by Evaluation of Synthesized Scenarios (STRESS). As
the name implies, systematic methods for scenario synthesis are a
core part of the framework. We use the term scenarios to denote the
test-suite consisting of the topology and events.

The input to this framework is the specification of a protocol, and
a definition of its correctness requirements. Usually robustness is
defined in terms of network dynamics or fault models. A fault model
represents various component faults; such as packet loss, or machine
crashes. The desired output is a set of test-suites that stress the pro-
tocol mechanisms according to the robustness criteria.

As shown in Figure 1, the STRESS framework includes test gen-
eration, detailed simulation driven by the synthesized tests, and pro-
tocol implementation driven through an emulation interface to the
simulator. Here, we focus on the test generation component.

A. Test Generation

The core contribution of our work lies in the development of sys-
tematic test generation algorithms for protocol robustness. Auto-
matic test generation (TG) produces tests based on a model of the
protocol. TG can be: a) fault-independent, or b) fault-oriented.
Fault-independent TG works without targeting individual faults as
defined by the fault model. Such an approach may employ a forward
search technique to inspect the protocol state space (or an equivalent
subset thereof), after integrating the fault into the protocol model.
‘We use the notion of equivalence to reduce the search complexity.

In contrast, fault-oriented tests are generated for specified faults.
Fault-oriented test generation starts from the fault (e.g. a lost mes-
sage) and synthesizes the necessary topology and sequence of events
that trigger the error. This algorithm uses a mix of forward and back-
ward searches. We conduct case studies for the multicast routing
protocol PIM-DM to illustrate differences between the approaches,
and provide a basis for their comparison.

B. The system model

We define our target system in terms of network and topology el-
ements and a fault model. Elements of the network consist of mul-
ticast capable nodes and symmetric links. The topology is an N-
router LAN. A fault is a low level (e.g., physical layer) anomalous

590

" Establish a protocol model (e.g. FSM)
Obtain test -qm 0 stress certain

,, D..ebp detailed protocol simulation .
- Study the behavior under the atress
\ test-suites '

Analysis
«nd

i and study behavior using
H simulator eutput test signais
N Enlnu !he lal quality (e.g. wsing

Fig. 1. The STRESS framework

behavior, that may affect the behavior of the protocol under test '
The fault model may include: (a) Packet loss due to congestion or
failures. We consider selective packet loss, where a multicast packet
is received by some group members but not others, (b) Loss of state,
e.g., multicast and/or unicast routing tables, due to crashes, and (c)
Network delays.

Usually, a fault model is defined in conjunction with the robust-
ness criteria for the protocol. For our robustness studies we study
PIM. One design goal for PIM is to be able to recover gracefully
from single protocol message loss 2. In addition, we study PIM pro-
tocol behavior in presence of crashes.

C. Test Sequence Definition

For our robustness studies we adopt a single-fault model,
where a single fault occurs during a test sequence. We de-
fine two sequences, T =< ej,ez,...,e, > and TV =<
€1,e2,...,€;, f,ek,...,en >, where e; is an event and f is a fault.
Let P(q, T') be the sequence of states and stimuli of protocol P un-
der test T starting from the initial state g. T" is a test sequence if
the stable state P(q,T') reached after the occurrence of the fault is
incorrect

D. Test Scenario

A test scenario is defined by a sequence of (host) events, a topol-
ogy, and a fault model. The events are actions performed by the host
and act as input to the system; e.g., join, leave, or send packet. The
topology is the routed topology of set of nodes and links. The nodes
run the set of protocols under test or other supporting protocols. The

lwe dmlngulsh helween the terms error and fault. An error is a failure of the protocol as defined in
thep For le, duplication in packet delivery is an error for multicast routing.

Note that a fault may not necewmly be an error for the low level protocol.

2 That is, being robust to a single message loss implies that transitions cause the protocol to move
from one correct stable state to another, even in the presence of selective message loss.

31n case of a fault-free sequence, where ' = T, the emor is attributed to o protocol design
emor. Whereas when T # 7", and final P(q, T) is correct, the ervor is manifested by the fault.
This definition ignores d with the stable (i.e. non-

) behavior of a p

beh

p col ior. We are only

links can be either point-to-point links or LANs. The fault model is
used to inject the fault into the test .

E. Brief description of PIM-DM

We apply our automatic test generation algorithms to a version of
the Protocol Independent Multicast-Dense Mode, or PIM-DM [2] °.
PIM-DM uses broadcast-and-prune to establish the multicast dis-
tribution trees. In this mode of operation, a multicast packet is
broadcast to all ieaf subnetworks. Subnetworks with no local mem-
bers send prune messages towards the source(s) of the packets to
stop further broadcasts. Routers with new members joining the
group trigger Graft messages towards previously pruned sources
to re-establish the branches of the delivery tree. Graft messages
are acknowledged explicitly at each hop using the Graft-Ack mes-
sage. PIM-DM uses the underlying unicast routing tables to get the
next-hop information needed for the RPF (reverse-path-forwarding)
checks. This may lead to situations where there are multiple for-
warders for a LAN. The Assert mechanism prevents these situations
and ensures there is at most one forwarder for a LAN.

The correct function of a multicast routing protocol is to deliver
data from senders to group members without data loss. For our
methods, we assume that a correctness definition is given by the
protocol specification. For illustration, we discuss the protocol er-
rors and the correctness conditions.

PIM Protocol Errors and Correctness Conditions. In this
study we target protocol design and specification errors. We are
interested mainly in erroneous stable (i.e. non-transient) states. In
general, the protocol errors may be defined in terms of the end-to-
end behavior as functional correctness requirements. In our case, for
PIM-DM, an error may manifest itself in one of the following ways:

1) black holes: consecutive packet loss between periods of packet
delivery, 2) packet looping: the same packet traverses the same set
of links multiple times, 3) packet duplication: multiple copies of
the same packet are received by the same receiver(s), 4) join la-
tency: lack of packet delivery after a receiver joins the group, 5)
leave latency: unnecessary packet delivery after a receiver leaves
the group ®, and 6) wasted bandwidth: unnecessary packet delivery
to network links that do not lead to group members.

We assume that correctness conditions are provided by the pro-
tocol designer or the protocol specification. These conditions are
necessary to avoid the above protocol errors in a LAN environment,
and include: 1) If one (or more) of the routers is expecting to receive
packets from the LAN, then one other router must be a forwarder for
the LAN. Violation of this condition may lead to data loss (e.g. join
latency or black holes). 2) The LAN must have at most one for-
warder at a time. Violation of this condition may lead to data packet
duplication. 3) If one of the routers is a forwarder for the LAN, then
there must be at least one router expecting packets from the LANS.
Violation of this condition may lead to leave latency.

‘A 2 to our singl age loss model, for example, a fault may denote the ‘loss of the
second messagc of lype prune lravcrsmg a certain link”. Knowing the location and the triggering
action of the fault is imy in analyzing the g | behavior.

Swe are particularly i din routing [Is, because they are vuinerable to failure

modes, such as selective loss, that have not been traditionally studied in the area of protocol design.
When routers are connected via a LAN, hop-by-hop messages are multicast on the LAN, and may
experience selective loss; i.e. may be received by some nodes but not others.

6 Join and leave I may be J in other
our study we treat them as errors.

as performance issues. However, in

591

III. SEARCH TECHNIQUES

The problem of test synthesis can be viewed as a search prob-
lem. By searching the possible sequences of events and faults over
network topologies and checking for design requirements, we can
construct the test scenarios that stress the protocol. However, due
to the state space explosion, techniques must be used to reduce the
complexity of the space to be searched. We attempt to use these
techniques to achieve high test quality and protocol coverage.

Following we present the GFSM model for the case study proto-
col (PIM-DM) to use it to analyze the complexity of the search and
illustrate the algorithmic principles for FITG and FOTG.

A. The Protocol Model

We represent the protocol as a finite state machine (FSM) and the
overall LAN system by a global FSM (GFSM).

I. FSM model: Every instance of the protocol is modeled by a de-
terministic FSM consisting of: (i) a set of states, (ii) a set of stimuli
causing state transitions, and (iii) state transition rules. For a system
1, this is represented by the machine M; = (8, 74, 4;), where Sis a
finite set of state symbols, 7; is the set of stimuli, and §; is the state
transition function S x 7; = §S.

I1. Global FSM model: The global state is defined as the compo-
sition of individual router states. The output messages from one
router may become input messages to other routers. Such inter-
action is captured by the GFSM model in the global transition ta-
ble. The behavior of a system with n routers may be described by
Mg = (Sg,7g,d¢g), where Sg: S§1 x 82 x +++ x S, is the global

n

state space, 7¢: |J 7; is the set of stimuli, and dg is the global state

=1
transition function Sg x 7¢ = Sg.

The fault model is integrated into the GFSM model. For mes-
sage loss, the transition caused by the message is nullified. Crashes
may be treated as stimuli causing the routers affected by the crash to
transit into a crashed state.

B. PIM-DM Model

FSM model M; = (S;, 7:,6;). For a given group and a given
source (i.e., for a specific source-group pair), we define the states
w.r.t. a specific LAN to which the router R; is attached. For exam-
ple, a state may indicate that a router is a forwarder for (or a receiver
expecting packets from) the LAN.

System States (S).
State Symbol Meaning
F; Router-% is a forwarder for the LAN
Fi Timer 1 forwarder with Timer 7 ;,, ¢~ running

NF; Upstream router z a non-forwarder

NH; Router 7 has the LAN as its next-hop

NH; Timer same as N H; with Timer 7.y, . running
NC; Router ¢ has a negative-cache entry

EU; Upstream router 7 is empty

ED; Downstream router 1 is empty

M; Downstream router with attached member
NM; Downstream router with no members

Possible states for upstream and downstream routers are:

S = {F:, Fi_Timer, NF;, EU;}, upstream;
: {NH;, NH;_Timer, NCi, Mi, NM;, ED;}, o.w..

Stimuli (7). The stimuli considered here include transmitting and
receiving protocol messages, timer events, and external host events.
Only stimuli leading to change of state are considered. For exam-
ple, transmitting messages per se (vs. receiving messages) does not

cause any change of state, except for the Gra ft, in which case the
Rtz timer is set. Following are the stimuli considered in our study:

1. Transmitting messages: Graft transmission Gra ftr,.

2. Receiving messages: Graft reception Gra ftrey, Join recep-
tion Join, Prune reception Prune, Graft Ack reception G Ack, As-
sert reception Assert, forwarded packets reception F Pkt.

3. Timer events: these events occur due to timer expiration Exp
and include the Graft re-transmission timer Ritz, the event of its
expiration Rtz Exp, the forwarder-deletion timer Del, and the event
of its expiration Del Exp. We refer to the event of timer expiration
as (T'imerImplication).

4. External host events Ext: include host sending packets S Pkt,
host joining a group H Join or HJ, and host leaving a group Leave
or L.

7 = {Join, Prune, Gra ftrs, Gra ftrey, GAck, Assert,
FPkt, Rtz, Del, SPkt, HJ,L}.

Global FSM (GFSM) model. Subscripts are added to distin-
guish different routers. These subscripts are used to describe router
semantics and how routers interact on a LAN. An example global
state for a topology of 4 routers connected to a LAN, with router
1 as a forwarder, 2 expecting packets, and 3 and 4 have negative
caches, is given by {F1, NHz, NC3, NC4} .

C. Defining stable states

We are concerned with stable state (i.e. non-transient) behavior,
defined in this section. To obtain erroneous stable states, we need to
define the transition mechanisms between such states. We introduce
the concept of transition classification and completion to distinguish
between transient and stable states. We identify two types of tran-
sitions; externally triggered (ET) and internally triggered (IT) tran-
sitions. The former is stimulated by events external to the system
(e.g., HJoin or Leave), whereas the latter is stimulated by events
internal to the system (e.g., F Pkt or Graft)®.

A global state is checked for correctness at the end of an ET
transition after completing its dependent IT transitions. Following
is the table of events used.

Host Events SPkt HJoin Leave

ET events FPkt Graft Prune

IT events Assert, Prune, GAck Join
Join

To check for the global system correctness, all stimulated internal
transitions should be completed, to bring the system into a stable
state. Intermediate (transient) states should not be checked for cor-
rectness (since they may tefnporarily seem to violate the correctness
conditions set forth for stable states, and hence may give false er-
ror indication). The process of identifying complete transitions de-
pends on the nature of the protocol. But, in general, we may identify
a complete transition sequence, as the sequence of (all) transitions
triggered due to a single external stimulus (e.g., H Join or Leave).
Therefore, we should be able to identify a transition based upon its
stimuli (either external or internal). At the end of each complete
transition sequence the system exists in either a correct or erroneous

7See Section V for more detailed semantics of GFSM.

8We note that some transitions may be triggered due to either internal and external events, depending
on the scenario. For example, a Prune may be triggered due to forwarding packets by an upsiream
router F* Pkt (an internal event), or a Leave (an external event).

592

stable state. Event-triggered timers (e.g., Del, Rtz) fire at the end
of a complete transition.

IV. FAULT-INDEPENDENT TEST GENERATION

Fault-independent test generation (FITG) uses the forward search
technique to investigate parts of the state space. As in reachabil-
ity analysis, forward search starts from initial states and applies
the stimuli repeatedly to produce the reachable state space (or part
thereof). Conventionally, an exhaustive search is conducted to ex-

plore the state space. In the exhaustive approach all reachable states-

are expanded until the reachable state space is exhausted. We use
several manifestations of the notion of equivalence to reduce the
complexity of the exhaustive algorithm and expand only equivalent
subspaces. To examine robustness of the protocol, we incorporate
selective loss scenarios into the search.

A. Reduction Using Equivalences

The search procedure starts from the initial states * and keeps a
list of states visited to prevent looping. Each state is expanded by
applying the stimuli and advancing the state machine forward by im-
plementing the transition rules and returning a new stable state each
time. We use the equivalence notion to reduce the complexity of the
search in three stages of the search. The first reduction we use is to
investigate only the equivalent initial states. To achieve this we sim-
ply treat the set of states constituting the global state as unordered
set instead of ordered set. For example, the output of such procedure
for I.S. = {NM, EU} and the number of routers n = 2 would be:
{NM,NM},{NM, EU},{EU, EU}. The second reduction we
use is during comparison of visited states. Instead of comparing the
actual states, we compare and store equivalent states. Hence, for ex-
ample, the states {NF1, NHy} and {NH,, NF,} are equivalent.
The third reduction is made based on the observation that apply-
ing identical stimuli to different routers in identical states leads to
equivalent global states. Hence, we can eliminate some redundant
transitions. For example, for the global state {NH;, NHz, F3}
a Leave applied to R; or R would produce the equivalent state
{NH',NC*, F}. We call the algorithm after the third reduction
the reduced algorithm. In all the above algorithms, a forward step
advances the GFSM to the next stable state. This is done by apply-
ing all the internally dependent stimuli (elicited due to the applied
external stimulus) in addition to any timer implications, if any exists.
Only stable states are checked for correctness.

9 For our case study the routers start as cither a non-member (N M) or empty routers

Expanded States Forwards
Rtrs Exhaustive |Reduced
3 30| 2840 263
4 14385 503
6 271019 1430
8 80830 200 4122729 3189
10 843440 338] 55951533 6092
12 8621630 &528] 708071468 10483
14] 86885238 778] 8.546E+09 16738
Transitions Errors
Rtrs [Exhaustive |Reduced [Exhaustive |Reducsed
3 343 65 33
4 1293 119 191 13
1] 14962 307 3235 43
8 158913 633 41977 101
10 1638871 1133 491188 195
12| 16666549 1843 5441177 333
14 1677578§é 2799] 58220193 523“

Fig. 2. Simulation statistics for forward search.

B. Applying the Method

The protocol model is provided by the protocol specification, in
terms of transition rules of the GFSM, and a set of initial state sym-
bols. The design requirements for correctness are assumed to be
also given by the protocol specification. This includes definition of
correct states or erroneous states, in addition to the fault model if
studying robustness. Also, the number of routers in the topology or
topologies to be investigated (i.e., on the LAN) has to be specified.

Complexity of forward search for PIM-DM. We identified
the initial state symbols to be {NM, EU}; NM for downstream
routers and EU for upstream routers. The number of reachable
states visited, the number of transitions and the number of erroneous
states found were recorded. Summary of the results is given in Fig-
ure 2. The number of expanded states denotes the number of visited
stable states. The number of ‘forwards’ is the number of times the
state machine was advanced forward denoting the number of transi-
tions between stable states. The number of transitions is the number
of visited transient states, and the number of error states is the num-
ber of stable (or expanded) states violating the correctness condi-
tions '°. We notice significant reduction in the algorithm complexity
with the use of equivalence relations. The number of transitions is
reduced from O(4™) for the exhaustive algorithm, to O(n*) for the
reduced algorithm. Similar results were obtained for the number of
forwards, expanded states and number of error states. The reduction
gained by using the equivalence is exponential ''.

Summary of behavioral errors for PIM-DM. We used the
above algorithm to search the protocol model for PIM-DM. Cor-
rectness was checked automatically by the method by checking the
stable states. By zinalyzing the sequence of events leading to error
we were able to reason about the protocol behavior. We have studied

10Note that each of the other error states is equivalent to at least one error state detected by the
reduced algorithm. Hence, having less number of discovered error states by an algorithm in this

case does not mean losing any information or causes of error, which follows from the definition of

(EU), that is, the initial states 1.S. = { NM, EU}.

the error states means reducing the time needed to analyze the errors.

q
11 More detailed presentation of the algorithmic details and results are given in [3].

593

cases of up to 14-router LANs. More than 6 errors were discovered,
causing wasted bandwidth, and black holes due to selective loss of
Prune or Join messages.

Limitations. We should note some limitations of the current
FITG method. The topology is an input to the method in terms of
number of routers 2, Equivalence classes are currently given as in-
put to the method. In this study we have used symmetries inherent
in multicast routing on LANs. Identification of other equivalence
classes is part of future work. The topology used in this study is
limited to a single-hop LAN. Our work in [4] introduces the notion
of virtual LAN to represent the multicast distribution tree.

In sum, the fault-independent test generation may be used for pro-
tocol verification given the symmetry inherent in the system studied
(i.e., protocol and topology). For robustness studies, where the fault
model is included in the search, the complexity of the search grows.

V. FAULT-ORIENTED TEST GENERATION

In the fault-oriented test generation (FOTG) method, the tests are
generated for specific faults. The test generation algorithm starts
from the fault(s) and searches for a possible error, establishing the
necessary topology and events to produce the error. Once the error is
established, a backward search technique produces a test sequence
leading to the erroneous state, if such a state is reachable.

A. FOTG Method Overview

Fault-oriented test generation (FOTG) targets specific faults or
conditions, and so is better suited to study robustness in the presence
of faults in general. FOTG has three main stages: a) topology syn-
thesis, b) forward implication and error detection, and ¢) backward
implication. The topology synthesis establishes the necessary com-
ponents (e.g., routers and hosts) of the system to trigger the given
condition (e.g., trigger a protocol message). This leads-to the for-
mation of a global state in the middle of the state space '>. For-
ward search is then performed from that global state in its vicinity,
i.e., within a complete transition, after applying the fault. This pro-
cess is called forward implication, and uses the search techniques in
Section IV. If an error occurs, backward search is performed there-
after to establish a valid sequence leading from an initial state to the
synthesized global state. To achieve this, the transition rules are re-
versed and a search is performed until an initial state is reached, or
the synthesized state is declared unreachable. This process is called
backward implication. The algorithmic details are mainly based on
condition — ef fect reasoning of the transition rules. This rea-

soning is emphasized in the semantics of the transition table.

B. The Transition Table

The transition table describes, for each stimulus, the conditions of
its occurrence. A condition is given as stimulus and state or transi-
tion (denoted by stimulus.state/trans), where the transition is given
as startState — endState. We further extend message and router

semantics to capture multicast semantics.

« Stimuli and router semantics: Stimuli are classified based on the
routers affected by them. Stimuli types include events that affect
only the originating router and include HJ, L, SPkt, Graftr.,
Del and Rtz, unicast messages that are only processed by the des-
tination, including GAck and Graftrcv, and multicast messages
processed by all other routers in the group, including Assert, Join,
Prune and FPkt. According to these different types of stimuli
processing a router may take as subscript ‘orig’, ‘dst’, or ‘other’.
The ‘orig’ symbol designates the originating router of the stimulus
or message, whereas ‘dst’ designates the destination of the message.
‘other’ indicates routers other than the originator.

o Pre-Conditions: are of the form stimulus.state/transition,
where the transition is given as startState — endState. If there
are several pre-conditions, at least one pre-condition is necessary
to trigger the stimulus. Example of a stimulus.state condition
is the condition for Join message, namely, Pruneoiher.INHorig,
that is, a Join is triggered by the reception of a Prune from an-
other router, with the originator of the Join in N H. An example of
a stimulus.transition condition is the condition for Graft trans-
mission HJ.(NC — NH); i.e. ahost joining and the transition of
the router from the negative cache state to the next hop state.

o Post-Conditions: A post-condition is an event and/or transition
that is triggered by the stimulus. Post-conditions may be in the
form: 1. transition: has an implicit condition; ie. ‘a — b’
means ‘if a € GState then a — b, e.g. the Join post-condition
(NFgst = Fys¢). 2. Condition.stimulus: if the condition is sat-
isfied then the stimulus is triggered, e.g. Prune post-condition
means that if NHotper € GState then
Joinother. 3. Stimulus.transition: has the transition condition
implied as in (1) above. For example, Graftreo post-condition
‘GAck.(NFys: — Fys:)’, means if NFy,, € GState, then the
transition occurs and G Ack is triggered '4.

i-IVI:Iother -JOinothcr ’

141f more than one post-condition exists, then the logical relation between them is either an
‘XOR’ if the router is the same, or an ‘AND’ if the routers are different. For example, Join

121 the next section we present a new method that sy the topology as pan
of the search process.
13Tpe global state from which FOTG starts is synthesized for a given fault, such as a message to be

lost.

posi-conditions are ‘Fas¢_pet — Fyyt) NFgsr — Fa,e', which means (Fg,e_per —
Fys¢) XOR (NFg,¢ — Fg,¢). On the other hand, Prune post-conditions ar¢ ‘Fg,, —
Fyse_Detr» NHopher JOingep ey, Which implies that the transition will occur if Fg,, €
GState AND a Join will be triggered if NH € GState.

594

Following is a partial transition table used in our case study.

Stimulus Pre-conditions Post-conditions

Join Pruneother NHorig Fase.Det = Fdst ' NFazy = Fyoe

Prune L.NC,FPkt.NC Fget = Fgat.Dels

NHother-Joinother

Grafty, HJ.(NC = NH), Graftpey (NH - NH p;.)
RteEep.(NH p;. — NH)

Graftpe, | Graftp(NH -+ NH pyz) | GAck(NFg,y, — Fgyy)

CAck GraftRey, - F NHg,s Rte = NHggy

HJoin Ext NM — M,Graftpgs.(NC - NH)

C. FOTG details

Our FOTG approach consists of three phases: synthesizing the
global state, forward implication, and backward implication.

Synthesizing the Global State. Starting from a condition (e.g.,
protocol message) and using the transition table, a global state is
synthesized. We refer to this state as the global-state inspected (Gr),
and it is obtained as follows:
1. The global state is initially empty and the inspected stimulus is
initially set to the stimulus investigated.
2. For the inspected stimulus, the startState(s) of the transition
of the post-condition are obtained. If these states do not exist in
the global state G, and cannot be inferred therefrom, then they are
added to the global state.
3. For the inspected stimulus, the endState(s) of the transition of
the pre-condition are obtained. If these states do not exist in, and
cannot be inferred from G then they are added to the global state.
4. Get stimulus of the pre-condition of the inspected stimulus, call it
newStim. If newStim is not external (Ezt), then set the inspected
stimulus to newStim, and go back to step 2 °,
At the end of this stage, the global state to be investigated is ob-
tained.

Forward Implication. The states following G (i.e. G4; where
1 > 0) are obtained through forward implication. We simply apply
the transitions, starting from G, as given by the transition table,
in addition to implied transitions (such as timer implication). Fur-
thermore, faults are incorporated into the search. For example, in
the case of a message loss, the transition that would have resulted
from the message is not applied. If more than one state is affected
by the message, then the space is expanded to include the various
selective loss scenarios for the affected routers. For crashes, the
routers affected by the crash transit into the crashed state as defined
by the expanded transition rules. Forward irhplication uses the for-
ward search techniques described earlier in Section IV 6.

15 Note that there may be scveral pre-conditions or post-conditions for a stimulus, in which case
several choices can be made. These represent branching points in the search space.

16 According to the transition completion concept, the proper analysis of behavior should start from
externally triggered transitions. For example, the analysis should not consider a Join without con-
sidering the Prune triggering it and its effects on the system. Thus, the global system state must be

rolled back to the beginning of a ! ition (i.e. the p

stable state) before applying the

595

Backward Implication. Backward implication attempts to ob-
tain a sequence of events leading to G, from an initial state (.5.),
if such a sequence exists; i.e. if G is reachable from I.S.

Backward steps are taken for the components in the global state
G, each step producing another global state GState. For each
state in G State possible backward implication rules are attempted
to obtain valid backward steps toward an initial state. This process is
repeated for preceding states in a depth first fashion. If all backward
branches are exhausted and no initial state was reached the state is
declared unreachable.

To rewind the global state one step backward, the reverse transi-
tion rules are applied. Depending on the stimulus type of the back-
ward rule, different states in G'State are rolled back, e.g., for uni-
cast destination of the stimulus is rolled back, but for multicast, all
affected states are rolled back.

Note, however, that not all backward steps are valid, and back-
tracking is performed when a backward step is invalid. Backtrack-
ing may occur when the preceding states contradict the rules of the
protocol. These contradictions may manifest themselves as:

« Srcnot found: srcis the originator of the stimulus, and the global
state has to include at least one component to originate the stimu-
lus. An example occurs for the Prune stimulus, for a global state
{NH,F,NF}, where the an originating component of the Prune
(NC in this case) does not belong to the global state.

« Failure of minimum topology check: the necessary conditions to
trigger the stimulus must be present in the global topology. Exam-
ples of failing the minimum topology check include Join stimulus
with global state {NH, NF}.

« Inconsistency: to maintain consistency of the transition rules in
the reverse direction, we must check that every backward step has
an equivalent forward step. We must check that there is no transi-
tion x — y for the given stimulus, such that z € GState. Since
if = remains in the preceding global state, the corresponding for-
ward step would transform z into y and the system would exist in a
state inconsistent with the initial global state (before the backward
step) 7,

D. Applying The Method

The transition table is provided by the protocol designer '*, with

a list of faults to be studied (e.g., selective loss of {Join, Prune})
and a set of initial states, in our case {NM, EU}. A definition of
the correctness requirement should also be provided. The rest of the
process is automated.
forward implication.

17 An example of this inconsistency exists when the stimulus is F Pkt and GState =
{F,NF, EU}, whete EU — F is a post condition for FF Pkt.

18The traditional input/output transition table is sufficient for our method. The pre/post-condition

transition table can be derived automatically therefrom.

Stimulus Pre-conditions Post-conditions I @

loin, Prune®H,) /NF) F, @@

Prune; Leave(NC)IF, . NF,). NH.Join,
Synthesized

Leave; Host Event \(NHJ—»NCj).Prunej Topology

Y ,
OFINGNANTY) MGNF{NCPNHLFR}
Gy, ={NC,NH,F,} Prune, f
“FPki
Gi=(NMM,F,)

SPkt
G,=(NM,M,EU,)
HJ,

s of Join

Gy, =(NC,NH,NF,}

Error state

Gyy=(NM,NM,EU,

Backward implication +— G Gy, Forward implication

Fig. 3. Join topology synthesis, forward/backward implication

Example. Figure 3 shows the phases of FOTG for Join loss.
Following are the steps taken for that example:

Syntheslzing the Global State

1. Join: startState of postconditionis NFg,, = Gy = {NFy}

2. Join: state of pre-conditionis NHy = G = {NH;, NFj },go0 Prune

3. Prune: startState of post-condition is Fy,, implied from N Fp, in G p

4. Prumne: state of pre<condition is NCJ- = Gy ={NH; NFy, ch},gutoL (Ex)

5. startState of post-conditionis N H can be implied from N C in G

Forward implication

wibouloss: G7 = {NHy, NFy, NC;} Y05 G,y = (NH;, Fy,, NC;}

losswrt Rj: {NH{, NFy, NCj} = G141 = {NH;, NF, NC;j}emor

Backward implication

Prune

G ={NH;, NFy NC;} "TEPC 6 3 = (NH; Py NC;y FEX oy =
HJ,
M, P, vmyy SEEY g o0 o MU My B 6, =

{NM;, EU, ,NM;} =1.5.

Losing the Join by the forwarding router Ry leads to an error
state where router R; is expecting packets from the LAN, but the
LAN has no forwarder.

Summary of Results. We have studied single message loss sce-
narios for the Join, Prune, Assert, and Gra ft messages. We also
studied crash scenarios. For brevity, we partially discuss our results
here. For a detailed analysis of the results see [3]. We have used
the sequences of events generated automatically by the algorithm to
analyze protocol errors and suggest fixes for those errors.

Join: A scenario similar to that presented in the illustrative exam-
ple incurred an error. In this case, the robustness violation was not
allowing another chance to the downstream router to send a Join.
A suggested fix would be to send another prune by Fpe; before the
timer expires.

Prune: In the topology above, an error occurs when R; loses the
Prune, hence no Join is triggered. The fix suggested above takes

care of this case too.

Assert: An error in the Assert case occurs with no downstream
routers; e.g. G; = {Fi, F;}. The design error is the absence of a
mechanism to prevent pruning packets in this case. One suggested
fix would be to have the Assert winner schedule a deletion timer
(i.e. becomes Fpg;) and have the downstream receiver (if any) send
Join to the Assert winner.

Limitations. Following are some limitations of FOTG.

« The topologies synthesized by the above FOTG study are only
limited to a single-hop LAN with n routers. This means that the
above FOTG analysis is necessary but not sufficient to verify ro-
bustness of the end-to-end behavior of the protocol; even if each
LAN in the topology operates correctly, the inter-LAN interaction
may introduce erroneous behaviors. Applying FOTG to multi-hop
topologies is part of future research.

« The analysis for our case studies did not consider network delays.
In order to study end-to-end protocols network delays must be con-
sidered in the model. In [4] we introduce the notion of virtual LAN
to include end-to-end delay semantics.

« The topologies constructed by FOTG are inferred from the mech-
anisms specified by the transition table of the GFSM. The FOTG
algorithm will not construct topologies resulting from non-specified
mechanisms '°. Extending FOTG to become ‘error-oriented’ test
generation is part of our future work.

« The global states synthesized during the topology synthesis phase
are not guaranteed to be reachable from an initial state. Hence the
algorithm may be investigating unreachable states .

We believe that the strength of FOTG method is its ability to con-
struct the necessary conditions for erroneous behavior by starting
directly from the fault and avoiding exhaustive search. FOTG seems
best fit to study protocol robustness in the presence of faults.

VI. RELATED WORK

The related work includes protocol verification and VLSI design.
Protocol verification addresses protocol properties, such as safety
and liveness. In general, the two main approaches for protocol verifi-
cation are theorem proving and reachability analysis [5]. In theorem
proving, system properties are expressed in logic formulas, defining
a set of axioms and constructing relations on these axioms. In con-
trast to reachability analysis, theorem proving can deal with infinite
state spaces. Interactive theorem provers (e.g. VDM [6]) require hu-

19For example, if the Assert mechanism that deals with duplicates was left out (due to a design
error) the algorithm would not construct { F;, F;; } topology. Hence, FOTG is not guaranteed to
detect duplicates in this case. So, FOTG may be used to evaluate behavior of i isms in

the presence of network failures, but is not a general protocol verification tool.

2OHowcver, statistics collected in our case study [3] show that unreachable states are not the deter-
mining factor in the complexity of the backward search. Hence, other reduction techniques may be
needed to increase the efficiency of the method.

596

man intervention, and hence are slow and error-prone. The number
of axioms and relations grows with the complexity of the protocol.
Moreover, these systems tend to abstract out network failures we
are addressing in this study. Reachability analysis algorithms {7]
attempt to generate and inspect all the protocol states that are reach-
able from given initial states. In general, such algorithm suffers from
the ‘state space explosion’ problem. To circumvent this problem,
state reduction and controlled partial search techniques [8] could be
used. In our work we adopt approaches extending reachability anal-
ysis for multicast protocols. Our fault-independent test generation
method borrows from controlled partial search and state reduction
techniques.

VLSI design uses techniques for generation of tgst vector patterns.
Test vector generation can be fault-independent or fault-oriented [9].
In the fault-oriented process, the main steps in generating a test vec-
tor are to excite the fault, and to propagate the resulting error to
an observable output. Fault excitation and error propagation usu-
ally involve a search procedure with a backtracking strategy to undo
contradiction in the assignment of line values. The line assignments
performed may imply other line assignments. This process is re-
ferred to as implication. Forward implication is implying values of
lines from the fault toward the output, while backward implication
is implying values of lines from the fault toward the circuit input e
VLSI chip testing, however, is performed a given circuit, whereas
protocol testing is performed for arbitrary and time varying topolo-
gies. Other related work includes verification of cache coherence
protocols [10], which uses equivalence to reduce search complexity.

VII. CONCLUSIONS ‘

In this study we have proposed the STRESS framework to inte-
grate test generation into the protocol design process. Specifically,
we targeted automatic test generation for robustness studies of mul-
ticast routing protocols. We have adopted a global FSM model to
represent the multicast protocols on a LAN. In addition, we have
used a fault model to represent packet loss and machine crashes. We
have investigated two algorithms for test generation; namely, the
fault-independent test generation (FITG) and the fault-oriented test
generation (FOTG). Both algorithms were used to study a standard
multicast routing protocol, PIM-DM, and were compared in terms
of error coverage and algorithmic complexity. For FITG, equiva-
lence reduction techniques were combined with forward search to
reduce search complexity from exponential to polynomial. FITG
does not provide topology synthesis. For FOTG, a mix of forward
and backward search techniques allowed for automatic synthesis of
the topology. We believe that FOTG is a better fit for robustness

21 Qur approaches for protocol testing use some of the above principles; such as forward and back-

ward implication,

studies since it targets faults directly. The complexity for FOTG
was quite manageable for our case study. Corrections to errors cap-
tured in the study were proposed with the aid of our method and
integrated into the latest PIM-DM specification. More case studies
are needed to show more general applicability of our methodology.

REFERENCES

{1} V. Paxon. End-to-End Internet Packet Dynamics. ACM SIGCOMM '97, September 1997.

[2] D. Estrin, D. Farinacci, A. Helmy, V. Jacobson, and L. Wei. Protocol Independent Multicast -
Dense Mode (PIM-DM): Protocol Specification. Proposed RFC.

(31 A. Helmy, S. Gupta, and D. Estrin. Systematic Testing of Multicast Routing Protocols:
Analysis of Forward and Backward Search Techniques. ACM-LANL-NCSTRL-cs.NI/G007005.
http:/fxxx.lanl.gov/abs/cs.NI/0007005, July 2000.

[4]1 A. Helmy, S. Gupta, D. Estrin, A. Cerpa, and Y. Yu. §; ic F Evaluation of
Multip of FORTE/PSTV, IFIP, October 2000.

(5] E.Clarke and J. Wing, Formal Methods: State of the Art and Future Directions. ACM Workshop

puting R, h, Vol. 28, No. 4, pages 626-643, December 1996.

[6] C.Jones. S i Di using VDM. Prentice-Hall Int’l, 1990.

[71 F.Lin, P. Chu, and M. Liu. Protocol Verification using Reachability Analysis. Computer Com-
munication Review, Vol. 17, No. 5, 1987.

Protocols. Pr di

on gic Directions in Cc

[8] D. Probst. Using partial-order semantics to avoid the state explosion problem in asynchronous

systems. 2nd Workshop on Computer-Aided Verifi 1990,

[9]1 M. Abramovici, M. Breuer, and A. Friedman, Digital Systems Testing and Testable Design. AT
& T Labs., 1990.

(10] F. Pong and M. Dubois. for Cache Coh Protocols. ACM Com-

puting Surveys, Volume 29, No. I, pages 82-126, March 1996.

597

