

Fairness Evaluation Experiments for Multicast Congestion Control Protocols

Karim Seada, Ahmed Helmy
Electrical Engineering-Systems Department

University of Southern California, Los Angeles, CA 90089
{seada,helmy}@usc.edu

Abstract - Fairness to current Internet traffic, particularly

TCP, is an important requirement for new protocols in order to
be safely deployed in the Internet. This specifically applies to
multicast protocols that should be deployed with great care. In
this paper we provide a set of experiments that can be used as a
benchmark to evaluate the fairness of multicast congestion
control mechanisms when running with competing TCP flows.
We carefully select the experiments in such a way to target
specific congestion control mechanisms and to reveal the
differences between TCP and the proposed multicasting
protocol. This enables us to have a better understanding of the
proposed protocol behavior and to evaluate its fairness and
when violations can happen. To clarify our experiments we
carry them on a single-rate case study protocol, pgmcc, using
NS-2 simulations. Our analysis shows the strengths and
potential problems of the protocol and point to possible
improvements. Several congestion control mechanisms are
targeted by the experiments such as timeouts, response to ACKs
and losses, independent and congestion losses effect. In addition,
we evaluate multicast mechanisms such as the effect of multiple
receivers, group representative selection, and feedback
suppression when there is network support.

I. INTRODUCTION

Congestion control is a major requirement for multicast
transport protocols in order to be safely deployed in the
Internet [10]. It is believed that the lack of deployable and
well-tested multicast congestion control mechanisms is one
of the factors inhibiting the usage of IP multicast [18]. These
mechanisms have to be fair to current Internet traffic.

In this paper we consider evaluating the fairness of
multicast congestion control protocols, by providing a set of
selected experiments and scenarios that target specific
congestion control mechanisms. This facilitates a better
understanding of these protocols in order to assess their
safety and their effects on TCP. Fairness analysis is important
for any kind of protocols that compete with TCP.

Our approach attempts to relate overall protocol behavior to
individual protocol mechanisms by evaluating carefully
selected scenarios. In our experience this often points to
possible mechanistic modifications to improve the protocol
performance. In this paper, we arrive at these scenarios based
on our intuition and understanding of the protocol
mechanisms. In addition, we are developing a methodology
[14], based on the STRESS framework [8][9], to systematize
this scenario selection process.

To clarify our experiments we have chosen, as a case study,
a scheme called pgmcc. pgmcc [13] is a single-rate multicast
congestion control scheme that is designed to be fair with
TCP. We apply the experiments using NS-2 simulations. Our

analysis shows the strengths and potential problems of the
protocol and point to possible improvements. Some scenarios
reveal TCP unfriendly behavior, due to high losses or
feedback suppression. Also, poor performance, due to group
representative switch has been observed.

The rest of this paper is outlined as follows. In Section 2 we
provide an overview of multicast congestion control and
pgmcc. In Section 3 we explain our experiments and the
motivation behind them. In Section 4 we show the simulation
results and analysis of the case study. Conclusions are
presented in Section 5.

II. MULTICAST CONGESTION CONTROL

The design of a MCC (Multicast Congestion Control)
protocol that provides high performance, scalability, and
TCP-friendliness is a difficult task that attracts a lot of
research effort. MCC can be classified into two main
categories: single-rate and multi-rate. Single-rate has a
limited scalability because all receivers must receive data at
the same (slowest receiver) rate. It also suffers from feedback
implosion problem and drop-to-zero problem [2] (where the
rate degrades significantly due to independent losses by a
large number of receivers). Multi-rate, where different
receivers can receive at different rates, is more scalable but
has other concerns such as the complex encoding of data,
possible multiple paths in the layered approach, and the
effects of receivers joining and leaving layers. TCP-friendly
MCC can be classified into window-based and rate-based.
Window-based has a similar congestion window control as
TCP, while rate-based depends on the TCP throughput
equation [11] for adjusting the transmission rate [7][17].

Another possible classification for single-rate protocols is
whether they are representative-based or not. Non-
representative-based protocols solve the scalability problems
using some aggregation hierarchy. This requires complex
building of the hierarchy and may need network support. The
performance is still limited and [3] shows that even without
losses, small variations in delay can cause fast performance
degradation with the increase in number of receivers.
Representative-based protocols provide a promising
emerging approach to solve the scalability problems, where a
small dynamic set of receivers is responsible for providing
the feedback [4][5]. The main challenge is the dynamic
selection of a good set of representatives in a scalable and
efficient manner with appropriate reaction to changes in
representatives. This still needs further investigation.
Examples of single-rate representative-based protocols are
pgmcc (window-based) [13] and TFMCC (rate-based) [18].

We will use pgmcc as our case study example, and in the rest
of this section we will provide a brief description of pgmcc.

pgmcc [13] is a single-rate MCC scheme that is designed to
be TCP-friendly. To achieve fast response while retaining
scalability, a group representative called the acker is selected
and a tight control loop is run between it and the sender. It is
called the acker because it is the receiver that sends ACKs.
Other receivers can send NACKs when they lose packets, if a
reliable transport protocol is used1. pgmcc is used to
implement congestion control in the PGM protocol [16].

The acker is the representative of the group. It is chosen as
the receiver with the worst throughput to ensure that the
protocol will be TCP-friendly. A window-based TCP-like
controller based on positive ACKs is run between the sender
and the acker. The feedback in pgmcc is provided in receiver
reports that are used by the sender to estimate the throughput.
They are embedded into the NACKs and ACKs and contain
the loss rate and information for computing an estimate for
the round trip time (RTT) of the sending receiver. There is a
field in the ACK called the bitmask, which indicates the
receive status of the most recent 32 packets and is included to
help the sender deal with lost and out-of-order ACKs.

The most critical operation of pgmcc is the acker election
and tracking. The sender selects the receiver with the worst
throughput as the acker. When another receiver with worse
throughput sends a NACK, an acker change may occur. The
sender computes throughput from receivers’ feedback and the
simplified TCP-like formula: pRTTT 1 α where T is the

throughput, RTT is the round trip time estimate and p is the
loss rate [11]. For more details about pgmcc see [13].

III. EXPERIMENTS DETAILS AND MOTIVATION

In this section we discuss the experiments details and the
motivation behind them. Each subsection contains a set of
related experiments.

A. Experiment Set 1: Window and Timeouts

The first set of experiments contains simple topologies to
compare the MCC protocol to different flavors of TCP in
simple cases. The flavors are Reno, New-Reno, and SACK
[6]. This comparison helps us understand the behavior of the
protocol and the subtle differences between it and TCP. Two
congestion control issues are targeted by this comparison: (1)
reaction to losses and ACKs with its effect on the window
size, (2) retransmission timeouts. TCP Reno is still the most
widely deployed flavor in the Internet, but recent statistics
show that TCP New-Reno and TCP SACK deployment is
increasing [12]. New-Reno and SACK solve performance
problems of TCP in case of multiple-packet loss in a window
and they reduce the number of timeouts. When multiple
packets are lost from a single window of data, New-Reno and
SACK can recover without a retransmission timeout. With

1 pgmcc can be used with both reliable and non-reliable transport protocols.
Non-reliable protocols will also need to send NACKs from time to time for
congestion control purposes.

Reno and New-Reno at most one dropped packet is
retransmitted per round-trip time, while SACK does not have
this limitation [6]. This response to losses and ACKs has a
major impact on the window size, and consequently on the
fairness. According to [11] timeouts also have a significant
impact on the performance of TCP Reno and they constitute a
considerable fraction of the total number of loss indications.
Measurements have shown that in many cases the majority of
window decreases are due to timeouts, rather than fast
retransmits. This experiment highlights the protocol policy in
handling ACKs and timeouts, and which flavor it is closer to.

B. Experiment Set 2: Diverse Losses and Delay

This set of experiments addresses the effect of having
multiple receivers with different losses and delay. We
consider both independent and correlated (due to congestion)
losses. The throughput of the MCC protocol when the
receivers have different combinations of delay and loss rates
(e.g. high loss, low delay vs. low loss, high delay) is
compared to the competing TCP flows. There are several
objectives behind this comparison: First, better understanding
of the effect of losses, retransmissions, and delays with
multiple receivers. Second, many MCC protocols use a TCP
throughput equation to model the TCP behavior. This set of
experiments evaluates the accuracy of the used equation.
Third, the reaction to independent and congestion losses can
show some of the protocol characteristics.

C. Experiment Set 3: Feedback Suppression

Most MCC protocols depend on the receivers’ feedback in
making decisions. Some multicast transport protocols have
network support (e.g. by routers) to improve their
performance. This support is normally in the form of
feedback aggregation or suppression to avoid problems as
ACK and NACK implosion. In this part we consider
experiments to test the effect of feedback suppression on
fairness. The experiments consist of topologies with critical
receivers having their feedback suppressed. The definition of
critical receivers depends on the protocol as will be shown in
the next section. Feedback suppression affects the accuracy
of decisions based on feedback. These experiments
investigate the tradeoff between the amount of feedback and
the correctness of decisions or computations.

D. Experiment Set 4: Group Representatives

Several MCC protocols use the idea of representatives to
achieve scalability. Feedback is normally provided only by
these special receivers. An important task is the selection and
changing of the representatives. The experiments here target
this operation by having configurations containing multiple
sets of receivers that can be selected as representatives and
having scenarios that trigger the changing between them. The
aim of the experiments is to study the effect of these changes
on the overall protocol operation and on its fairness to TCP.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 500 1000 1500 2000 2500 3000

Time

S
eq

u
en

ce

MCC

TCP

0

10

20

30

40

50

60

0 200 400 600 800 1000
Time

W
in

d
o

w
 S

iz
e

MCC

TCP

IV. CASE STUDY SIMULATIONS

In this section we apply our experiments to a case study
scheme ‘pgmcc’ . We show the results obtained using the NS-
2 simulator [1] to evaluate pgmcc and analyze its fairness
with regard to TCP. Both TCP Reno and SACK are examined
and they provide close results and similar conclusions (except
for the first experiment, as will be shown). The source models
used in the simulation are FTP sources with packet size of
1400 bytes. The links have propagation delay of 1ms, and
bandwidth of 10Mb/s, unless otherwise specified. The queues
have a drop-tail discard policy (RED was also examined and
the results are similar) and FIFO service policy, with capacity
to hold 30 packets. In the graphs we show the sequence
numbers sent by the sender vs. the time. This has the same
effect as showing the throughput. We provide a fairness
metric f as the ratio between TCP and pgmcc throughput2.
More details about the simulations are provided in [15].

A. Experiment Set 1: Window and Timeouts

In the first experiment we use the topology shown in Fig. 1 to
test the fairness of pgmcc with the different TCP flavors in a
very simple case, where we have only a single TCP session
competing with a pgmcc session over a bottleneck link
(500Kb/s, 50ms). pgmcc has a number of identical receivers,
so anyone of them could be the acker.

Starting with TCP Reno and comparing the throughput of
the TCP sender with the pgmcc sender we find in Fig. 2 that
pgmcc is not fair to TCP Reno3. The reason for this behavior
can be interpreted if we look more closely at how pgmcc
works in comparison to TCP Reno. pgmcc times out after a
stall when the ACKs stop coming in, and a long timeout
expires. But there are no specific information about the exact
timeout value for pgmcc and how it is determined. Without
timeout pgmcc reacts to congestion by cutting the window in
half similar to fast recovery in TCP. TCP on the other hand
adjusts its timeout value depending on the measured RTT and
the variance of the measured RTT values. In addition, ACKs
in pgmcc are per-packet as in SACK, while in Reno ACKs
are aggregate only, so for Reno to send an ACK for a packet,
all packets in between have to be received. This has a large
effect when multiple packets are dropped from a window.

2 The final sequence numbers in the graphs represent the aggregate
throughput. So their ratio can be considered as the ratio between the average
instantaneous throughputs.
3 This experiment runs for 3000 seconds. When we run the experiment for
300 seconds, as in [13], the unfairness shown here was not clear [15].

Our explanation of the unfairness that is observed over long
periods is due to these differences in handling timeouts and
responding to ACKs and losses. By observing the window
size changes in both of them (Fig. 3), we found that the
pgmcc window is larger most of the time and it does not enter
the slow start phase. We have also conducted several other
experiments with changing the timeout value, we found that
the results obtained depend heavily on this value. For
example, if the timeout is set to a relatively small value this
can cause TCP to have a much higher throughput. The
appropriate value for timeout that achieves fairness depends
on dynamic network conditions that change over time.

Next we try the same experiments with New-Reno and
SACK. New-Reno and SACK reduce the timeouts and solve
the performance problems when multiple packet are dropped
from a window. Simulation results show that pgmcc is fairer
(f=92%) with SACK and New-Reno [15].

To clarify more the effect of timeout and window size, we
run the same experiment of TCP Reno with an adaptive
timeout mechanism added to pgmcc. In this experiment
pgmcc uses an adaptive timeout similar to that used in TCP
and the reset of the timeout is controlled to be as close as
possible to TCP Reno. It is reset only if there are no packets
missing in the received bitmask (i.e. all packets are acked).
Because of differences in RTT between different ackers, after
a switch a fixed timeout is used until the adaptive timeout for
the new acker is computed. Fig. 4 shows the result of pgmcc
compared to TCP Reno after adding the adaptive timeout.
The modified pgmcc is friendly to TCP Reno.

These experiments clarify some of the characteristics and
design choices of pgmcc. It is similar to TCP SACK in
handling ACKs and losses, and it avoids timeouts. Since the
deployment of SACK is permitted and it is currently
increasing, there is no requirement to degrade pgmcc to TCP
Reno and these design choices seem to be correct.

B. Experiment Set 2: Diverse Losses and Delay

This experiment evaluates the effect of different
combinations of RTT and loss rates on the protocol behavior
and shows how accurate is the equation used for computing
the throughput. In Fig. 5 we have two pgmcc receivers, one
with high RTT (400ms) and low loss rate (.4% or 2%) and
the other with lower RTT (200ms) and higher loss rate (1.6%
or 8%). Losses in this experiment are considered to be
independent and not correlated. This enables us to control the
parameters accurately to have equal throughputs in both links

Fig. 1: TCP session competing with MCC session
over a bottleneck link

Fig. 2: Throughput of pgmcc vs. TCP Reno
(f=74%)

Fig. 3: Window size comparison of
pgmcc and TCP Reno

Congested Link

TS

TR

MS

MR1

MR2 MR3

TS: TCP Sender
TR: TCP Receiver
MS: MCC Sender
MR: MCC Receiver

0

10000

20000

30000

40000

50000

60000

70000

0 500 1000 1500 2000 2500 3000
Time

S
eq

u
en

ce

MCC

TCP

0

10000

20000

30000

40000

50000

60000

70000

80000

0 500 1000 1500 2000 2500 3000

Time

S
eq

u
en

ce

MCC

TCP1

TCP2

0

5000

10000

15000

20000

25000

30000

35000

0 500 1000 1500 2000 2500 3000
Time

S
eq

u
en

ce

MCC

TCP1

TCP2

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

0 500 1000 1500 2000 2500 3000
Time

S
eq

u
en

ce

MCC
TCP

and evaluate the results in this case.

In Fig. 6 we see that pgmcc and the two TCP sessions have
close throughput4. The loss rates here are .4% for the low loss
link and 1.6% for the high loss link. In Fig. 7 we are using a
loss rate of 2% for the low loss link and 8% for the high loss
link, which causes pgmcc to be unfair to the high loss rate
TCP session. The reason for that is mainly because of the
difference in reacting to packet losses. In pgmcc the
reliability window is separated from the congestion window
and the handling of acknowledgements is different. Unlike
TCP, in pgmcc the sender keep sending new packets, even if
there are previous lost packets not received yet. This
separation between reliability and congestion seems to be
unavoidable in order to achieve an acceptable performance in
reliable multicast. In addition, according to [11] the
simplified equation used for computing the throughput is for
fast retransmission only and it does not take timeouts into
account. It also overestimates the throughput for losses above
5% and so it is suitable only when loss rates are below 5%
and no timeouts happen.

This experiment shows that at high loss rates pgmcc can be
unfair to TCP due to the ignoring of previously lost packets
by congestion control, and due to the inaccuracy in the
throughput equation. We performed also experiments for
correlated losses. Due to space limitations the results are
presented in [15].

C. Experiment Set 3: Feedback Suppression

In this experiment we are testing the use of feedback
suppression in the routers and its effect on congestion control.
In PGM [16], if feedback aggregation is used, the first
instance of a NACK for a given data segment is forwarded to
the source and subsequent NACKs are suppressed. Using the

4 We set the parameters of RTT and loss rates to let the two TCP sessions get
the same throughput, according to the TCP equation.

topology in Fig. 8 we find that feedback aggregation will
cause pgmcc to be unfair to TCP, because the worse receiver
MR3 will always have its NACKs suppressed (the link
leading to MR3 router has 50 ms delay). The throughput of
pgmcc and TCP without network support is similar to
experiment 1. In Fig. 9 we see that with network support,
pgmcc gets much higher throughput than TCP.
This experiment shows that feedback suppression can cause
pgmcc to be unfair to TCP. Accordingly we recommend that
some changes are needed in the way feedback aggregation is
performed with pgmcc. A solution for that is to store both the
loss ratio and RTT for each NACK and to compare the
throughputs using these values. This solution may solve the
problem, but it increases storage and computation overhead
in the routers. We propose a low overhead solution for that
problem by random suppressing of NACKs in the router. The
router will suppress NACKs only with some probability. This
will give the worst receiver NACKs some chances to reach
the sender. There will be a tradeoff here between the amount
of feedback suppressed and the accuracy of acker selection.

D. Experiment Set 4: Group Representatives

This experiment shows the effect of using group
representatives and changing them. In pgmcc we evaluate the
effect of acker switching using also the topology of Fig. 8,
but with a higher delay (200ms) in the link leading to the
MR3 router. No suppression will happen in this case because
the retransmissions will reach MR1 and MR2 router before
the NACK of MR3 reaches there. In PGM retransmissions
are directed by the router only on those links that sent the
NACKs, and these retransmissions delete the NACKs states
from routers. As shown in Fig. 10, the throughput of pgmcc
becomes too low, and the TCP throughput is much higher.
This does not constitute a fairness problem, but a
performance degradation problem for pgmcc.

Fig. 4: Throughput of pgmcc with the
adaptive timeout vs. TCP Reno (f=96%)

Fig. 5: MCC session with receivers having different
delays and loss rates competing with TCP sessions

Fig. 6: Throughput of pgmcc vs. the two TCP
sessions with low loss rate (f1=82%, f2=85%)

Fig. 7: Throughput of pgmcc vs. the two TCP
sessions with high loss rate (f1=78%, f2=54%)

Fig. 8: MCC session with receivers having the same
loss rate, but different delays Fig. 9: Throughput of pgmcc vs. TCP with

NACK suppression (f=23%)

High Loss

TS1

TR2
MS

MR2

Low Loss

TS2

TR1

MR1

High Delay Congested Link

TS

TR

MS

MR1

MR3
MR2

0

5

10

15

20

25

30

1210 1215 1220 1225 1230 Time

W
in

d
o

w
 S

iz
e

0

20000

40000

60000

80000

100000

120000

140000

0 500 1000 1500 2000 2500 3000
Time

S
eq

u
en

ce

MCC

TCP

29960

29970

29980

29990

30000

1225.5 1226 1226.5 1227 1227.5 1228 1228.5
Time

S
eq

u
en

ce

Data
ACK
NACK

The reason for this bad performance under the given

topology is the acker switching between a high RTT receiver
and a low RTT receiver. By looking at acker switches in
detail we found that two switches happen in succession close
to each other. The first NACK from the closer receiver causes
an acker change then the other NACK causes another change
for the far one when it arrives. This pattern repeats with
packet losses. It is interesting to look at why acker changing
causes this bad performance (in other experiments it has no
effect). By taking a more detailed look in Fig. 11 to observe
what happens between two acker switches (a vertical line
means an acker switch), we find that after the switch to the
close receiver, new ACKs arrive before old ACKs. The old
ACKs that arrive at 1226.5 do not cause new packets to be
sent which means that they do not generate new tokens.
Later, when new ACKs arrive the window start at slow rate,
which means that, it has been cut. Fig. 12 shows how the
window is cut at 1226.5. The reason for that is due to the out-
of-order ACK delivery and the reactions taken accordingly by
the sender. Wrong loss detections can be interpreted, because
ACKs for old packets have not arrived yet. Also on a loss
detection the sender try to realign the window to the actual
number of packets in flight, which will not be interpreted
correctly after the switch, because there are still packets and
ACKs in flight to and from the old acker.

To solve this problem the sender needs to keep track of the
recent history of acker changing and the ACKs sent by each
acker. In addition the bitmask provides information about the
recent packets received by the acker. Accordingly the sender
can adjust its window and avoid these problems.

This experiment shows that acker switching between
receivers with large difference in delay degrades the
performance of pgmcc. This problem will be more common
on larger scales.

V. CONCLUSIONS

We have presented a set of carefully designed experiments to
evaluate multicast congestion control protocols. These
experiments clarify the operational details of the protocol by
targeting specific mechanisms. They also show the
differences with TCP and the related fairness issues. We
carried the experiments on a case study protocol, pgmcc.
Some problems have been found due to high losses, feedback
suppression, and group representative switch. Improvements
are proposed to cope with some of the problems, such as
random suppression of NACKs, sender response after

representative switches, and the adaptive timeout in case
fairness to TCP Reno is required. We recommend researchers
to consider our scenarios in addition to existing scenarios,
and hope that this with the methodology presented in [14], be
part of an evaluation framework to expedite the development
and standardization of multicast congestion control protocols.

REFERENCES
[1] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P.

Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu. “Advances in
Network Simulation.” IEEE Computer, May 2000.

[2] S. Bhattacharyya, D. Towsley, and J. Kurose. “The Loss Path
Multiplicity Problem for Multicast Congestion Control.” IEEE
Infocom, March 1999.

[3] A. Chaintreau, F. Baccelli, and C. Diot. “Impact of Network Delay
Variation on Multicast Session Performance with TCP-like Congestion
Control.” IEEE Infocom, April 2001.

[4] D. DeLucia and K. Obraczka. “Multicast feedback suppression using
representatives.” IEEE Infocom, April 1997.

[5] D. DeLucia and K. Obraczka. “A Multicast Congestion Control
Mechanism for Reliable Multicast.” IEEE ISCC, June 1998.

[6] K. Fall and S. Floyd. “Simulation-based Comparison of Tahoe, Reno,
and SACK TCP.” Computer Communication Review, July 1996.

[7] S. Golestani and K. Sabnani. “Fundamental Observations on Multicast
Congestion Control in the Internet.” IEEE Infocom, March 1999.

[8] A. Helmy, D. Estrin, and S. Gupta. “Systematic Testing of Multicast
Routing Protocols: Analysis of Forward and Backward Search
Techniques.” IEEE ICCCN, October 2000.

[9] A. Helmy, S. Gupta, D. Estrin, A. Cerpa, and Y. Yu. “Systematic
Performance Evaluation of Multipoint Protocols.” IFIP FORTE/PSTV,
October 2000.

[10] A. Mankin, A. Romanow, S. Bradner, and V. Paxson. “IETF Criteria
for Evaluating Reliable Multicast Transport and Application
Protocols.” RFC 2357, June 1998.

[11] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. “Modeling TCP
throughput: A Simple Model and its Empirical Validation.” ACM
SIGCOMM, September 1998.

[12] J. Padhye and S. Floyd. “On Inferring TCP Behavior.” ACM
SIGCOMM, August 2001.

[13] L. Rizzo. “pgmcc: A TCP-friendly Single-Rate Multicast Congestion
Control Scheme.” ACM SIGCOMM, August 2000.

[14] K. Seada, S. Gupta, and A. Helmy. “Systematic Evaluation of Multicast
Congestion Control Mechanisms.” SCS SPECTS, July 2002.

[15] K. Seada and A. Helmy. “Fairness Evaluation Experiments for
Multicast Congestion Control Protocols.” Technical Report 02-757,
University of Southern California, CS Department, March 2002.

[16] T. Speakman, J. Crowcroft, J. Gemmell, D. Farinacci, S. Lin, D.
Leshchiner, M. Luby, T. Montgomery, L. Rizzo, A. Tweedly, N.
Bhaskar, R. Edmonstone, R. Sumanasekera, and L. Vicisano. “PGM
Reliable Transport Protocol Specification.” RFC 3208, December
2001.

[17] J Widmer, R Denda, and M Mauve. “A Survey on TCP-Friendly
Congestion Control.” IEEE Network Magazine, May 2001.

[18] J. Widmer and M. Handley. “Extending Equation-based Congestion
Control to Multicast Applications.” ACM SIGCOMM, August 2001.

Fig. 10: Throughput of pgmcc vs. TCP due
to acker switches (f=164%)

Fig. 11: Detailed sequence of pgmcc packets
during acker change

Fig. 12: Window size changes of pgmcc
session, during an acker change

