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Abstract - Fairness to current Internet traffic, particularly 

TCP, is an important requirement for new protocols in order to 
be safely deployed in the Internet. This specifically applies to 
multicast protocols that should be deployed with great care. In 
this paper we provide a set of experiments that can be used as a 
benchmark to evaluate the fairness of multicast congestion 
control mechanisms when running with competing TCP flows.  
We carefully select the experiments in such a way to target 
specific congestion control mechanisms and to reveal the 
differences between TCP and the proposed multicasting 
protocol. This enables us to have a better understanding of the 
proposed protocol behavior and to evaluate its fairness and 
when violations can happen. To clarify our experiments we 
carry them on a single-rate case study protocol, pgmcc, using 
NS-2 simulations. Our analysis shows the strengths and 
potential problems of the protocol and point to possible 
improvements. Several congestion control mechanisms are 
targeted by the experiments such as timeouts, response to ACKs 
and losses, independent and congestion losses effect. In addition, 
we evaluate multicast mechanisms such as the effect of multiple 
receivers, group representative selection, and feedback 
suppression when there is network support. 
 

I. INTRODUCTION 

Congestion control is a major requirement for multicast 
transport protocols in order to be safely deployed in the 
Internet [10]. It is believed that the lack of deployable and 
well-tested multicast congestion control mechanisms is one 
of the factors inhibiting the usage of IP multicast [18]. These 
mechanisms have to be fair to current Internet traffic.   

In this paper we consider evaluating the fairness of 
multicast congestion control protocols, by providing a set of 
selected experiments and scenarios that target specific 
congestion control mechanisms. This facilitates a better 
understanding of these protocols in order to assess their 
safety and their effects on TCP. Fairness analysis is important 
for any kind of protocols that compete with TCP. 

Our approach attempts to relate overall protocol behavior to 
individual protocol mechanisms by evaluating carefully 
selected scenarios. In our experience this often points to 
possible mechanistic modifications to improve the protocol 
performance. In this paper, we arrive at these scenarios based 
on our intuition and understanding of the protocol 
mechanisms. In addition, we are developing a methodology 
[14], based on the STRESS framework [8][9], to systematize 
this scenario selection process.  

To clarify our experiments we have chosen, as a case study, 
a scheme called pgmcc. pgmcc [13] is a single-rate multicast 
congestion control scheme that is designed to be fair with 
TCP. We apply the experiments using NS-2 simulations. Our 

analysis shows the strengths and potential problems of the 
protocol and point to possible improvements. Some scenarios 
reveal TCP unfriendly behavior, due to high losses or 
feedback suppression. Also, poor performance, due to group 
representative switch has been observed. 

The rest of this paper is outlined as follows. In Section 2 we 
provide an overview of multicast congestion control and 
pgmcc. In Section 3 we explain our experiments and the 
motivation behind them. In Section 4 we show the simulation 
results and analysis of the case study. Conclusions are 
presented in Section 5. 
 

II. MULTICAST CONGESTION CONTROL 

The design of a MCC (Multicast Congestion Control) 
protocol that provides high performance, scalability, and 
TCP-friendliness is a difficult task that attracts a lot of 
research effort. MCC can be classified into two main 
categories: single-rate and multi-rate. Single-rate has a 
limited scalability because all receivers must receive data at 
the same (slowest receiver) rate. It also suffers from feedback 
implosion problem and drop-to-zero problem [2] (where the 
rate degrades significantly due to independent losses by a 
large number of receivers). Multi-rate, where different 
receivers can receive at different rates, is more scalable but 
has other concerns such as the complex encoding of data, 
possible multiple paths in the layered approach, and the 
effects of receivers joining and leaving layers. TCP-friendly 
MCC can be classified into window-based and rate-based. 
Window-based has a similar congestion window control as 
TCP, while rate-based depends on the TCP throughput 
equation [11] for adjusting the transmission rate [7][17]. 

Another possible classification for single-rate protocols is 
whether they are representative-based or not. Non-
representative-based protocols solve the scalability problems 
using some aggregation hierarchy. This requires complex 
building of the hierarchy and may need network support. The 
performance is still limited and [3] shows that even without 
losses, small variations in delay can cause fast performance 
degradation with the increase in number of receivers. 
Representative-based protocols provide a promising 
emerging approach to solve the scalability problems, where a 
small dynamic set of receivers is responsible for providing 
the feedback [4][5]. The main challenge is the dynamic 
selection of a good set of representatives in a scalable and 
efficient manner with appropriate reaction to changes in 
representatives. This still needs further investigation. 
Examples of single-rate representative-based protocols are 
pgmcc (window-based) [13] and TFMCC (rate-based) [18]. 



 

We will use pgmcc as our case study example, and in the rest 
of this section we will provide a brief description of pgmcc.  

pgmcc [13] is a single-rate MCC scheme that is designed to 
be TCP-friendly. To achieve fast response while retaining 
scalability, a group representative called the acker is selected 
and a tight control loop is run between it and the sender. It is 
called the acker because it is the receiver that sends ACKs. 
Other receivers can send NACKs when they lose packets, if a 
reliable transport protocol is used1. pgmcc is used to 
implement congestion control in the PGM protocol [16].  

The acker is the representative of the group. It is chosen as 
the receiver with the worst throughput to ensure that the 
protocol will be TCP-friendly. A window-based TCP-like 
controller based on positive ACKs is run between the sender 
and the acker. The feedback in pgmcc is provided in receiver 
reports that are used by the sender to estimate the throughput. 
They are embedded into the NACKs and ACKs and contain 
the loss rate and information for computing an estimate for 
the round trip time (RTT) of the sending receiver. There is a 
field in the ACK called the bitmask, which indicates the 
receive status of the most recent 32 packets and is included to 
help the sender deal with lost and out-of-order ACKs. 

The most critical operation of pgmcc is the acker election 
and tracking. The sender selects the receiver with the worst 
throughput as the acker. When another receiver with worse 
throughput sends a NACK, an acker change may occur. The 
sender computes throughput from receivers’ feedback and the 
simplified TCP-like formula: pRTTT 1 α  where T is the 

throughput, RTT is the round trip time estimate and p is the 
loss rate [11].  For more details about pgmcc see [13]. 
 

III. EXPERIMENTS DETAILS AND MOTIVATION 

In this section we discuss the experiments details and the 
motivation behind them. Each subsection contains a set of 
related experiments. 
 
A. Experiment Set 1: Window and Timeouts 

The first set of experiments contains simple topologies to 
compare the MCC protocol to different flavors of TCP in 
simple cases. The flavors are Reno, New-Reno, and SACK 
[6]. This comparison helps us understand the behavior of the 
protocol and the subtle differences between it and TCP. Two 
congestion control issues are targeted by this comparison: (1) 
reaction to losses and ACKs with its effect on the window 
size, (2) retransmission timeouts. TCP Reno is still the most 
widely deployed flavor in the Internet, but recent statistics 
show that TCP New-Reno and TCP SACK deployment is 
increasing [12]. New-Reno and SACK solve performance 
problems of TCP in case of multiple-packet loss in a window 
and they reduce the number of timeouts. When multiple 
packets are lost from a single window of data, New-Reno and 
SACK can recover without a retransmission timeout. With 
                                                           
1 pgmcc can be used with both reliable and non-reliable transport protocols. 
Non-reliable protocols will also need to send NACKs from time to time for 
congestion control purposes. 

Reno and New-Reno at most one dropped packet is 
retransmitted per round-trip time, while SACK does not have 
this limitation [6]. This response to losses and ACKs has a 
major impact on the window size, and consequently on the 
fairness. According to [11] timeouts also have a significant 
impact on the performance of TCP Reno and they constitute a 
considerable fraction of the total number of loss indications. 
Measurements have shown that in many cases the majority of 
window decreases are due to timeouts, rather than fast 
retransmits. This experiment highlights the protocol policy in 
handling ACKs and timeouts, and which flavor it is closer to. 
 
B. Experiment Set 2: Diverse Losses and Delay 

This set of experiments addresses the effect of having 
multiple receivers with different losses and delay. We 
consider both independent and correlated (due to congestion) 
losses. The throughput of the MCC protocol when the 
receivers have different combinations of delay and loss rates 
(e.g. high loss, low delay vs. low loss, high delay) is 
compared to the competing TCP flows. There are several 
objectives behind this comparison: First, better understanding 
of the effect of losses, retransmissions, and delays with 
multiple receivers. Second, many MCC protocols use a TCP 
throughput equation to model the TCP behavior. This set of 
experiments evaluates the accuracy of the used equation. 
Third, the reaction to independent and congestion losses can 
show some of the protocol characteristics. 
 
C. Experiment Set 3: Feedback Suppression 

Most MCC protocols depend on the receivers’ feedback in 
making decisions. Some multicast transport protocols have 
network support (e.g. by routers) to improve their 
performance. This support is normally in the form of 
feedback aggregation or suppression to avoid problems as 
ACK and NACK implosion. In this part we consider 
experiments to test the effect of feedback suppression on 
fairness. The experiments consist of topologies with critical 
receivers having their feedback suppressed. The definition of 
critical receivers depends on the protocol as will be shown in 
the next section.  Feedback suppression affects the accuracy 
of decisions based on feedback. These experiments 
investigate the tradeoff between the amount of feedback and 
the correctness of decisions or computations. 

 
D. Experiment Set 4: Group Representatives 

Several MCC protocols use the idea of representatives to 
achieve scalability. Feedback is normally provided only by 
these special receivers. An important task is the selection and 
changing of the representatives. The experiments here target 
this operation by having configurations containing multiple 
sets of receivers that can be selected as representatives and 
having scenarios that trigger the changing between them. The 
aim of the experiments is to study the effect of these changes 
on the overall protocol operation and on its fairness to TCP.
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IV. CASE STUDY SIMULATIONS 

In this section we apply our experiments to a case study 
scheme ‘pgmcc’ . We show the results obtained using the NS-
2 simulator [1] to evaluate pgmcc and analyze its fairness 
with regard to TCP. Both TCP Reno and SACK are examined 
and they provide close results and similar conclusions (except 
for the first experiment, as will be shown). The source models 
used in the simulation are FTP sources with packet size of 
1400 bytes. The links have propagation delay of 1ms, and 
bandwidth of 10Mb/s, unless otherwise specified. The queues 
have a drop-tail discard policy (RED was also examined and 
the results are similar) and FIFO service policy, with capacity 
to hold 30 packets. In the graphs we show the sequence 
numbers sent by the sender vs. the time. This has the same 
effect as showing the throughput. We provide a fairness 
metric f as the ratio between TCP and pgmcc throughput2. 
More details about the simulations are provided in [15]. 
 
A. Experiment Set 1: Window and Timeouts 

In the first experiment we use the topology shown in Fig. 1 to 
test the fairness of pgmcc with the different TCP flavors in a 
very simple case, where we have only a single TCP session 
competing with a pgmcc session over a bottleneck link 
(500Kb/s, 50ms). pgmcc has a number of identical receivers, 
so anyone of them could be the acker. 

Starting with TCP Reno and comparing the throughput of 
the TCP sender with the pgmcc sender we find in Fig. 2 that 
pgmcc is not fair to TCP Reno3. The reason for this behavior 
can be interpreted if we look more closely at how pgmcc 
works in comparison to TCP Reno. pgmcc times out after a 
stall when the ACKs stop coming in, and a long timeout 
expires. But there are no specific information about the exact 
timeout value for pgmcc and how it is determined. Without 
timeout pgmcc reacts to congestion by cutting the window in 
half similar to fast recovery in TCP. TCP on the other hand 
adjusts its timeout value depending on the measured RTT and 
the variance of the measured RTT values. In addition, ACKs 
in pgmcc are per-packet as in SACK, while in Reno ACKs 
are aggregate only, so for Reno to send an ACK for a packet, 
all packets in between have to be received. This has a large 
effect when multiple packets are dropped from a window. 

                                                           
2 The final sequence numbers in the graphs represent the aggregate 
throughput. So their ratio can be considered as the ratio between the average 
instantaneous throughputs. 
3 This experiment runs for 3000 seconds. When we run the experiment for 
300 seconds, as in [13], the unfairness shown here was not clear [15]. 

Our explanation of the unfairness that is observed over long 
periods is due to these differences in handling timeouts and 
responding to ACKs and losses. By observing the window 
size changes in both of them (Fig. 3), we found that the 
pgmcc window is larger most of the time and it does not enter 
the slow start phase. We have also conducted several other 
experiments with changing the timeout value, we found that 
the results obtained depend heavily on this value. For 
example, if the timeout is set to a relatively small value this 
can cause TCP to have a much higher throughput. The 
appropriate value for timeout that achieves fairness depends 
on dynamic network conditions that change over time. 

Next we try the same experiments with New-Reno and 
SACK. New-Reno and SACK reduce the timeouts and solve 
the performance problems when multiple packet are dropped 
from a window. Simulation results show that pgmcc is fairer 
(f=92%) with SACK and New-Reno [15]. 

To clarify more the effect of timeout and window size, we 
run the same experiment of TCP Reno with an adaptive 
timeout mechanism added to pgmcc. In this experiment 
pgmcc uses an adaptive timeout similar to that used in TCP 
and the reset of the timeout is controlled to be as close as 
possible to TCP Reno. It is reset only if there are no packets 
missing in the received bitmask (i.e. all packets are acked). 
Because of differences in RTT between different ackers, after 
a switch a fixed timeout is used until the adaptive timeout for 
the new acker is computed. Fig. 4 shows the result of pgmcc 
compared to TCP Reno after adding the adaptive timeout. 
The modified pgmcc is friendly to TCP Reno. 

These experiments clarify some of the characteristics and 
design choices of pgmcc. It is similar to TCP SACK in 
handling ACKs and losses, and it avoids timeouts. Since the 
deployment of SACK is permitted and it is currently 
increasing, there is no requirement to degrade pgmcc to TCP 
Reno and these design choices seem to be correct. 
 
B. Experiment Set 2: Diverse Losses and Delay 

This experiment evaluates the effect of different 
combinations of RTT and loss rates on the protocol behavior 
and shows how accurate is the equation used for computing 
the throughput. In Fig. 5 we have two pgmcc receivers, one 
with high RTT (400ms) and low loss rate (.4% or 2%) and 
the other with lower RTT (200ms) and higher loss rate (1.6% 
or 8%). Losses in this experiment are considered to be 
independent and not correlated. This enables us to control the 
parameters accurately to have equal throughputs in both links

Fig. 1: TCP session competing with MCC session 
over a bottleneck link 

Fig. 2: Throughput of pgmcc vs. TCP Reno 
(f=74%) 

Fig. 3: Window size comparison of 
pgmcc and TCP Reno 
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and evaluate the results in this case. 

In Fig. 6 we see that pgmcc and the two TCP sessions have 
close throughput4. The loss rates here are .4% for the low loss 
link and 1.6% for the high loss link. In Fig. 7 we are using a 
loss rate of 2% for the low loss link and 8% for the high loss 
link, which causes pgmcc to be unfair to the high loss rate 
TCP session. The reason for that is mainly because of the 
difference in reacting to packet losses. In pgmcc the 
reliability window is separated from the congestion window 
and the handling of acknowledgements is different. Unlike 
TCP, in pgmcc the sender keep sending new packets, even if 
there are previous lost packets not received yet. This 
separation between reliability and congestion seems to be 
unavoidable in order to achieve an acceptable performance in 
reliable multicast. In addition, according to [11] the 
simplified equation used for computing the throughput is for 
fast retransmission only and it does not take timeouts into 
account. It also overestimates the throughput for losses above 
5% and so it is suitable only when loss rates are below 5% 
and no timeouts happen. 

This experiment shows that at high loss rates pgmcc can be 
unfair to TCP due to the ignoring of previously lost packets 
by congestion control, and due to the inaccuracy in the 
throughput equation. We performed also experiments for 
correlated losses. Due to space limitations the results are 
presented in [15]. 

 
C. Experiment Set 3: Feedback Suppression 

In this experiment we are testing the use of feedback 
suppression in the routers and its effect on congestion control. 
In PGM [16], if feedback aggregation is used, the first 
instance of a NACK for a given data segment is forwarded to 
the source and subsequent NACKs are suppressed. Using the 

                                                           
4 We set the parameters of RTT and loss rates to let the two TCP sessions get 
the same throughput, according to the TCP equation. 

topology in Fig. 8 we find that feedback aggregation will 
cause pgmcc to be unfair to TCP, because the worse receiver 
MR3 will always have its NACKs suppressed (the link 
leading to MR3 router has 50 ms delay). The throughput of 
pgmcc and TCP without network support is similar to 
experiment 1. In Fig. 9 we see that with network support, 
pgmcc gets much higher throughput than TCP. 
This experiment shows that feedback suppression can cause 
pgmcc to be unfair to TCP. Accordingly we recommend that 
some changes are needed in the way feedback aggregation is 
performed with pgmcc. A solution for that is to store both the 
loss ratio and RTT for each NACK and to compare the 
throughputs using these values. This solution may solve the 
problem, but it increases storage and computation overhead 
in the routers. We propose a low overhead solution for that 
problem by random suppressing of NACKs in the router. The 
router will suppress NACKs only with some probability. This 
will give the worst receiver NACKs some chances to reach 
the sender. There will be a tradeoff here between the amount 
of feedback suppressed and the accuracy of acker selection. 
 
D. Experiment Set 4: Group Representatives 

This experiment shows the effect of using group 
representatives and changing them. In pgmcc we evaluate the 
effect of acker switching using also the topology of Fig. 8, 
but with a higher delay (200ms) in the link leading to the 
MR3 router. No suppression will happen in this case because 
the retransmissions will reach MR1 and MR2 router before 
the NACK of MR3 reaches there. In PGM retransmissions 
are directed by the router only on those links that sent the 
NACKs, and these retransmissions delete the NACKs states 
from routers. As shown in Fig. 10, the throughput of pgmcc 
becomes too low, and the TCP throughput is much higher. 
This does not constitute a fairness problem, but a 
performance degradation problem for pgmcc. 

Fig. 4: Throughput of pgmcc with the 
adaptive timeout vs. TCP Reno (f=96%) 

Fig. 5: MCC session with receivers having different 
delays and loss rates competing with TCP sessions 

Fig. 6: Throughput of pgmcc vs. the two TCP 
sessions with low loss rate (f1=82%, f2=85%) 

Fig. 7: Throughput of pgmcc vs. the two TCP 
sessions with high loss rate (f1=78%, f2=54%) 

Fig. 8: MCC session with receivers having the same 
loss rate, but different delays Fig. 9: Throughput of pgmcc vs. TCP with 

NACK suppression (f=23%) 
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The reason for this bad performance under the given 

topology is the acker switching between a high RTT receiver 
and a low RTT receiver. By looking at acker switches in 
detail we found that two switches happen in succession close 
to each other. The first NACK from the closer receiver causes 
an acker change then the other NACK causes another change 
for the far one when it arrives. This pattern repeats with 
packet losses. It is interesting to look at why acker changing 
causes this bad performance (in other experiments it has no 
effect). By taking a more detailed look in Fig. 11 to observe 
what happens between two acker switches (a vertical line 
means an acker switch), we find that after the switch to the 
close receiver, new ACKs arrive before old ACKs. The old 
ACKs that arrive at 1226.5 do not cause new packets to be 
sent which means that they do not generate new tokens. 
Later, when new ACKs arrive the window start at slow rate, 
which means that, it has been cut. Fig. 12 shows how the 
window is cut at 1226.5. The reason for that is due to the out-
of-order ACK delivery and the reactions taken accordingly by 
the sender. Wrong loss detections can be interpreted, because 
ACKs for old packets have not arrived yet. Also on a loss 
detection the sender try to realign the window to the actual 
number of packets in flight, which will not be interpreted 
correctly after the switch, because there are still packets and 
ACKs in flight to and from the old acker.  

To solve this problem the sender needs to keep track of the 
recent history of acker changing and the ACKs sent by each 
acker. In addition the bitmask provides information about the 
recent packets received by the acker. Accordingly the sender 
can adjust its window and avoid these problems.  

This experiment shows that acker switching between 
receivers with large difference in delay degrades the 
performance of pgmcc. This problem will be more common 
on larger scales. 
 

V. CONCLUSIONS 

We have presented a set of carefully designed experiments to 
evaluate multicast congestion control protocols. These 
experiments clarify the operational details of the protocol by 
targeting specific mechanisms. They also show the 
differences with TCP and the related fairness issues. We 
carried the experiments on a case study protocol, pgmcc. 
Some problems have been found due to high losses, feedback 
suppression, and group representative switch. Improvements 
are proposed to cope with some of the problems, such as 
random suppression of NACKs, sender response after 

representative switches, and the adaptive timeout in case 
fairness to TCP Reno is required. We recommend researchers 
to consider our scenarios in addition to existing scenarios, 
and hope that this with the methodology presented in [14], be 
part of an evaluation framework to expedite the development 
and standardization of multicast congestion control protocols. 
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Fig. 10: Throughput of pgmcc vs. TCP due 
to acker switches (f=164%) 

Fig. 11: Detailed sequence of pgmcc packets 
during acker change 

Fig. 12: Window size changes of pgmcc 
session, during an acker change 


