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Abstract—Vehicular mobility scenarios are utilized to study
vehicular networks and transportation systems. However, the
generation of vehicular simulation scenarios at scale poses several
research challenges. Large-scale vehicular datasets (in geographic
coverage and time span) are not easily or publicly available,
which hinders the generation of data-driven scenarios. In this
paper, we introduce a systematic method, called En Route, to
generate vehicular mobility scenarios from traffic datasets such as
one derived from thousands of available traffic webcams covering
major cities around the world. Our framework includes data-
driven components for estimation of traffic density, flow, road
occupancy, as well as origin-destination (O/D) matrix estimation,
trip generation, and route/navigation calculations. By applying
the framework, we explore the city of London using the dataset
of ≈100 traffic cameras throughout the city. We utilize available
taxicab trips and traffic measurement datasets as guidelines for
reasonable estimation of flow values, trip generation and O/D
matrix. Our initial study shows reproducible step-by-step proce-
dures, detailing parameter choices and settings, and measuring
effects of changing those settings on the scenario outcomes.
The results show a clear relation between flow and occupancy,
and that trip duration follows a Lognormal distribution. Also,
using traffic-aware routing (vs. shortest path) results in less
congestion and more completed trips for a given simulation
time. Queue distributions are obtained showing that over 90%
of the intersection queues are 15 meters long (have average of
4 cars), and 90% of the roads carry less than 20 vehicles/km
with average speed of ≈22.3 mph. Future studies shall provide
multi-city simulations with further analysis.

I. INTRODUCTION

Mobility modeling and simulation has been an active area of
research for the past decade. It benefits the design and perfor-
mance evaluation of existing and emerging wireless networks,
mobile social networks and transportation, to name a few.
Although there have been successful efforts to build libraries
of pedestrian wireless users (e.g. crawdad.org, cise.ufl.edu/
∼helmy/MobiLib.htm), to aid data-driven mobility modeling,
there have hardly been any large-scale libraries for vehicular
traces. Much of the data for research in the transportation field
is not publicly available for various reasons (privacy, industry
practice, etc.). Hence, there exists a research challenge to
develop simulation scenarios and vehicular mobility models,
especially with reproducible results. One of our main goals is
to generate scenarios to help investigate microscopic vehicular
mobility. This fine level of granularity can facilitate the study
and understanding of complex spatio-temporal characteristics
of vehicular mobility.

This paper presents our first study to address this problem
in a systematic way through our En Route framework. The

framework includes elaborate steps, starting from the dataset,
to origin-destination (OD) matrix and vehicle flow generation
and finally simulation scenario generation and evaluation. We
utilize several datasets, including planet-scale imagery data
from thousands of webcams around the world, two datasets
from taxicabs and a set of traffic measurements on highways.

By applying the framework to processed imagery data of the
city of London (Oct. 11 2010, 10-10:30AM), considering mul-
tiple routing schemes, we investigate the effects of parameter
alteration on number of trips and some initial measurements
on outputs of the simulation. We observe that average trip time
does not affect the number of trips started while increase in
number of shortest paths results in fewer number of trips. Trip
duration from simulation outputs also conforms to Lognormal
distribution. ≈90% of roads are less than 10% occupied and
have almost 20 vehicles/km. Intersection queues have average
of 15 meters (per lane) in length for 90% of all lanes and in
all cases traffic is heavier near cameras.

Our contributions in this work include: introduction of the
En Route framework integrating the various pieces enabling
generation of suitable scenarios and measurement system,
study of system parameters and outputs based on a large
scale scenario (London) and providing the scenarios for future
studies and finally evaluating the scenario by the means of
trip and traffic characteristics. We plan to extend our work
in the future to other cities and longer times and share out
datasets and generated scenarios and tools. The rest of the
paper is organized as follows: Section II discusses related
works. Section III presents the dataset and framework. Section
IV provides system analysis, results and comparison with the
original data. Section V concludes the study.

II. RELATED WORK

The related work lies in three main areas; datasets for
mobile vehicles, OD matrix estimation, and vehicular mobility
simulations. In this section we briefly summarize the state-
of-the-art in these areas and how they relate to this paper.
Various methods of urban measurement are used to collect
traffic information throughout cities and highways such as
induction loop detectors data (including vehicle flow, speed
and occupancy), traffic cameras (image data), radar and sonar
sensors [1] but unfortunately not many complete and large
scale datasets are available/accessible. Thakur et al. [2] in
addition to providing us with a large scale dataset, have
analyzed traffic patterns which facilitates understanding of
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Fig. 1. Block diagram of En Route framework. The core component is the O/D matrix estimation works on the processed planet scale imagery data and
provides the configuration for routing and simulation. Measurement system analyzes final simulation outputs and intermediate results.

vehicular mobility. Origin/Destination matrix has widely been
used as a concept and a tool to represent and simulate
vehicular traffic [3]. This information can be used in a routing
algorithm (e.g. shortest path algorithms) to generate routes to
be taken by vehicles traveling between each pair of origins and
destinations. Generating (estimating) OD matrices is a well
known problem in the transportation community [4][5][6].
Various studies have been conducted to model traffic demand
especially using origin/destination matrices. Moghadam et al.
[7] have designed a smart O/D estimation technique that
is easily achievable using the state of the art programming
languages and tools. Tools and ideas for generating mobility
models are in demand in both transportation science and
networking science communities. For instance, Karnadi et
al. [8] have proposed MOVE, a mobility model generation
architecture that can be used for VANET simulations. Noori
has done multiple studies involving generation of scenarios
(using SUMO [10] and VEINS framework) for various pur-
poses considering VANETs and vehicle based communication
including analysis of emergency vehicles response time and
reducing travel time [9][11][12]. For this study, we rely on
SUMO with 3 flavors of routing for running the simulations.

III. EN ROUTE

We propose En Route; a systematic framework (shown
in fig. 1) capable of modeling traffic by means of an O/D
matrix and generating simulation scenarios for mobility in
urban environments. This framework has a modular design
so changes to one module can be easily applied (as far as the
interface between them is maintained). Main components of
the framework are: dataset, traffic modeling, routing and sim-
ulation and finally measurement. We also incorporate datasets
from Berkeley [13], San Francisco (SF) [14], and Beijing [15]
to gain analytical insight for design and evaluation of the
framework. In order to generate reasonable scenarios, we need
valid routes which can be computed on the trips generated
based on origin and destination (O/D) matrix as the tool to
represent the traffic needs of the scenario. The framework,
processes the data into the required format and then uses

it to estimate the O/D matrix. Next we will describe each
component in finer details.

A. Dataset

A dataset suitable for traffic modeling consists of descrip-
tion of observation points and their geo-coordinates, time to
travel between each pair (potentially extracted using third
party location/map software) and measurements of flow values
(number of cars observed in some unit time). This information
can help with modeling the structure of a city in addition
to transforming and assigning the measurements in order to
estimate the O/D matrix.

Planet scale imagery dataset provides traffic cameras and
their geo-information, pairwise distances and travel times
(estimated using Google Maps API) and timestamped values
of density extracted using background subtraction algorithms
[16]. These values if scaled to [0,1] for each camera, represent
a measure for congestion in view point of the camera. Open
Street Maps (OSM) augments the dataset by adding geo-
graphical information (i.e. nearest road segments) as well as
providing the maps of cities under investigation for simulation.
The original dataset consists of over 10 urban areas including
several major cities around the globe (New York City, London,
Sydney, etc.). For the purposes of this study we focus on the
city of London, which contains ≈180 cameras.

Data requirements of the system demand values correspond-
ing to total number of actual vehicles during the time window
under consideration. We target the time window of 30 minutes
as going to longer time windows results in less accuracy and
going to shorter times results in too many small matrices (this
level of detail is not required for a scenario at the scale of a
city). Simulation of longer time periods is achievable by using
multiple matrices for different (potentially contiguous) times.

Scaled pixel densities represent density of the traffic at
corresponding camera’s view. Occupancy refers to the amount
of time an induction loop detector is active and represents
a measure of traffic density. By assuming a linear relation
between occupancy and pixel density, we can in turn relate
the pixel densities to flow values. This is achievable based on



Fig. 2. Relationship between flow and occupancy as suggested by Macro-
scopic Fundamental Diagram

studies that have investigated the relationship between occu-
pancy, speed and flow. Existence of Macroscopic Fundamental
Diagram (MFD) [17] suggests how flow measurements change
with changes in occupancy. Observations suggest existence of
a maximal flow with increase in occupancy and then flow value
tends to drop as the road becomes more occupied. We estimate
the MFD parameters using two second-degree polynomials
and associate density values to corresponding flow values. To
observe and validate this conjecture, we studied the traffic
measurements data of Berkeley [13] and put the estimated
parameters as a basis to estimate flows of other cities. This
parameter might not have an optimal value (depending on the
application of the scenario and whether realism is favored) and
requires further studies. To reduce the variance and noise in
this data, we aggregated every 100 data points and replaced
them with their mean. Then to determine the cutoff point, we
used the occupancy at which the flow maximizes and fitted two
second-degree polynomials for each split. Figure 2 presents the
relationship between flow (average vehicle per minute) and
occupancy as well as the two polynomials.

B. Traffic Modeling using an O/D Matrix
At the core of the system, lies the O/D matrix. A matrix

cell ODi, j represents the number of cars that travel from
origin i to destination j (for the time window that an OD
matrix represents e.g. 30 minutes). Moghadam et al. [7] have
proposed a method of estimating O/D matrices based on
induction loop detector measurements that span a section of
city of Los Angeles with origins and destinations chosen with
user’s knowledge of city. This ignited the initial idea for our
work. In order to get a systematic estimate of the values
corresponding to an O/D matrix, a matrix representation of the
city structure (matrix A) and a vector containing the estimates
of flow values are required (vector b).

1) Traffic Assignment: Flow of vehicles (number of vehi-
cles in a time period, e.g. a minute) is a common metric to
study traffic patterns. Summation of per minute flow values
provides the total number of vehicles expected in the vicinity
of cameras (for each camera). This total value, then will be
assigned to outgoing edges on the overlay graph (explained in
III-B2). Since the overlay graph is assumed to be complete,
an edge exists from each point (camera) to all the others. The
total value at a given point is assigned to outgoing edges

Fig. 3. Complete map of London imported in SUMO (more than 300K road
segments) with a zoomed in sample of an intersection with cars.

proportional to the probability of a trip between the point
and the other end of the edge. Probability is drawn from
a Lognormal distribution for trip travel times (travel time
between each pair of points). Using this information an N×N
matrix representation of the graph with traffic count as weights
(on the edges) can be formed and flattened out into a vector
representation (N2×1) suitable for O/D estimation (vector b).

2) Structural Analysis: Using cameras’ geo-coordinates,
we can assume an overlay complete graph with cameras acting
as vertices and edges weighted by the time it takes to drive
between the nodes on each end of that edge. This graph
helps us with estimating the value (number of trips) for each
origin/destination pair as each edge in the graph also corre-
sponds to an O/D pair. Lognormal distribution is the de facto
distribution for modeling trip duration used in the literature.
We verified that trip times fit a Lognormal distribution well
by analyzing two publicly available datasets from Beijing
[15] and San Francisco taxicabs [14]. To extract trips from
GPS traces, we used a criteria of speed < 0.01 m/s, dwell
time >= 120s and change in latitude and longitude < .00005
to detect arrival of a trip [18]. Figure 4 presents empirical
and theoretical densities and CDFs based on Beijing and
San Francisco taxicab trips against a Lognormal distribution,
visualizing the goodness of fit. In order to establish a relation
between O/D pairs and graph edges we compute the k-shortest
paths between each pair of nodes in the overlay graph. We
assign probabilities using Lognormal distribution by assuming
for each path, the probability to take that path is proportional
to the probability extracted using Lognormal distribution on
travel time computed for that path. This information is repre-
sented in a matrix (called A) where cell Ai, j is the probability
to take ith edge on a trip between jth O/D pair. This ultimately
helps identify which portion of the traffic passing through an
edge is sourced and destined to vertices of that edge which in
turn can translate to the value for the O/D pair.

3) OD Estimation: Estimating an OD matrix is achieved by
solving a system of linear equation Ax = b where A is a square
matrix of size n (each matrix row represents an edge in the
complete graph and each column represents an O/D pair) and
the cell Ai, j represents the probability of the ith edge being
used for jth O/D pair, and b is the vector of flow values and x
will be our O/D matrix (flatted out in a n2 by 1 vector instead
of n by n matrix). Although the problem is determined in
this case, we need non-negative solutions (negative number of
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Fig. 4. Distribution of Beijing (a) and San Francisco (b) taxicab trips fit
Lognormal

trips is undefined) and therefore the system is solved such that
it minimizes the least square error by assigning non-negative
values (non-negative least squares approach).

With OD matrix available, we are able to generate trips
by randomly assigning departure times within the OD time
window (e.g. 30 minutes) between each origin and each
destination. Each origin or destination is called a Traffic
Assignment Zone (TAZ) and will consist of three closest edges
to the camera’s coordinates (more than 3 edges can be used
if more spread of traffic at assignment zones is preferred).
C. Simulation

To run a scenario, generated trips based on the O/D matrix
should be routed on the map of the city under consideration. A
minimal set of required configurations to run a scenario using
SUMO v0.28 is a route and a network configuration (map of
the city). Network configuration may be acquired using Open
Street Maps and converted into SUMO compatible format.

D. Setup
1) Route Generation: A simple shortest path in time (i.e.

longer road with higher speed limit may be faster) is usually
the method people utilize to reach a destination. More recently,
with advances of navigation tools and almost real-time avail-
ability of traffic information, people can also find the fastest
route to their destination considering the traffic. We consider
three different routing schemes: shortest path (1 iteration of
dynamic user assignment-DUA), 10 iterations of DUA toward
an equilibrium state (ES) and traffic aware real-time routing
(referred to as RT). ES and RT provide better routes in terms
of trip completion times and heuristically match how people
navigate nowadays. According to figure 5a using ES and RT
results in similar performance while shortest path assignment
tends to put more traffic on fewer road segments (hence more
over-occupancy). Meanwhile, an interesting observation from
figure 5b is the difference between the number of trips com-
pleted within two hours of simulation when ES or RT is used
and the number of completed trips using only simple shortest
path routing (near 30K trips completed vs around 10K). Also
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Fig. 5. Measurement from city of London using 100 cameras. a) Cumulative
distribution of occupancy values reported based on one minute measurements.
b) Multi-histogram of trips completed within each 30 minutes of the simu-
lation. While ES and RT seem to perform similarly, DUA produces more
congested roads and as a consequence, less trips finished within 2 hours.

using 10 iterations of dynamic user assignment most of the
trips (over 58%) are completed within the second 30 minutes
of the simulation which conforms to the expected trip duration
of 10 to 20 minutes (depending on city characteristics) and
start times within the first 30 minutes. From computation point
of view, using 100 traffic assignment zones, ES took slightly
over 20 hours while using RT took even longer time of over
30 hours for 30K trips in 2 hour total simulation time.

IV. EVALUATION

The system is proposed with flexibility to provide diverse
scenarios in mind. We base our evaluation on comparing sim-
ulation results to the original dataset along with investigating
the relationship of system parameters and outputs.

1) Parameters: Although not an exhaustive list of param-
eters, following have been identified as knobs that can be
tweaked to achieve a variety of scenarios with reasonable
(qualitatively/realistically feasible) outputs: Lognormal mean
and standard deviation as trip duration distribution for as-
signing probabilities to edges of overlay graph, Number and
choice of shortest paths used on overlay graph, Number of the
cameras in the subset of total cameras used as origins and
destinations, synthetic scaling factor to increase the number
of trips to generate and Flow estimation parameters (min and
max occupancy and their corresponding flow values in addition
to maximum flow value and its corresponding occupancy).

2) Outputs: Trips act as the connecting agent between the
previously mentioned system parameters and the following
measurements. Number of trips generated can be seen as the
output of traffic modeling and as input to the routing module
of the simulator. In addition to scenario configuration file and
computed routes (scenarios as the product), various supported
outputs may be acquired from the simulator (as product of
the scenarios). We focus on measurements of edge based
information, edge/lane queue statistics and trips information.
We investigate the relationship among inputs, tweak points
and outputs in London. Using 20, 50, 100 and 150 cameras
resulted in synthetic scaling factor of approximately 5.5, 3.5,
2.5 and 2.1 respectively. This drop in synthetic scaling factor
demonstrates the convergences to more realistic scenarios by
using more observation points.



(a) (b)
Fig. 6. Trips started in 30-minute windows of a day for Beijing (a) and San
Francisco (b)

The milestone of 30K trips (starting in 30 minutes) is
chosen as such to stress the system. In order to have a realistic
guideline, we studied Beijing and San Francisco datasets.
Figure 6 represents the time series for the number of trips
started in 30-minutes windows of a day for several weekdays.
The lower number of trips started in SF can be explained by
the lower number of taxicabs participating in data collection.
Nonetheless, There are visible hikes around early morning and
afternoon hours, which could be explained by work commutes
(and can be used to generate target number of trips for
specific times of day). If realism is favored for a scenario,
desired number of trips chosen by further study of the urban
environment can be set as the milestone for the system.

Figure 7 visualizes the relationship between number of
shortest paths used and mean for Lognormal distribution
for probability assignment, and number of generated trips.
Changing mean parameter from 6 to 7 has negligible effect
whereas using fewer paths produces higher number of trips.
A suggested number of paths to consider would be between 3
and 5 so that a large span of city is covered and at the same
time the rate of decrease in number of trips also drops. Smaller
number of paths will result in heavier traffic jams. To further
distribute the traffic, instead of the first few shortest paths,
those that have more uncommon edges or highly varying travel
times may be used (choice of path).

To compare the outputs of the simulation versus the original
dataset, various situations considering the choice of result and
scaling is shown in fig. 8. Resulting occupancies reported as
one minute measurements on all road segments used through-
out the simulation, are generally small (90% of values are less
than ≈0.1) while for original dataset values are considerably
more (90% of values are less than ≈0.5). This is somewhat
expected as the cameras are usually placed in places with
heavier traffic. CDF of results near the cameras endorses this
conjecture (as 90% of values are less than ≈0.25 vs 0.1 for
all roads). Results, when scaled to range [0,1], show a closer
behavior to original dataset. Occupancy of Berkeley highways
is also plotted to give a basis to compare our urban scenario vs
a highway one (highways tend to have more stable occupancy).
Another observation is the similarity of results near cameras
and overall when rescaled which corroborates that cameras are
a good representative of the overall traffic.

3) Measurement Results: As a sample of the outputs of
the generated scenarios, various plots on length and time of
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Fig. 7. (a) Almost no change in number of trips with varying lognormal mean
parameter from 6 to 7. (b) Number of generated trips declines using more
shortest paths. Change in Lognormal mean does not affect the behavior.

0.0 0.2 0.4 0.6 0.8 1.0

Occupancy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

CDF of results vs orig

results

results near cameras

results rescaled

results near cameras rescaled

original

Berkeley

Fig. 8. Cumulative distribution of occupancy values. Berkeley corresponds
to the highways near the city of Berkeley, CA and is drawn for comparison.
Road segments near the cameras are more occupied but rescaled to [0,1] they
closely represent the overall result and are more similar to the original dataset.

queues, edge based density (vehicles/km), traffic, speed and
trip duration distribution are presented and discussed in 9:

• 90% of the queues at intersections have lengths of less
than ≈15 meters which take ≈20 seconds to empty up.
• 90% of edges have 20 vehicles per kilometer or less
overall. In vicinity of the cameras this value becomes 60
vehicles/km (cameras define the traffic assignment zones and
therefore heavier traffic is expected close to their location).
90% of edges have ≈10 vehicles (≈18 for vicinity of cameras).
Distribution of vehicles near the cameras seems to follow
an exponential trend. This can be particularly interesting for
vehicular mobility modeling and is due for in-depth analysis.
Reported values for speed (average speed per minute for each
edge) seems to be mostly distributed around a mean value of
≈10 m/s (36 km/h or 22.3 mph) which is heuristically reason-
able for an urban scenario (considering city map constraints).
• Trip duration is observed to follow a Lognormal distri-
bution. More than 50% of trips finish within the second 30
minutes (≈66% of trips are completed in the first hour), in
line with the average trip time of ≈2000 seconds (> 30 min).

V. CONCLUSION AND FUTURE PLANS

We presented a novel scenario generation framework that
provides an O/D matrix compatible with common tools and
simulators. These scenarios can be adjusted for purposes of
different studies whether to better understand reality or to
test an idea or model. Generated scenarios can be further
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Fig. 9. Visualization of various measurements from simulation outputs. (a) and (b) explain the length and time of intersection queues. (c) and (d) focus on
overall placement of vehicles over edges (roads). (e) shows the distribution of average per minute speeds and (f) demonstrate the distribution of vehicles near
cameras. (g) presents the distribution plot of trip duration with a Lognormal fit and (h) shows the number of trips completed in 30 min. bins.

studied for self-similarity, causality, time series analysis or
more complex statistics in order to understand not only the
quality of scenarios but also the dynamics of real world urban
mobility. Other cities available in the imagery dataset, or any
other compatible dataset, can be studied to generate scenarios
covering vehicular mobility of those cities. More in-depth
parameter analysis bears further research. In order to model the
behavior of vehicular mobility considering individual, mutual
and social aspects, a dataset that contains detailed movement
of individual vehicles is required. Vehicular mobility seems
more challenging compared with pedestrians as not only the
locations that a car visits is important but also how one travels
between them matters (routes and duration). We plan to con-
tinue this work using generated scenarios towards proposing
a framework to model mobility of vehicles that can help with
benchmarking a vehicular/mobile networking system.
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